diff options
Diffstat (limited to 'net/ipv4/tcp_cubic.c')
-rw-r--r-- | net/ipv4/tcp_cubic.c | 411 |
1 files changed, 411 insertions, 0 deletions
diff --git a/net/ipv4/tcp_cubic.c b/net/ipv4/tcp_cubic.c new file mode 100644 index 00000000000..31a4986dfbf --- /dev/null +++ b/net/ipv4/tcp_cubic.c @@ -0,0 +1,411 @@ +/* + * TCP CUBIC: Binary Increase Congestion control for TCP v2.0 + * + * This is from the implementation of CUBIC TCP in + * Injong Rhee, Lisong Xu. + * "CUBIC: A New TCP-Friendly High-Speed TCP Variant + * in PFLDnet 2005 + * Available from: + * http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf + * + * Unless CUBIC is enabled and congestion window is large + * this behaves the same as the original Reno. + */ + +#include <linux/config.h> +#include <linux/mm.h> +#include <linux/module.h> +#include <net/tcp.h> +#include <asm/div64.h> + +#define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation + * max_cwnd = snd_cwnd * beta + */ +#define BICTCP_B 4 /* + * In binary search, + * go to point (max+min)/N + */ +#define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */ + +static int fast_convergence = 1; +static int max_increment = 16; +static int beta = 819; /* = 819/1024 (BICTCP_BETA_SCALE) */ +static int initial_ssthresh = 100; +static int bic_scale = 41; +static int tcp_friendliness = 1; + +static u32 cube_rtt_scale; +static u32 beta_scale; +static u64 cube_factor; + +/* Note parameters that are used for precomputing scale factors are read-only */ +module_param(fast_convergence, int, 0644); +MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence"); +module_param(max_increment, int, 0644); +MODULE_PARM_DESC(max_increment, "Limit on increment allowed during binary search"); +module_param(beta, int, 0444); +MODULE_PARM_DESC(beta, "beta for multiplicative increase"); +module_param(initial_ssthresh, int, 0644); +MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold"); +module_param(bic_scale, int, 0444); +MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)"); +module_param(tcp_friendliness, int, 0644); +MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness"); + +#include <asm/div64.h> + +/* BIC TCP Parameters */ +struct bictcp { + u32 cnt; /* increase cwnd by 1 after ACKs */ + u32 last_max_cwnd; /* last maximum snd_cwnd */ + u32 loss_cwnd; /* congestion window at last loss */ + u32 last_cwnd; /* the last snd_cwnd */ + u32 last_time; /* time when updated last_cwnd */ + u32 bic_origin_point;/* origin point of bic function */ + u32 bic_K; /* time to origin point from the beginning of the current epoch */ + u32 delay_min; /* min delay */ + u32 epoch_start; /* beginning of an epoch */ + u32 ack_cnt; /* number of acks */ + u32 tcp_cwnd; /* estimated tcp cwnd */ +#define ACK_RATIO_SHIFT 4 + u32 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */ +}; + +static inline void bictcp_reset(struct bictcp *ca) +{ + ca->cnt = 0; + ca->last_max_cwnd = 0; + ca->loss_cwnd = 0; + ca->last_cwnd = 0; + ca->last_time = 0; + ca->bic_origin_point = 0; + ca->bic_K = 0; + ca->delay_min = 0; + ca->epoch_start = 0; + ca->delayed_ack = 2 << ACK_RATIO_SHIFT; + ca->ack_cnt = 0; + ca->tcp_cwnd = 0; +} + +static void bictcp_init(struct sock *sk) +{ + bictcp_reset(inet_csk_ca(sk)); + if (initial_ssthresh) + tcp_sk(sk)->snd_ssthresh = initial_ssthresh; +} + +/* 64bit divisor, dividend and result. dynamic precision */ +static inline u_int64_t div64_64(u_int64_t dividend, u_int64_t divisor) +{ + u_int32_t d = divisor; + + if (divisor > 0xffffffffULL) { + unsigned int shift = fls(divisor >> 32); + + d = divisor >> shift; + dividend >>= shift; + } + + /* avoid 64 bit division if possible */ + if (dividend >> 32) + do_div(dividend, d); + else + dividend = (uint32_t) dividend / d; + + return dividend; +} + +/* + * calculate the cubic root of x using Newton-Raphson + */ +static u32 cubic_root(u64 a) +{ + u32 x, x1; + + /* Initial estimate is based on: + * cbrt(x) = exp(log(x) / 3) + */ + x = 1u << (fls64(a)/3); + + /* + * Iteration based on: + * 2 + * x = ( 2 * x + a / x ) / 3 + * k+1 k k + */ + do { + x1 = x; + x = (2 * x + (uint32_t) div64_64(a, x*x)) / 3; + } while (abs(x1 - x) > 1); + + return x; +} + +/* + * Compute congestion window to use. + */ +static inline void bictcp_update(struct bictcp *ca, u32 cwnd) +{ + u64 offs; + u32 delta, t, bic_target, min_cnt, max_cnt; + + ca->ack_cnt++; /* count the number of ACKs */ + + if (ca->last_cwnd == cwnd && + (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32) + return; + + ca->last_cwnd = cwnd; + ca->last_time = tcp_time_stamp; + + if (ca->epoch_start == 0) { + ca->epoch_start = tcp_time_stamp; /* record the beginning of an epoch */ + ca->ack_cnt = 1; /* start counting */ + ca->tcp_cwnd = cwnd; /* syn with cubic */ + + if (ca->last_max_cwnd <= cwnd) { + ca->bic_K = 0; + ca->bic_origin_point = cwnd; + } else { + /* Compute new K based on + * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ) + */ + ca->bic_K = cubic_root(cube_factor + * (ca->last_max_cwnd - cwnd)); + ca->bic_origin_point = ca->last_max_cwnd; + } + } + + /* cubic function - calc*/ + /* calculate c * time^3 / rtt, + * while considering overflow in calculation of time^3 + * (so time^3 is done by using 64 bit) + * and without the support of division of 64bit numbers + * (so all divisions are done by using 32 bit) + * also NOTE the unit of those veriables + * time = (t - K) / 2^bictcp_HZ + * c = bic_scale >> 10 + * rtt = (srtt >> 3) / HZ + * !!! The following code does not have overflow problems, + * if the cwnd < 1 million packets !!! + */ + + /* change the unit from HZ to bictcp_HZ */ + t = ((tcp_time_stamp + ca->delay_min - ca->epoch_start) + << BICTCP_HZ) / HZ; + + if (t < ca->bic_K) /* t - K */ + offs = ca->bic_K - t; + else + offs = t - ca->bic_K; + + /* c/rtt * (t-K)^3 */ + delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ); + if (t < ca->bic_K) /* below origin*/ + bic_target = ca->bic_origin_point - delta; + else /* above origin*/ + bic_target = ca->bic_origin_point + delta; + + /* cubic function - calc bictcp_cnt*/ + if (bic_target > cwnd) { + ca->cnt = cwnd / (bic_target - cwnd); + } else { + ca->cnt = 100 * cwnd; /* very small increment*/ + } + + if (ca->delay_min > 0) { + /* max increment = Smax * rtt / 0.1 */ + min_cnt = (cwnd * HZ * 8)/(10 * max_increment * ca->delay_min); + if (ca->cnt < min_cnt) + ca->cnt = min_cnt; + } + + /* slow start and low utilization */ + if (ca->loss_cwnd == 0) /* could be aggressive in slow start */ + ca->cnt = 50; + + /* TCP Friendly */ + if (tcp_friendliness) { + u32 scale = beta_scale; + delta = (cwnd * scale) >> 3; + while (ca->ack_cnt > delta) { /* update tcp cwnd */ + ca->ack_cnt -= delta; + ca->tcp_cwnd++; + } + + if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */ + delta = ca->tcp_cwnd - cwnd; + max_cnt = cwnd / delta; + if (ca->cnt > max_cnt) + ca->cnt = max_cnt; + } + } + + ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack; + if (ca->cnt == 0) /* cannot be zero */ + ca->cnt = 1; +} + + +/* Keep track of minimum rtt */ +static inline void measure_delay(struct sock *sk) +{ + const struct tcp_sock *tp = tcp_sk(sk); + struct bictcp *ca = inet_csk_ca(sk); + u32 delay; + + /* No time stamp */ + if (!(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) || + /* Discard delay samples right after fast recovery */ + (s32)(tcp_time_stamp - ca->epoch_start) < HZ) + return; + + delay = tcp_time_stamp - tp->rx_opt.rcv_tsecr; + if (delay == 0) + delay = 1; + + /* first time call or link delay decreases */ + if (ca->delay_min == 0 || ca->delay_min > delay) + ca->delay_min = delay; +} + +static void bictcp_cong_avoid(struct sock *sk, u32 ack, + u32 seq_rtt, u32 in_flight, int data_acked) +{ + struct tcp_sock *tp = tcp_sk(sk); + struct bictcp *ca = inet_csk_ca(sk); + + if (data_acked) + measure_delay(sk); + + if (!tcp_is_cwnd_limited(sk, in_flight)) + return; + + if (tp->snd_cwnd <= tp->snd_ssthresh) + tcp_slow_start(tp); + else { + bictcp_update(ca, tp->snd_cwnd); + + /* In dangerous area, increase slowly. + * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd + */ + if (tp->snd_cwnd_cnt >= ca->cnt) { + if (tp->snd_cwnd < tp->snd_cwnd_clamp) + tp->snd_cwnd++; + tp->snd_cwnd_cnt = 0; + } else + tp->snd_cwnd_cnt++; + } + +} + +static u32 bictcp_recalc_ssthresh(struct sock *sk) +{ + const struct tcp_sock *tp = tcp_sk(sk); + struct bictcp *ca = inet_csk_ca(sk); + + ca->epoch_start = 0; /* end of epoch */ + + /* Wmax and fast convergence */ + if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence) + ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta)) + / (2 * BICTCP_BETA_SCALE); + else + ca->last_max_cwnd = tp->snd_cwnd; + + ca->loss_cwnd = tp->snd_cwnd; + + return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U); +} + +static u32 bictcp_undo_cwnd(struct sock *sk) +{ + struct bictcp *ca = inet_csk_ca(sk); + + return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd); +} + +static u32 bictcp_min_cwnd(struct sock *sk) +{ + return tcp_sk(sk)->snd_ssthresh; +} + +static void bictcp_state(struct sock *sk, u8 new_state) +{ + if (new_state == TCP_CA_Loss) + bictcp_reset(inet_csk_ca(sk)); +} + +/* Track delayed acknowledgment ratio using sliding window + * ratio = (15*ratio + sample) / 16 + */ +static void bictcp_acked(struct sock *sk, u32 cnt) +{ + const struct inet_connection_sock *icsk = inet_csk(sk); + + if (cnt > 0 && icsk->icsk_ca_state == TCP_CA_Open) { + struct bictcp *ca = inet_csk_ca(sk); + cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT; + ca->delayed_ack += cnt; + } +} + + +static struct tcp_congestion_ops cubictcp = { + .init = bictcp_init, + .ssthresh = bictcp_recalc_ssthresh, + .cong_avoid = bictcp_cong_avoid, + .set_state = bictcp_state, + .undo_cwnd = bictcp_undo_cwnd, + .min_cwnd = bictcp_min_cwnd, + .pkts_acked = bictcp_acked, + .owner = THIS_MODULE, + .name = "cubic", +}; + +static int __init cubictcp_register(void) +{ + BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE); + + /* Precompute a bunch of the scaling factors that are used per-packet + * based on SRTT of 100ms + */ + + beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta); + + cube_rtt_scale = (bic_scale << 3) / 10; /* 1024*c/rtt */ + + /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3 + * so K = cubic_root( (wmax-cwnd)*rtt/c ) + * the unit of K is bictcp_HZ=2^10, not HZ + * + * c = bic_scale >> 10 + * rtt = 100ms + * + * the following code has been designed and tested for + * cwnd < 1 million packets + * RTT < 100 seconds + * HZ < 1,000,00 (corresponding to 10 nano-second) + */ + + /* 1/c * 2^2*bictcp_HZ * srtt */ + cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */ + + /* divide by bic_scale and by constant Srtt (100ms) */ + do_div(cube_factor, bic_scale * 10); + + return tcp_register_congestion_control(&cubictcp); +} + +static void __exit cubictcp_unregister(void) +{ + tcp_unregister_congestion_control(&cubictcp); +} + +module_init(cubictcp_register); +module_exit(cubictcp_unregister); + +MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger"); +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("CUBIC TCP"); +MODULE_VERSION("2.0"); |