summaryrefslogtreecommitdiff
path: root/runtimes/nn/depend/external/eigen/Eigen/src/Geometry/OrthoMethods.h
diff options
context:
space:
mode:
Diffstat (limited to 'runtimes/nn/depend/external/eigen/Eigen/src/Geometry/OrthoMethods.h')
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/Geometry/OrthoMethods.h234
1 files changed, 0 insertions, 234 deletions
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/Geometry/OrthoMethods.h b/runtimes/nn/depend/external/eigen/Eigen/src/Geometry/OrthoMethods.h
deleted file mode 100644
index a035e6310..000000000
--- a/runtimes/nn/depend/external/eigen/Eigen/src/Geometry/OrthoMethods.h
+++ /dev/null
@@ -1,234 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ORTHOMETHODS_H
-#define EIGEN_ORTHOMETHODS_H
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \returns the cross product of \c *this and \a other
- *
- * Here is a very good explanation of cross-product: http://xkcd.com/199/
- *
- * With complex numbers, the cross product is implemented as
- * \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} - \mathbf{b} \times \mathbf{c})\f$
- *
- * \sa MatrixBase::cross3()
- */
-template<typename Derived>
-template<typename OtherDerived>
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type
-#else
-inline typename MatrixBase<Derived>::PlainObject
-#endif
-MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3)
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
-
- // Note that there is no need for an expression here since the compiler
- // optimize such a small temporary very well (even within a complex expression)
- typename internal::nested_eval<Derived,2>::type lhs(derived());
- typename internal::nested_eval<OtherDerived,2>::type rhs(other.derived());
- return typename cross_product_return_type<OtherDerived>::type(
- numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
- numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
- numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0))
- );
-}
-
-namespace internal {
-
-template< int Arch,typename VectorLhs,typename VectorRhs,
- typename Scalar = typename VectorLhs::Scalar,
- bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)>
-struct cross3_impl {
- EIGEN_DEVICE_FUNC static inline typename internal::plain_matrix_type<VectorLhs>::type
- run(const VectorLhs& lhs, const VectorRhs& rhs)
- {
- return typename internal::plain_matrix_type<VectorLhs>::type(
- numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
- numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
- numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)),
- 0
- );
- }
-};
-
-}
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients
- *
- * The size of \c *this and \a other must be four. This function is especially useful
- * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.
- *
- * \sa MatrixBase::cross()
- */
-template<typename Derived>
-template<typename OtherDerived>
-EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::PlainObject
-MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4)
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4)
-
- typedef typename internal::nested_eval<Derived,2>::type DerivedNested;
- typedef typename internal::nested_eval<OtherDerived,2>::type OtherDerivedNested;
- DerivedNested lhs(derived());
- OtherDerivedNested rhs(other.derived());
-
- return internal::cross3_impl<Architecture::Target,
- typename internal::remove_all<DerivedNested>::type,
- typename internal::remove_all<OtherDerivedNested>::type>::run(lhs,rhs);
-}
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \returns a matrix expression of the cross product of each column or row
- * of the referenced expression with the \a other vector.
- *
- * The referenced matrix must have one dimension equal to 3.
- * The result matrix has the same dimensions than the referenced one.
- *
- * \sa MatrixBase::cross() */
-template<typename ExpressionType, int Direction>
-template<typename OtherDerived>
-EIGEN_DEVICE_FUNC
-const typename VectorwiseOp<ExpressionType,Direction>::CrossReturnType
-VectorwiseOp<ExpressionType,Direction>::cross(const MatrixBase<OtherDerived>& other) const
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
- typename internal::nested_eval<ExpressionType,2>::type mat(_expression());
- typename internal::nested_eval<OtherDerived,2>::type vec(other.derived());
-
- CrossReturnType res(_expression().rows(),_expression().cols());
- if(Direction==Vertical)
- {
- eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows");
- res.row(0) = (mat.row(1) * vec.coeff(2) - mat.row(2) * vec.coeff(1)).conjugate();
- res.row(1) = (mat.row(2) * vec.coeff(0) - mat.row(0) * vec.coeff(2)).conjugate();
- res.row(2) = (mat.row(0) * vec.coeff(1) - mat.row(1) * vec.coeff(0)).conjugate();
- }
- else
- {
- eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns");
- res.col(0) = (mat.col(1) * vec.coeff(2) - mat.col(2) * vec.coeff(1)).conjugate();
- res.col(1) = (mat.col(2) * vec.coeff(0) - mat.col(0) * vec.coeff(2)).conjugate();
- res.col(2) = (mat.col(0) * vec.coeff(1) - mat.col(1) * vec.coeff(0)).conjugate();
- }
- return res;
-}
-
-namespace internal {
-
-template<typename Derived, int Size = Derived::SizeAtCompileTime>
-struct unitOrthogonal_selector
-{
- typedef typename plain_matrix_type<Derived>::type VectorType;
- typedef typename traits<Derived>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar,2,1> Vector2;
- EIGEN_DEVICE_FUNC
- static inline VectorType run(const Derived& src)
- {
- VectorType perp = VectorType::Zero(src.size());
- Index maxi = 0;
- Index sndi = 0;
- src.cwiseAbs().maxCoeff(&maxi);
- if (maxi==0)
- sndi = 1;
- RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm();
- perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm;
- perp.coeffRef(sndi) = numext::conj(src.coeff(maxi)) * invnm;
-
- return perp;
- }
-};
-
-template<typename Derived>
-struct unitOrthogonal_selector<Derived,3>
-{
- typedef typename plain_matrix_type<Derived>::type VectorType;
- typedef typename traits<Derived>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline VectorType run(const Derived& src)
- {
- VectorType perp;
- /* Let us compute the crossed product of *this with a vector
- * that is not too close to being colinear to *this.
- */
-
- /* unless the x and y coords are both close to zero, we can
- * simply take ( -y, x, 0 ) and normalize it.
- */
- if((!isMuchSmallerThan(src.x(), src.z()))
- || (!isMuchSmallerThan(src.y(), src.z())))
- {
- RealScalar invnm = RealScalar(1)/src.template head<2>().norm();
- perp.coeffRef(0) = -numext::conj(src.y())*invnm;
- perp.coeffRef(1) = numext::conj(src.x())*invnm;
- perp.coeffRef(2) = 0;
- }
- /* if both x and y are close to zero, then the vector is close
- * to the z-axis, so it's far from colinear to the x-axis for instance.
- * So we take the crossed product with (1,0,0) and normalize it.
- */
- else
- {
- RealScalar invnm = RealScalar(1)/src.template tail<2>().norm();
- perp.coeffRef(0) = 0;
- perp.coeffRef(1) = -numext::conj(src.z())*invnm;
- perp.coeffRef(2) = numext::conj(src.y())*invnm;
- }
-
- return perp;
- }
-};
-
-template<typename Derived>
-struct unitOrthogonal_selector<Derived,2>
-{
- typedef typename plain_matrix_type<Derived>::type VectorType;
- EIGEN_DEVICE_FUNC
- static inline VectorType run(const Derived& src)
- { return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); }
-};
-
-} // end namespace internal
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \returns a unit vector which is orthogonal to \c *this
- *
- * The size of \c *this must be at least 2. If the size is exactly 2,
- * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized().
- *
- * \sa cross()
- */
-template<typename Derived>
-EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::PlainObject
-MatrixBase<Derived>::unitOrthogonal() const
-{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
- return internal::unitOrthogonal_selector<Derived>::run(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_ORTHOMETHODS_H