diff options
author | Ingo Molnar <mingo@elte.hu> | 2012-03-14 09:48:16 +0100 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2012-03-14 09:48:16 +0100 |
commit | c96a9876696d30783ad54399351a0bf3660db53f (patch) | |
tree | 74daba0ed1fd2838e8eb527c4f7fe5262ee979bd /arch/x86/include/asm | |
parent | d1f42e314c9c50541c79a6edf2b4cab63fe02ee3 (diff) | |
parent | fde7d9049e55ab85a390be7f415d74c9f62dd0f9 (diff) | |
download | linux-3.10-c96a9876696d30783ad54399351a0bf3660db53f.tar.gz linux-3.10-c96a9876696d30783ad54399351a0bf3660db53f.tar.bz2 linux-3.10-c96a9876696d30783ad54399351a0bf3660db53f.zip |
Merge tag 'v3.3-rc7' into x86/platform
Merge reason: Update to the almost-final v3.3 kernel.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/include/asm')
-rw-r--r-- | arch/x86/include/asm/cmpxchg.h | 6 | ||||
-rw-r--r-- | arch/x86/include/asm/cpufeature.h | 1 | ||||
-rw-r--r-- | arch/x86/include/asm/i387.h | 307 | ||||
-rw-r--r-- | arch/x86/include/asm/kvm_emulate.h | 16 | ||||
-rw-r--r-- | arch/x86/include/asm/perf_event.h | 8 | ||||
-rw-r--r-- | arch/x86/include/asm/processor.h | 2 | ||||
-rw-r--r-- | arch/x86/include/asm/thread_info.h | 2 | ||||
-rw-r--r-- | arch/x86/include/asm/uv/uv_hub.h | 4 |
8 files changed, 284 insertions, 62 deletions
diff --git a/arch/x86/include/asm/cmpxchg.h b/arch/x86/include/asm/cmpxchg.h index 0c9fa2745f1..b3b73326290 100644 --- a/arch/x86/include/asm/cmpxchg.h +++ b/arch/x86/include/asm/cmpxchg.h @@ -145,13 +145,13 @@ extern void __add_wrong_size(void) #ifdef __HAVE_ARCH_CMPXCHG #define cmpxchg(ptr, old, new) \ - __cmpxchg((ptr), (old), (new), sizeof(*ptr)) + __cmpxchg(ptr, old, new, sizeof(*(ptr))) #define sync_cmpxchg(ptr, old, new) \ - __sync_cmpxchg((ptr), (old), (new), sizeof(*ptr)) + __sync_cmpxchg(ptr, old, new, sizeof(*(ptr))) #define cmpxchg_local(ptr, old, new) \ - __cmpxchg_local((ptr), (old), (new), sizeof(*ptr)) + __cmpxchg_local(ptr, old, new, sizeof(*(ptr))) #endif /* diff --git a/arch/x86/include/asm/cpufeature.h b/arch/x86/include/asm/cpufeature.h index 17c5d4bdee5..8d67d428b0f 100644 --- a/arch/x86/include/asm/cpufeature.h +++ b/arch/x86/include/asm/cpufeature.h @@ -159,6 +159,7 @@ #define X86_FEATURE_WDT (6*32+13) /* Watchdog timer */ #define X86_FEATURE_LWP (6*32+15) /* Light Weight Profiling */ #define X86_FEATURE_FMA4 (6*32+16) /* 4 operands MAC instructions */ +#define X86_FEATURE_TCE (6*32+17) /* translation cache extension */ #define X86_FEATURE_NODEID_MSR (6*32+19) /* NodeId MSR */ #define X86_FEATURE_TBM (6*32+21) /* trailing bit manipulations */ #define X86_FEATURE_TOPOEXT (6*32+22) /* topology extensions CPUID leafs */ diff --git a/arch/x86/include/asm/i387.h b/arch/x86/include/asm/i387.h index 6919e936345..247904945d3 100644 --- a/arch/x86/include/asm/i387.h +++ b/arch/x86/include/asm/i387.h @@ -29,10 +29,11 @@ extern unsigned int sig_xstate_size; extern void fpu_init(void); extern void mxcsr_feature_mask_init(void); extern int init_fpu(struct task_struct *child); -extern asmlinkage void math_state_restore(void); -extern void __math_state_restore(void); +extern void math_state_restore(void); extern int dump_fpu(struct pt_regs *, struct user_i387_struct *); +DECLARE_PER_CPU(struct task_struct *, fpu_owner_task); + extern user_regset_active_fn fpregs_active, xfpregs_active; extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get, xstateregs_get; @@ -212,19 +213,11 @@ static inline void fpu_fxsave(struct fpu *fpu) #endif /* CONFIG_X86_64 */ -/* We need a safe address that is cheap to find and that is already - in L1 during context switch. The best choices are unfortunately - different for UP and SMP */ -#ifdef CONFIG_SMP -#define safe_address (__per_cpu_offset[0]) -#else -#define safe_address (__get_cpu_var(kernel_cpustat).cpustat[CPUTIME_USER]) -#endif - /* - * These must be called with preempt disabled + * These must be called with preempt disabled. Returns + * 'true' if the FPU state is still intact. */ -static inline void fpu_save_init(struct fpu *fpu) +static inline int fpu_save_init(struct fpu *fpu) { if (use_xsave()) { fpu_xsave(fpu); @@ -233,33 +226,33 @@ static inline void fpu_save_init(struct fpu *fpu) * xsave header may indicate the init state of the FP. */ if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP)) - return; + return 1; } else if (use_fxsr()) { fpu_fxsave(fpu); } else { asm volatile("fnsave %[fx]; fwait" : [fx] "=m" (fpu->state->fsave)); - return; + return 0; } - if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) + /* + * If exceptions are pending, we need to clear them so + * that we don't randomly get exceptions later. + * + * FIXME! Is this perhaps only true for the old-style + * irq13 case? Maybe we could leave the x87 state + * intact otherwise? + */ + if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) { asm volatile("fnclex"); - - /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception - is pending. Clear the x87 state here by setting it to fixed - values. safe_address is a random variable that should be in L1 */ - alternative_input( - ASM_NOP8 ASM_NOP2, - "emms\n\t" /* clear stack tags */ - "fildl %P[addr]", /* set F?P to defined value */ - X86_FEATURE_FXSAVE_LEAK, - [addr] "m" (safe_address)); + return 0; + } + return 1; } -static inline void __save_init_fpu(struct task_struct *tsk) +static inline int __save_init_fpu(struct task_struct *tsk) { - fpu_save_init(&tsk->thread.fpu); - task_thread_info(tsk)->status &= ~TS_USEDFPU; + return fpu_save_init(&tsk->thread.fpu); } static inline int fpu_fxrstor_checking(struct fpu *fpu) @@ -277,44 +270,212 @@ static inline int fpu_restore_checking(struct fpu *fpu) static inline int restore_fpu_checking(struct task_struct *tsk) { + /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception + is pending. Clear the x87 state here by setting it to fixed + values. "m" is a random variable that should be in L1 */ + alternative_input( + ASM_NOP8 ASM_NOP2, + "emms\n\t" /* clear stack tags */ + "fildl %P[addr]", /* set F?P to defined value */ + X86_FEATURE_FXSAVE_LEAK, + [addr] "m" (tsk->thread.fpu.has_fpu)); + return fpu_restore_checking(&tsk->thread.fpu); } /* - * Signal frame handlers... + * Software FPU state helpers. Careful: these need to + * be preemption protection *and* they need to be + * properly paired with the CR0.TS changes! */ -extern int save_i387_xstate(void __user *buf); -extern int restore_i387_xstate(void __user *buf); +static inline int __thread_has_fpu(struct task_struct *tsk) +{ + return tsk->thread.fpu.has_fpu; +} -static inline void __unlazy_fpu(struct task_struct *tsk) +/* Must be paired with an 'stts' after! */ +static inline void __thread_clear_has_fpu(struct task_struct *tsk) { - if (task_thread_info(tsk)->status & TS_USEDFPU) { - __save_init_fpu(tsk); - stts(); - } else - tsk->fpu_counter = 0; + tsk->thread.fpu.has_fpu = 0; + percpu_write(fpu_owner_task, NULL); +} + +/* Must be paired with a 'clts' before! */ +static inline void __thread_set_has_fpu(struct task_struct *tsk) +{ + tsk->thread.fpu.has_fpu = 1; + percpu_write(fpu_owner_task, tsk); +} + +/* + * Encapsulate the CR0.TS handling together with the + * software flag. + * + * These generally need preemption protection to work, + * do try to avoid using these on their own. + */ +static inline void __thread_fpu_end(struct task_struct *tsk) +{ + __thread_clear_has_fpu(tsk); + stts(); +} + +static inline void __thread_fpu_begin(struct task_struct *tsk) +{ + clts(); + __thread_set_has_fpu(tsk); +} + +/* + * FPU state switching for scheduling. + * + * This is a two-stage process: + * + * - switch_fpu_prepare() saves the old state and + * sets the new state of the CR0.TS bit. This is + * done within the context of the old process. + * + * - switch_fpu_finish() restores the new state as + * necessary. + */ +typedef struct { int preload; } fpu_switch_t; + +/* + * FIXME! We could do a totally lazy restore, but we need to + * add a per-cpu "this was the task that last touched the FPU + * on this CPU" variable, and the task needs to have a "I last + * touched the FPU on this CPU" and check them. + * + * We don't do that yet, so "fpu_lazy_restore()" always returns + * false, but some day.. + */ +static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu) +{ + return new == percpu_read_stable(fpu_owner_task) && + cpu == new->thread.fpu.last_cpu; +} + +static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu) +{ + fpu_switch_t fpu; + + fpu.preload = tsk_used_math(new) && new->fpu_counter > 5; + if (__thread_has_fpu(old)) { + if (!__save_init_fpu(old)) + cpu = ~0; + old->thread.fpu.last_cpu = cpu; + old->thread.fpu.has_fpu = 0; /* But leave fpu_owner_task! */ + + /* Don't change CR0.TS if we just switch! */ + if (fpu.preload) { + new->fpu_counter++; + __thread_set_has_fpu(new); + prefetch(new->thread.fpu.state); + } else + stts(); + } else { + old->fpu_counter = 0; + old->thread.fpu.last_cpu = ~0; + if (fpu.preload) { + new->fpu_counter++; + if (fpu_lazy_restore(new, cpu)) + fpu.preload = 0; + else + prefetch(new->thread.fpu.state); + __thread_fpu_begin(new); + } + } + return fpu; +} + +/* + * By the time this gets called, we've already cleared CR0.TS and + * given the process the FPU if we are going to preload the FPU + * state - all we need to do is to conditionally restore the register + * state itself. + */ +static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu) +{ + if (fpu.preload) { + if (unlikely(restore_fpu_checking(new))) + __thread_fpu_end(new); + } } +/* + * Signal frame handlers... + */ +extern int save_i387_xstate(void __user *buf); +extern int restore_i387_xstate(void __user *buf); + static inline void __clear_fpu(struct task_struct *tsk) { - if (task_thread_info(tsk)->status & TS_USEDFPU) { + if (__thread_has_fpu(tsk)) { /* Ignore delayed exceptions from user space */ asm volatile("1: fwait\n" "2:\n" _ASM_EXTABLE(1b, 2b)); - task_thread_info(tsk)->status &= ~TS_USEDFPU; - stts(); + __thread_fpu_end(tsk); } } +/* + * Were we in an interrupt that interrupted kernel mode? + * + * We can do a kernel_fpu_begin/end() pair *ONLY* if that + * pair does nothing at all: the thread must not have fpu (so + * that we don't try to save the FPU state), and TS must + * be set (so that the clts/stts pair does nothing that is + * visible in the interrupted kernel thread). + */ +static inline bool interrupted_kernel_fpu_idle(void) +{ + return !__thread_has_fpu(current) && + (read_cr0() & X86_CR0_TS); +} + +/* + * Were we in user mode (or vm86 mode) when we were + * interrupted? + * + * Doing kernel_fpu_begin/end() is ok if we are running + * in an interrupt context from user mode - we'll just + * save the FPU state as required. + */ +static inline bool interrupted_user_mode(void) +{ + struct pt_regs *regs = get_irq_regs(); + return regs && user_mode_vm(regs); +} + +/* + * Can we use the FPU in kernel mode with the + * whole "kernel_fpu_begin/end()" sequence? + * + * It's always ok in process context (ie "not interrupt") + * but it is sometimes ok even from an irq. + */ +static inline bool irq_fpu_usable(void) +{ + return !in_interrupt() || + interrupted_user_mode() || + interrupted_kernel_fpu_idle(); +} + static inline void kernel_fpu_begin(void) { - struct thread_info *me = current_thread_info(); + struct task_struct *me = current; + + WARN_ON_ONCE(!irq_fpu_usable()); preempt_disable(); - if (me->status & TS_USEDFPU) - __save_init_fpu(me->task); - else + if (__thread_has_fpu(me)) { + __save_init_fpu(me); + __thread_clear_has_fpu(me); + /* We do 'stts()' in kernel_fpu_end() */ + } else { + percpu_write(fpu_owner_task, NULL); clts(); + } } static inline void kernel_fpu_end(void) @@ -323,14 +484,6 @@ static inline void kernel_fpu_end(void) preempt_enable(); } -static inline bool irq_fpu_usable(void) -{ - struct pt_regs *regs; - - return !in_interrupt() || !(regs = get_irq_regs()) || \ - user_mode(regs) || (read_cr0() & X86_CR0_TS); -} - /* * Some instructions like VIA's padlock instructions generate a spurious * DNA fault but don't modify SSE registers. And these instructions @@ -363,20 +516,64 @@ static inline void irq_ts_restore(int TS_state) } /* + * The question "does this thread have fpu access?" + * is slightly racy, since preemption could come in + * and revoke it immediately after the test. + * + * However, even in that very unlikely scenario, + * we can just assume we have FPU access - typically + * to save the FP state - we'll just take a #NM + * fault and get the FPU access back. + * + * The actual user_fpu_begin/end() functions + * need to be preemption-safe, though. + * + * NOTE! user_fpu_end() must be used only after you + * have saved the FP state, and user_fpu_begin() must + * be used only immediately before restoring it. + * These functions do not do any save/restore on + * their own. + */ +static inline int user_has_fpu(void) +{ + return __thread_has_fpu(current); +} + +static inline void user_fpu_end(void) +{ + preempt_disable(); + __thread_fpu_end(current); + preempt_enable(); +} + +static inline void user_fpu_begin(void) +{ + preempt_disable(); + if (!user_has_fpu()) + __thread_fpu_begin(current); + preempt_enable(); +} + +/* * These disable preemption on their own and are safe */ static inline void save_init_fpu(struct task_struct *tsk) { + WARN_ON_ONCE(!__thread_has_fpu(tsk)); preempt_disable(); __save_init_fpu(tsk); - stts(); + __thread_fpu_end(tsk); preempt_enable(); } static inline void unlazy_fpu(struct task_struct *tsk) { preempt_disable(); - __unlazy_fpu(tsk); + if (__thread_has_fpu(tsk)) { + __save_init_fpu(tsk); + __thread_fpu_end(tsk); + } else + tsk->fpu_counter = 0; preempt_enable(); } diff --git a/arch/x86/include/asm/kvm_emulate.h b/arch/x86/include/asm/kvm_emulate.h index ab4092e3214..7b9cfc4878a 100644 --- a/arch/x86/include/asm/kvm_emulate.h +++ b/arch/x86/include/asm/kvm_emulate.h @@ -190,6 +190,9 @@ struct x86_emulate_ops { int (*intercept)(struct x86_emulate_ctxt *ctxt, struct x86_instruction_info *info, enum x86_intercept_stage stage); + + bool (*get_cpuid)(struct x86_emulate_ctxt *ctxt, + u32 *eax, u32 *ebx, u32 *ecx, u32 *edx); }; typedef u32 __attribute__((vector_size(16))) sse128_t; @@ -298,6 +301,19 @@ struct x86_emulate_ctxt { #define X86EMUL_MODE_PROT (X86EMUL_MODE_PROT16|X86EMUL_MODE_PROT32| \ X86EMUL_MODE_PROT64) +/* CPUID vendors */ +#define X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx 0x68747541 +#define X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx 0x444d4163 +#define X86EMUL_CPUID_VENDOR_AuthenticAMD_edx 0x69746e65 + +#define X86EMUL_CPUID_VENDOR_AMDisbetterI_ebx 0x69444d41 +#define X86EMUL_CPUID_VENDOR_AMDisbetterI_ecx 0x21726574 +#define X86EMUL_CPUID_VENDOR_AMDisbetterI_edx 0x74656273 + +#define X86EMUL_CPUID_VENDOR_GenuineIntel_ebx 0x756e6547 +#define X86EMUL_CPUID_VENDOR_GenuineIntel_ecx 0x6c65746e +#define X86EMUL_CPUID_VENDOR_GenuineIntel_edx 0x49656e69 + enum x86_intercept_stage { X86_ICTP_NONE = 0, /* Allow zero-init to not match anything */ X86_ICPT_PRE_EXCEPT, diff --git a/arch/x86/include/asm/perf_event.h b/arch/x86/include/asm/perf_event.h index 096c975e099..461ce432b1c 100644 --- a/arch/x86/include/asm/perf_event.h +++ b/arch/x86/include/asm/perf_event.h @@ -242,4 +242,12 @@ static inline void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap) static inline void perf_events_lapic_init(void) { } #endif +#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_AMD) + extern void amd_pmu_enable_virt(void); + extern void amd_pmu_disable_virt(void); +#else + static inline void amd_pmu_enable_virt(void) { } + static inline void amd_pmu_disable_virt(void) { } +#endif + #endif /* _ASM_X86_PERF_EVENT_H */ diff --git a/arch/x86/include/asm/processor.h b/arch/x86/include/asm/processor.h index aa9088c2693..58545c97d07 100644 --- a/arch/x86/include/asm/processor.h +++ b/arch/x86/include/asm/processor.h @@ -374,6 +374,8 @@ union thread_xstate { }; struct fpu { + unsigned int last_cpu; + unsigned int has_fpu; union thread_xstate *state; }; diff --git a/arch/x86/include/asm/thread_info.h b/arch/x86/include/asm/thread_info.h index bc817cd8b44..cfd8144d552 100644 --- a/arch/x86/include/asm/thread_info.h +++ b/arch/x86/include/asm/thread_info.h @@ -247,8 +247,6 @@ static inline struct thread_info *current_thread_info(void) * ever touches our thread-synchronous status, so we don't * have to worry about atomic accesses. */ -#define TS_USEDFPU 0x0001 /* FPU was used by this task - this quantum (SMP) */ #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ #define TS_POLLING 0x0004 /* idle task polling need_resched, skip sending interrupt */ diff --git a/arch/x86/include/asm/uv/uv_hub.h b/arch/x86/include/asm/uv/uv_hub.h index 54a13aaebc4..21f7385badb 100644 --- a/arch/x86/include/asm/uv/uv_hub.h +++ b/arch/x86/include/asm/uv/uv_hub.h @@ -318,13 +318,13 @@ uv_gpa_in_mmr_space(unsigned long gpa) /* UV global physical address --> socket phys RAM */ static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa) { - unsigned long paddr = gpa & uv_hub_info->gpa_mask; + unsigned long paddr; unsigned long remap_base = uv_hub_info->lowmem_remap_base; unsigned long remap_top = uv_hub_info->lowmem_remap_top; gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) | ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val); - gpa = gpa & uv_hub_info->gpa_mask; + paddr = gpa & uv_hub_info->gpa_mask; if (paddr >= remap_base && paddr < remap_base + remap_top) paddr -= remap_base; return paddr; |