summaryrefslogtreecommitdiff
path: root/runtimes/nn/depend/external/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h
diff options
context:
space:
mode:
Diffstat (limited to 'runtimes/nn/depend/external/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h')
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h2149
1 files changed, 2149 insertions, 0 deletions
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h b/runtimes/nn/depend/external/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h
new file mode 100644
index 000000000..45230bce5
--- /dev/null
+++ b/runtimes/nn/depend/external/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h
@@ -0,0 +1,2149 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_GENERAL_BLOCK_PANEL_H
+#define EIGEN_GENERAL_BLOCK_PANEL_H
+
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs=false, bool _ConjRhs=false>
+class gebp_traits;
+
+
+/** \internal \returns b if a<=0, and returns a otherwise. */
+inline std::ptrdiff_t manage_caching_sizes_helper(std::ptrdiff_t a, std::ptrdiff_t b)
+{
+ return a<=0 ? b : a;
+}
+
+#if EIGEN_ARCH_i386_OR_x86_64
+const std::ptrdiff_t defaultL1CacheSize = 32*1024;
+const std::ptrdiff_t defaultL2CacheSize = 256*1024;
+const std::ptrdiff_t defaultL3CacheSize = 2*1024*1024;
+#else
+const std::ptrdiff_t defaultL1CacheSize = 16*1024;
+const std::ptrdiff_t defaultL2CacheSize = 512*1024;
+const std::ptrdiff_t defaultL3CacheSize = 512*1024;
+#endif
+
+/** \internal */
+struct CacheSizes {
+ CacheSizes(): m_l1(-1),m_l2(-1),m_l3(-1) {
+ int l1CacheSize, l2CacheSize, l3CacheSize;
+ queryCacheSizes(l1CacheSize, l2CacheSize, l3CacheSize);
+ m_l1 = manage_caching_sizes_helper(l1CacheSize, defaultL1CacheSize);
+ m_l2 = manage_caching_sizes_helper(l2CacheSize, defaultL2CacheSize);
+ m_l3 = manage_caching_sizes_helper(l3CacheSize, defaultL3CacheSize);
+ }
+
+ std::ptrdiff_t m_l1;
+ std::ptrdiff_t m_l2;
+ std::ptrdiff_t m_l3;
+};
+
+
+/** \internal */
+inline void manage_caching_sizes(Action action, std::ptrdiff_t* l1, std::ptrdiff_t* l2, std::ptrdiff_t* l3)
+{
+ static CacheSizes m_cacheSizes;
+
+ if(action==SetAction)
+ {
+ // set the cpu cache size and cache all block sizes from a global cache size in byte
+ eigen_internal_assert(l1!=0 && l2!=0);
+ m_cacheSizes.m_l1 = *l1;
+ m_cacheSizes.m_l2 = *l2;
+ m_cacheSizes.m_l3 = *l3;
+ }
+ else if(action==GetAction)
+ {
+ eigen_internal_assert(l1!=0 && l2!=0);
+ *l1 = m_cacheSizes.m_l1;
+ *l2 = m_cacheSizes.m_l2;
+ *l3 = m_cacheSizes.m_l3;
+ }
+ else
+ {
+ eigen_internal_assert(false);
+ }
+}
+
+/* Helper for computeProductBlockingSizes.
+ *
+ * Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar,
+ * this function computes the blocking size parameters along the respective dimensions
+ * for matrix products and related algorithms. The blocking sizes depends on various
+ * parameters:
+ * - the L1 and L2 cache sizes,
+ * - the register level blocking sizes defined by gebp_traits,
+ * - the number of scalars that fit into a packet (when vectorization is enabled).
+ *
+ * \sa setCpuCacheSizes */
+
+template<typename LhsScalar, typename RhsScalar, int KcFactor, typename Index>
+void evaluateProductBlockingSizesHeuristic(Index& k, Index& m, Index& n, Index num_threads = 1)
+{
+ typedef gebp_traits<LhsScalar,RhsScalar> Traits;
+
+ // Explanations:
+ // Let's recall that the product algorithms form mc x kc vertical panels A' on the lhs and
+ // kc x nc blocks B' on the rhs. B' has to fit into L2/L3 cache. Moreover, A' is processed
+ // per mr x kc horizontal small panels where mr is the blocking size along the m dimension
+ // at the register level. This small horizontal panel has to stay within L1 cache.
+ std::ptrdiff_t l1, l2, l3;
+ manage_caching_sizes(GetAction, &l1, &l2, &l3);
+
+ if (num_threads > 1) {
+ typedef typename Traits::ResScalar ResScalar;
+ enum {
+ kdiv = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)),
+ ksub = Traits::mr * Traits::nr * sizeof(ResScalar),
+ kr = 8,
+ mr = Traits::mr,
+ nr = Traits::nr
+ };
+ // Increasing k gives us more time to prefetch the content of the "C"
+ // registers. However once the latency is hidden there is no point in
+ // increasing the value of k, so we'll cap it at 320 (value determined
+ // experimentally).
+ const Index k_cache = (numext::mini<Index>)((l1-ksub)/kdiv, 320);
+ if (k_cache < k) {
+ k = k_cache - (k_cache % kr);
+ eigen_internal_assert(k > 0);
+ }
+
+ const Index n_cache = (l2-l1) / (nr * sizeof(RhsScalar) * k);
+ const Index n_per_thread = numext::div_ceil(n, num_threads);
+ if (n_cache <= n_per_thread) {
+ // Don't exceed the capacity of the l2 cache.
+ eigen_internal_assert(n_cache >= static_cast<Index>(nr));
+ n = n_cache - (n_cache % nr);
+ eigen_internal_assert(n > 0);
+ } else {
+ n = (numext::mini<Index>)(n, (n_per_thread + nr - 1) - ((n_per_thread + nr - 1) % nr));
+ }
+
+ if (l3 > l2) {
+ // l3 is shared between all cores, so we'll give each thread its own chunk of l3.
+ const Index m_cache = (l3-l2) / (sizeof(LhsScalar) * k * num_threads);
+ const Index m_per_thread = numext::div_ceil(m, num_threads);
+ if(m_cache < m_per_thread && m_cache >= static_cast<Index>(mr)) {
+ m = m_cache - (m_cache % mr);
+ eigen_internal_assert(m > 0);
+ } else {
+ m = (numext::mini<Index>)(m, (m_per_thread + mr - 1) - ((m_per_thread + mr - 1) % mr));
+ }
+ }
+ }
+ else {
+ // In unit tests we do not want to use extra large matrices,
+ // so we reduce the cache size to check the blocking strategy is not flawed
+#ifdef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS
+ l1 = 9*1024;
+ l2 = 32*1024;
+ l3 = 512*1024;
+#endif
+
+ // Early return for small problems because the computation below are time consuming for small problems.
+ // Perhaps it would make more sense to consider k*n*m??
+ // Note that for very tiny problem, this function should be bypassed anyway
+ // because we use the coefficient-based implementation for them.
+ if((numext::maxi)(k,(numext::maxi)(m,n))<48)
+ return;
+
+ typedef typename Traits::ResScalar ResScalar;
+ enum {
+ k_peeling = 8,
+ k_div = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)),
+ k_sub = Traits::mr * Traits::nr * sizeof(ResScalar)
+ };
+
+ // ---- 1st level of blocking on L1, yields kc ----
+
+ // Blocking on the third dimension (i.e., k) is chosen so that an horizontal panel
+ // of size mr x kc of the lhs plus a vertical panel of kc x nr of the rhs both fits within L1 cache.
+ // We also include a register-level block of the result (mx x nr).
+ // (In an ideal world only the lhs panel would stay in L1)
+ // Moreover, kc has to be a multiple of 8 to be compatible with loop peeling, leading to a maximum blocking size of:
+ const Index max_kc = numext::maxi<Index>(((l1-k_sub)/k_div) & (~(k_peeling-1)),1);
+ const Index old_k = k;
+ if(k>max_kc)
+ {
+ // We are really blocking on the third dimension:
+ // -> reduce blocking size to make sure the last block is as large as possible
+ // while keeping the same number of sweeps over the result.
+ k = (k%max_kc)==0 ? max_kc
+ : max_kc - k_peeling * ((max_kc-1-(k%max_kc))/(k_peeling*(k/max_kc+1)));
+
+ eigen_internal_assert(((old_k/k) == (old_k/max_kc)) && "the number of sweeps has to remain the same");
+ }
+
+ // ---- 2nd level of blocking on max(L2,L3), yields nc ----
+
+ // TODO find a reliable way to get the actual amount of cache per core to use for 2nd level blocking, that is:
+ // actual_l2 = max(l2, l3/nb_core_sharing_l3)
+ // The number below is quite conservative: it is better to underestimate the cache size rather than overestimating it)
+ // For instance, it corresponds to 6MB of L3 shared among 4 cores.
+ #ifdef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS
+ const Index actual_l2 = l3;
+ #else
+ const Index actual_l2 = 1572864; // == 1.5 MB
+ #endif
+
+ // Here, nc is chosen such that a block of kc x nc of the rhs fit within half of L2.
+ // The second half is implicitly reserved to access the result and lhs coefficients.
+ // When k<max_kc, then nc can arbitrarily growth. In practice, it seems to be fruitful
+ // to limit this growth: we bound nc to growth by a factor x1.5.
+ // However, if the entire lhs block fit within L1, then we are not going to block on the rows at all,
+ // and it becomes fruitful to keep the packed rhs blocks in L1 if there is enough remaining space.
+ Index max_nc;
+ const Index lhs_bytes = m * k * sizeof(LhsScalar);
+ const Index remaining_l1 = l1- k_sub - lhs_bytes;
+ if(remaining_l1 >= Index(Traits::nr*sizeof(RhsScalar))*k)
+ {
+ // L1 blocking
+ max_nc = remaining_l1 / (k*sizeof(RhsScalar));
+ }
+ else
+ {
+ // L2 blocking
+ max_nc = (3*actual_l2)/(2*2*max_kc*sizeof(RhsScalar));
+ }
+ // WARNING Below, we assume that Traits::nr is a power of two.
+ Index nc = numext::mini<Index>(actual_l2/(2*k*sizeof(RhsScalar)), max_nc) & (~(Traits::nr-1));
+ if(n>nc)
+ {
+ // We are really blocking over the columns:
+ // -> reduce blocking size to make sure the last block is as large as possible
+ // while keeping the same number of sweeps over the packed lhs.
+ // Here we allow one more sweep if this gives us a perfect match, thus the commented "-1"
+ n = (n%nc)==0 ? nc
+ : (nc - Traits::nr * ((nc/*-1*/-(n%nc))/(Traits::nr*(n/nc+1))));
+ }
+ else if(old_k==k)
+ {
+ // So far, no blocking at all, i.e., kc==k, and nc==n.
+ // In this case, let's perform a blocking over the rows such that the packed lhs data is kept in cache L1/L2
+ // TODO: part of this blocking strategy is now implemented within the kernel itself, so the L1-based heuristic here should be obsolete.
+ Index problem_size = k*n*sizeof(LhsScalar);
+ Index actual_lm = actual_l2;
+ Index max_mc = m;
+ if(problem_size<=1024)
+ {
+ // problem is small enough to keep in L1
+ // Let's choose m such that lhs's block fit in 1/3 of L1
+ actual_lm = l1;
+ }
+ else if(l3!=0 && problem_size<=32768)
+ {
+ // we have both L2 and L3, and problem is small enough to be kept in L2
+ // Let's choose m such that lhs's block fit in 1/3 of L2
+ actual_lm = l2;
+ max_mc = (numext::mini<Index>)(576,max_mc);
+ }
+ Index mc = (numext::mini<Index>)(actual_lm/(3*k*sizeof(LhsScalar)), max_mc);
+ if (mc > Traits::mr) mc -= mc % Traits::mr;
+ else if (mc==0) return;
+ m = (m%mc)==0 ? mc
+ : (mc - Traits::mr * ((mc/*-1*/-(m%mc))/(Traits::mr*(m/mc+1))));
+ }
+ }
+}
+
+template <typename Index>
+inline bool useSpecificBlockingSizes(Index& k, Index& m, Index& n)
+{
+#ifdef EIGEN_TEST_SPECIFIC_BLOCKING_SIZES
+ if (EIGEN_TEST_SPECIFIC_BLOCKING_SIZES) {
+ k = numext::mini<Index>(k, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_K);
+ m = numext::mini<Index>(m, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_M);
+ n = numext::mini<Index>(n, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_N);
+ return true;
+ }
+#else
+ EIGEN_UNUSED_VARIABLE(k)
+ EIGEN_UNUSED_VARIABLE(m)
+ EIGEN_UNUSED_VARIABLE(n)
+#endif
+ return false;
+}
+
+/** \brief Computes the blocking parameters for a m x k times k x n matrix product
+ *
+ * \param[in,out] k Input: the third dimension of the product. Output: the blocking size along the same dimension.
+ * \param[in,out] m Input: the number of rows of the left hand side. Output: the blocking size along the same dimension.
+ * \param[in,out] n Input: the number of columns of the right hand side. Output: the blocking size along the same dimension.
+ *
+ * Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar,
+ * this function computes the blocking size parameters along the respective dimensions
+ * for matrix products and related algorithms.
+ *
+ * The blocking size parameters may be evaluated:
+ * - either by a heuristic based on cache sizes;
+ * - or using fixed prescribed values (for testing purposes).
+ *
+ * \sa setCpuCacheSizes */
+
+template<typename LhsScalar, typename RhsScalar, int KcFactor, typename Index>
+void computeProductBlockingSizes(Index& k, Index& m, Index& n, Index num_threads = 1)
+{
+ if (!useSpecificBlockingSizes(k, m, n)) {
+ evaluateProductBlockingSizesHeuristic<LhsScalar, RhsScalar, KcFactor, Index>(k, m, n, num_threads);
+ }
+}
+
+template<typename LhsScalar, typename RhsScalar, typename Index>
+inline void computeProductBlockingSizes(Index& k, Index& m, Index& n, Index num_threads = 1)
+{
+ computeProductBlockingSizes<LhsScalar,RhsScalar,1,Index>(k, m, n, num_threads);
+}
+
+#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
+ #define CJMADD(CJ,A,B,C,T) C = CJ.pmadd(A,B,C);
+#else
+
+ // FIXME (a bit overkill maybe ?)
+
+ template<typename CJ, typename A, typename B, typename C, typename T> struct gebp_madd_selector {
+ EIGEN_ALWAYS_INLINE static void run(const CJ& cj, A& a, B& b, C& c, T& /*t*/)
+ {
+ c = cj.pmadd(a,b,c);
+ }
+ };
+
+ template<typename CJ, typename T> struct gebp_madd_selector<CJ,T,T,T,T> {
+ EIGEN_ALWAYS_INLINE static void run(const CJ& cj, T& a, T& b, T& c, T& t)
+ {
+ t = b; t = cj.pmul(a,t); c = padd(c,t);
+ }
+ };
+
+ template<typename CJ, typename A, typename B, typename C, typename T>
+ EIGEN_STRONG_INLINE void gebp_madd(const CJ& cj, A& a, B& b, C& c, T& t)
+ {
+ gebp_madd_selector<CJ,A,B,C,T>::run(cj,a,b,c,t);
+ }
+
+ #define CJMADD(CJ,A,B,C,T) gebp_madd(CJ,A,B,C,T);
+// #define CJMADD(CJ,A,B,C,T) T = B; T = CJ.pmul(A,T); C = padd(C,T);
+#endif
+
+/* Vectorization logic
+ * real*real: unpack rhs to constant packets, ...
+ *
+ * cd*cd : unpack rhs to (b_r,b_r), (b_i,b_i), mul to get (a_r b_r,a_i b_r) (a_r b_i,a_i b_i),
+ * storing each res packet into two packets (2x2),
+ * at the end combine them: swap the second and addsub them
+ * cf*cf : same but with 2x4 blocks
+ * cplx*real : unpack rhs to constant packets, ...
+ * real*cplx : load lhs as (a0,a0,a1,a1), and mul as usual
+ */
+template<typename _LhsScalar, typename _RhsScalar, bool _ConjLhs, bool _ConjRhs>
+class gebp_traits
+{
+public:
+ typedef _LhsScalar LhsScalar;
+ typedef _RhsScalar RhsScalar;
+ typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
+
+ enum {
+ ConjLhs = _ConjLhs,
+ ConjRhs = _ConjRhs,
+ Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
+ LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
+ RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
+ ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
+
+ NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
+
+ // register block size along the N direction must be 1 or 4
+ nr = 4,
+
+ // register block size along the M direction (currently, this one cannot be modified)
+ default_mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*LhsPacketSize,
+#if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX)
+ // we assume 16 registers
+ // See bug 992, if the scalar type is not vectorizable but that EIGEN_HAS_SINGLE_INSTRUCTION_MADD is defined,
+ // then using 3*LhsPacketSize triggers non-implemented paths in syrk.
+ mr = Vectorizable ? 3*LhsPacketSize : default_mr,
+#else
+ mr = default_mr,
+#endif
+
+ LhsProgress = LhsPacketSize,
+ RhsProgress = 1
+ };
+
+ typedef typename packet_traits<LhsScalar>::type _LhsPacket;
+ typedef typename packet_traits<RhsScalar>::type _RhsPacket;
+ typedef typename packet_traits<ResScalar>::type _ResPacket;
+
+ typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
+ typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
+ typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
+
+ typedef ResPacket AccPacket;
+
+ EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
+ {
+ p = pset1<ResPacket>(ResScalar(0));
+ }
+
+ EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
+ {
+ pbroadcast4(b, b0, b1, b2, b3);
+ }
+
+// EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1)
+// {
+// pbroadcast2(b, b0, b1);
+// }
+
+ template<typename RhsPacketType>
+ EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketType& dest) const
+ {
+ dest = pset1<RhsPacketType>(*b);
+ }
+
+ EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const
+ {
+ dest = ploadquad<RhsPacket>(b);
+ }
+
+ template<typename LhsPacketType>
+ EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacketType& dest) const
+ {
+ dest = pload<LhsPacketType>(a);
+ }
+
+ template<typename LhsPacketType>
+ EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacketType& dest) const
+ {
+ dest = ploadu<LhsPacketType>(a);
+ }
+
+ template<typename LhsPacketType, typename RhsPacketType, typename AccPacketType>
+ EIGEN_STRONG_INLINE void madd(const LhsPacketType& a, const RhsPacketType& b, AccPacketType& c, AccPacketType& tmp) const
+ {
+ conj_helper<LhsPacketType,RhsPacketType,ConjLhs,ConjRhs> cj;
+ // It would be a lot cleaner to call pmadd all the time. Unfortunately if we
+ // let gcc allocate the register in which to store the result of the pmul
+ // (in the case where there is no FMA) gcc fails to figure out how to avoid
+ // spilling register.
+#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
+ EIGEN_UNUSED_VARIABLE(tmp);
+ c = cj.pmadd(a,b,c);
+#else
+ tmp = b; tmp = cj.pmul(a,tmp); c = padd(c,tmp);
+#endif
+ }
+
+ EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
+ {
+ r = pmadd(c,alpha,r);
+ }
+
+ template<typename ResPacketHalf>
+ EIGEN_STRONG_INLINE void acc(const ResPacketHalf& c, const ResPacketHalf& alpha, ResPacketHalf& r) const
+ {
+ r = pmadd(c,alpha,r);
+ }
+
+};
+
+template<typename RealScalar, bool _ConjLhs>
+class gebp_traits<std::complex<RealScalar>, RealScalar, _ConjLhs, false>
+{
+public:
+ typedef std::complex<RealScalar> LhsScalar;
+ typedef RealScalar RhsScalar;
+ typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
+
+ enum {
+ ConjLhs = _ConjLhs,
+ ConjRhs = false,
+ Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable,
+ LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
+ RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
+ ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
+
+ NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
+ nr = 4,
+#if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX)
+ // we assume 16 registers
+ mr = 3*LhsPacketSize,
+#else
+ mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*LhsPacketSize,
+#endif
+
+ LhsProgress = LhsPacketSize,
+ RhsProgress = 1
+ };
+
+ typedef typename packet_traits<LhsScalar>::type _LhsPacket;
+ typedef typename packet_traits<RhsScalar>::type _RhsPacket;
+ typedef typename packet_traits<ResScalar>::type _ResPacket;
+
+ typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
+ typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
+ typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
+
+ typedef ResPacket AccPacket;
+
+ EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
+ {
+ p = pset1<ResPacket>(ResScalar(0));
+ }
+
+ EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
+ {
+ dest = pset1<RhsPacket>(*b);
+ }
+
+ EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const
+ {
+ dest = pset1<RhsPacket>(*b);
+ }
+
+ EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
+ {
+ dest = pload<LhsPacket>(a);
+ }
+
+ EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const
+ {
+ dest = ploadu<LhsPacket>(a);
+ }
+
+ EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
+ {
+ pbroadcast4(b, b0, b1, b2, b3);
+ }
+
+// EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1)
+// {
+// pbroadcast2(b, b0, b1);
+// }
+
+ EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
+ {
+ madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
+ }
+
+ EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
+ {
+#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
+ EIGEN_UNUSED_VARIABLE(tmp);
+ c.v = pmadd(a.v,b,c.v);
+#else
+ tmp = b; tmp = pmul(a.v,tmp); c.v = padd(c.v,tmp);
+#endif
+ }
+
+ EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
+ {
+ c += a * b;
+ }
+
+ EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
+ {
+ r = cj.pmadd(c,alpha,r);
+ }
+
+protected:
+ conj_helper<ResPacket,ResPacket,ConjLhs,false> cj;
+};
+
+template<typename Packet>
+struct DoublePacket
+{
+ Packet first;
+ Packet second;
+};
+
+template<typename Packet>
+DoublePacket<Packet> padd(const DoublePacket<Packet> &a, const DoublePacket<Packet> &b)
+{
+ DoublePacket<Packet> res;
+ res.first = padd(a.first, b.first);
+ res.second = padd(a.second,b.second);
+ return res;
+}
+
+template<typename Packet>
+const DoublePacket<Packet>& predux_downto4(const DoublePacket<Packet> &a)
+{
+ return a;
+}
+
+template<typename Packet> struct unpacket_traits<DoublePacket<Packet> > { typedef DoublePacket<Packet> half; };
+// template<typename Packet>
+// DoublePacket<Packet> pmadd(const DoublePacket<Packet> &a, const DoublePacket<Packet> &b)
+// {
+// DoublePacket<Packet> res;
+// res.first = padd(a.first, b.first);
+// res.second = padd(a.second,b.second);
+// return res;
+// }
+
+template<typename RealScalar, bool _ConjLhs, bool _ConjRhs>
+class gebp_traits<std::complex<RealScalar>, std::complex<RealScalar>, _ConjLhs, _ConjRhs >
+{
+public:
+ typedef std::complex<RealScalar> Scalar;
+ typedef std::complex<RealScalar> LhsScalar;
+ typedef std::complex<RealScalar> RhsScalar;
+ typedef std::complex<RealScalar> ResScalar;
+
+ enum {
+ ConjLhs = _ConjLhs,
+ ConjRhs = _ConjRhs,
+ Vectorizable = packet_traits<RealScalar>::Vectorizable
+ && packet_traits<Scalar>::Vectorizable,
+ RealPacketSize = Vectorizable ? packet_traits<RealScalar>::size : 1,
+ ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
+ LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
+ RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
+
+ // FIXME: should depend on NumberOfRegisters
+ nr = 4,
+ mr = ResPacketSize,
+
+ LhsProgress = ResPacketSize,
+ RhsProgress = 1
+ };
+
+ typedef typename packet_traits<RealScalar>::type RealPacket;
+ typedef typename packet_traits<Scalar>::type ScalarPacket;
+ typedef DoublePacket<RealPacket> DoublePacketType;
+
+ typedef typename conditional<Vectorizable,RealPacket, Scalar>::type LhsPacket;
+ typedef typename conditional<Vectorizable,DoublePacketType,Scalar>::type RhsPacket;
+ typedef typename conditional<Vectorizable,ScalarPacket,Scalar>::type ResPacket;
+ typedef typename conditional<Vectorizable,DoublePacketType,Scalar>::type AccPacket;
+
+ EIGEN_STRONG_INLINE void initAcc(Scalar& p) { p = Scalar(0); }
+
+ EIGEN_STRONG_INLINE void initAcc(DoublePacketType& p)
+ {
+ p.first = pset1<RealPacket>(RealScalar(0));
+ p.second = pset1<RealPacket>(RealScalar(0));
+ }
+
+ // Scalar path
+ EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, ResPacket& dest) const
+ {
+ dest = pset1<ResPacket>(*b);
+ }
+
+ // Vectorized path
+ EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, DoublePacketType& dest) const
+ {
+ dest.first = pset1<RealPacket>(real(*b));
+ dest.second = pset1<RealPacket>(imag(*b));
+ }
+
+ EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, ResPacket& dest) const
+ {
+ loadRhs(b,dest);
+ }
+ EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, DoublePacketType& dest) const
+ {
+ eigen_internal_assert(unpacket_traits<ScalarPacket>::size<=4);
+ loadRhs(b,dest);
+ }
+
+ EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
+ {
+ // FIXME not sure that's the best way to implement it!
+ loadRhs(b+0, b0);
+ loadRhs(b+1, b1);
+ loadRhs(b+2, b2);
+ loadRhs(b+3, b3);
+ }
+
+ // Vectorized path
+ EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, DoublePacketType& b0, DoublePacketType& b1)
+ {
+ // FIXME not sure that's the best way to implement it!
+ loadRhs(b+0, b0);
+ loadRhs(b+1, b1);
+ }
+
+ // Scalar path
+ EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsScalar& b0, RhsScalar& b1)
+ {
+ // FIXME not sure that's the best way to implement it!
+ loadRhs(b+0, b0);
+ loadRhs(b+1, b1);
+ }
+
+ // nothing special here
+ EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
+ {
+ dest = pload<LhsPacket>((const typename unpacket_traits<LhsPacket>::type*)(a));
+ }
+
+ EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const
+ {
+ dest = ploadu<LhsPacket>((const typename unpacket_traits<LhsPacket>::type*)(a));
+ }
+
+ EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, DoublePacketType& c, RhsPacket& /*tmp*/) const
+ {
+ c.first = padd(pmul(a,b.first), c.first);
+ c.second = padd(pmul(a,b.second),c.second);
+ }
+
+ EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, ResPacket& c, RhsPacket& /*tmp*/) const
+ {
+ c = cj.pmadd(a,b,c);
+ }
+
+ EIGEN_STRONG_INLINE void acc(const Scalar& c, const Scalar& alpha, Scalar& r) const { r += alpha * c; }
+
+ EIGEN_STRONG_INLINE void acc(const DoublePacketType& c, const ResPacket& alpha, ResPacket& r) const
+ {
+ // assemble c
+ ResPacket tmp;
+ if((!ConjLhs)&&(!ConjRhs))
+ {
+ tmp = pcplxflip(pconj(ResPacket(c.second)));
+ tmp = padd(ResPacket(c.first),tmp);
+ }
+ else if((!ConjLhs)&&(ConjRhs))
+ {
+ tmp = pconj(pcplxflip(ResPacket(c.second)));
+ tmp = padd(ResPacket(c.first),tmp);
+ }
+ else if((ConjLhs)&&(!ConjRhs))
+ {
+ tmp = pcplxflip(ResPacket(c.second));
+ tmp = padd(pconj(ResPacket(c.first)),tmp);
+ }
+ else if((ConjLhs)&&(ConjRhs))
+ {
+ tmp = pcplxflip(ResPacket(c.second));
+ tmp = psub(pconj(ResPacket(c.first)),tmp);
+ }
+
+ r = pmadd(tmp,alpha,r);
+ }
+
+protected:
+ conj_helper<LhsScalar,RhsScalar,ConjLhs,ConjRhs> cj;
+};
+
+template<typename RealScalar, bool _ConjRhs>
+class gebp_traits<RealScalar, std::complex<RealScalar>, false, _ConjRhs >
+{
+public:
+ typedef std::complex<RealScalar> Scalar;
+ typedef RealScalar LhsScalar;
+ typedef Scalar RhsScalar;
+ typedef Scalar ResScalar;
+
+ enum {
+ ConjLhs = false,
+ ConjRhs = _ConjRhs,
+ Vectorizable = packet_traits<RealScalar>::Vectorizable
+ && packet_traits<Scalar>::Vectorizable,
+ LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
+ RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
+ ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
+
+ NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
+ // FIXME: should depend on NumberOfRegisters
+ nr = 4,
+ mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*ResPacketSize,
+
+ LhsProgress = ResPacketSize,
+ RhsProgress = 1
+ };
+
+ typedef typename packet_traits<LhsScalar>::type _LhsPacket;
+ typedef typename packet_traits<RhsScalar>::type _RhsPacket;
+ typedef typename packet_traits<ResScalar>::type _ResPacket;
+
+ typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
+ typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
+ typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
+
+ typedef ResPacket AccPacket;
+
+ EIGEN_STRONG_INLINE void initAcc(AccPacket& p)
+ {
+ p = pset1<ResPacket>(ResScalar(0));
+ }
+
+ EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
+ {
+ dest = pset1<RhsPacket>(*b);
+ }
+
+ void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
+ {
+ pbroadcast4(b, b0, b1, b2, b3);
+ }
+
+// EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1)
+// {
+// // FIXME not sure that's the best way to implement it!
+// b0 = pload1<RhsPacket>(b+0);
+// b1 = pload1<RhsPacket>(b+1);
+// }
+
+ EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
+ {
+ dest = ploaddup<LhsPacket>(a);
+ }
+
+ EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const
+ {
+ eigen_internal_assert(unpacket_traits<RhsPacket>::size<=4);
+ loadRhs(b,dest);
+ }
+
+ EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const
+ {
+ dest = ploaddup<LhsPacket>(a);
+ }
+
+ EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
+ {
+ madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
+ }
+
+ EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
+ {
+#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
+ EIGEN_UNUSED_VARIABLE(tmp);
+ c.v = pmadd(a,b.v,c.v);
+#else
+ tmp = b; tmp.v = pmul(a,tmp.v); c = padd(c,tmp);
+#endif
+
+ }
+
+ EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const
+ {
+ c += a * b;
+ }
+
+ EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const
+ {
+ r = cj.pmadd(alpha,c,r);
+ }
+
+protected:
+ conj_helper<ResPacket,ResPacket,false,ConjRhs> cj;
+};
+
+/* optimized GEneral packed Block * packed Panel product kernel
+ *
+ * Mixing type logic: C += A * B
+ * | A | B | comments
+ * |real |cplx | no vectorization yet, would require to pack A with duplication
+ * |cplx |real | easy vectorization
+ */
+template<typename LhsScalar, typename RhsScalar, typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
+struct gebp_kernel
+{
+ typedef gebp_traits<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> Traits;
+ typedef typename Traits::ResScalar ResScalar;
+ typedef typename Traits::LhsPacket LhsPacket;
+ typedef typename Traits::RhsPacket RhsPacket;
+ typedef typename Traits::ResPacket ResPacket;
+ typedef typename Traits::AccPacket AccPacket;
+
+ typedef gebp_traits<RhsScalar,LhsScalar,ConjugateRhs,ConjugateLhs> SwappedTraits;
+ typedef typename SwappedTraits::ResScalar SResScalar;
+ typedef typename SwappedTraits::LhsPacket SLhsPacket;
+ typedef typename SwappedTraits::RhsPacket SRhsPacket;
+ typedef typename SwappedTraits::ResPacket SResPacket;
+ typedef typename SwappedTraits::AccPacket SAccPacket;
+
+ typedef typename DataMapper::LinearMapper LinearMapper;
+
+ enum {
+ Vectorizable = Traits::Vectorizable,
+ LhsProgress = Traits::LhsProgress,
+ RhsProgress = Traits::RhsProgress,
+ ResPacketSize = Traits::ResPacketSize
+ };
+
+ EIGEN_DONT_INLINE
+ void operator()(const DataMapper& res, const LhsScalar* blockA, const RhsScalar* blockB,
+ Index rows, Index depth, Index cols, ResScalar alpha,
+ Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0);
+};
+
+template<typename LhsScalar, typename RhsScalar, typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
+EIGEN_DONT_INLINE
+void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,ConjugateRhs>
+ ::operator()(const DataMapper& res, const LhsScalar* blockA, const RhsScalar* blockB,
+ Index rows, Index depth, Index cols, ResScalar alpha,
+ Index strideA, Index strideB, Index offsetA, Index offsetB)
+ {
+ Traits traits;
+ SwappedTraits straits;
+
+ if(strideA==-1) strideA = depth;
+ if(strideB==-1) strideB = depth;
+ conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
+ Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0;
+ const Index peeled_mc3 = mr>=3*Traits::LhsProgress ? (rows/(3*LhsProgress))*(3*LhsProgress) : 0;
+ const Index peeled_mc2 = mr>=2*Traits::LhsProgress ? peeled_mc3+((rows-peeled_mc3)/(2*LhsProgress))*(2*LhsProgress) : 0;
+ const Index peeled_mc1 = mr>=1*Traits::LhsProgress ? (rows/(1*LhsProgress))*(1*LhsProgress) : 0;
+ enum { pk = 8 }; // NOTE Such a large peeling factor is important for large matrices (~ +5% when >1000 on Haswell)
+ const Index peeled_kc = depth & ~(pk-1);
+ const Index prefetch_res_offset = 32/sizeof(ResScalar);
+// const Index depth2 = depth & ~1;
+
+ //---------- Process 3 * LhsProgress rows at once ----------
+ // This corresponds to 3*LhsProgress x nr register blocks.
+ // Usually, make sense only with FMA
+ if(mr>=3*Traits::LhsProgress)
+ {
+ // Here, the general idea is to loop on each largest micro horizontal panel of the lhs (3*Traits::LhsProgress x depth)
+ // and on each largest micro vertical panel of the rhs (depth * nr).
+ // Blocking sizes, i.e., 'depth' has been computed so that the micro horizontal panel of the lhs fit in L1.
+ // However, if depth is too small, we can extend the number of rows of these horizontal panels.
+ // This actual number of rows is computed as follow:
+ const Index l1 = defaultL1CacheSize; // in Bytes, TODO, l1 should be passed to this function.
+ // The max(1, ...) here is needed because we may be using blocking params larger than what our known l1 cache size
+ // suggests we should be using: either because our known l1 cache size is inaccurate (e.g. on Android, we can only guess),
+ // or because we are testing specific blocking sizes.
+ const Index actual_panel_rows = (3*LhsProgress) * std::max<Index>(1,( (l1 - sizeof(ResScalar)*mr*nr - depth*nr*sizeof(RhsScalar)) / (depth * sizeof(LhsScalar) * 3*LhsProgress) ));
+ for(Index i1=0; i1<peeled_mc3; i1+=actual_panel_rows)
+ {
+ const Index actual_panel_end = (std::min)(i1+actual_panel_rows, peeled_mc3);
+ for(Index j2=0; j2<packet_cols4; j2+=nr)
+ {
+ for(Index i=i1; i<actual_panel_end; i+=3*LhsProgress)
+ {
+
+ // We selected a 3*Traits::LhsProgress x nr micro block of res which is entirely
+ // stored into 3 x nr registers.
+
+ const LhsScalar* blA = &blockA[i*strideA+offsetA*(3*LhsProgress)];
+ prefetch(&blA[0]);
+
+ // gets res block as register
+ AccPacket C0, C1, C2, C3,
+ C4, C5, C6, C7,
+ C8, C9, C10, C11;
+ traits.initAcc(C0); traits.initAcc(C1); traits.initAcc(C2); traits.initAcc(C3);
+ traits.initAcc(C4); traits.initAcc(C5); traits.initAcc(C6); traits.initAcc(C7);
+ traits.initAcc(C8); traits.initAcc(C9); traits.initAcc(C10); traits.initAcc(C11);
+
+ LinearMapper r0 = res.getLinearMapper(i, j2 + 0);
+ LinearMapper r1 = res.getLinearMapper(i, j2 + 1);
+ LinearMapper r2 = res.getLinearMapper(i, j2 + 2);
+ LinearMapper r3 = res.getLinearMapper(i, j2 + 3);
+
+ r0.prefetch(0);
+ r1.prefetch(0);
+ r2.prefetch(0);
+ r3.prefetch(0);
+
+ // performs "inner" products
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
+ prefetch(&blB[0]);
+ LhsPacket A0, A1;
+
+ for(Index k=0; k<peeled_kc; k+=pk)
+ {
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 3pX4");
+ RhsPacket B_0, T0;
+ LhsPacket A2;
+
+#define EIGEN_GEBP_ONESTEP(K) \
+ do { \
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 3pX4"); \
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
+ internal::prefetch(blA+(3*K+16)*LhsProgress); \
+ if (EIGEN_ARCH_ARM) { internal::prefetch(blB+(4*K+16)*RhsProgress); } /* Bug 953 */ \
+ traits.loadLhs(&blA[(0+3*K)*LhsProgress], A0); \
+ traits.loadLhs(&blA[(1+3*K)*LhsProgress], A1); \
+ traits.loadLhs(&blA[(2+3*K)*LhsProgress], A2); \
+ traits.loadRhs(blB + (0+4*K)*Traits::RhsProgress, B_0); \
+ traits.madd(A0, B_0, C0, T0); \
+ traits.madd(A1, B_0, C4, T0); \
+ traits.madd(A2, B_0, C8, B_0); \
+ traits.loadRhs(blB + (1+4*K)*Traits::RhsProgress, B_0); \
+ traits.madd(A0, B_0, C1, T0); \
+ traits.madd(A1, B_0, C5, T0); \
+ traits.madd(A2, B_0, C9, B_0); \
+ traits.loadRhs(blB + (2+4*K)*Traits::RhsProgress, B_0); \
+ traits.madd(A0, B_0, C2, T0); \
+ traits.madd(A1, B_0, C6, T0); \
+ traits.madd(A2, B_0, C10, B_0); \
+ traits.loadRhs(blB + (3+4*K)*Traits::RhsProgress, B_0); \
+ traits.madd(A0, B_0, C3 , T0); \
+ traits.madd(A1, B_0, C7, T0); \
+ traits.madd(A2, B_0, C11, B_0); \
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 3pX4"); \
+ } while(false)
+
+ internal::prefetch(blB);
+ EIGEN_GEBP_ONESTEP(0);
+ EIGEN_GEBP_ONESTEP(1);
+ EIGEN_GEBP_ONESTEP(2);
+ EIGEN_GEBP_ONESTEP(3);
+ EIGEN_GEBP_ONESTEP(4);
+ EIGEN_GEBP_ONESTEP(5);
+ EIGEN_GEBP_ONESTEP(6);
+ EIGEN_GEBP_ONESTEP(7);
+
+ blB += pk*4*RhsProgress;
+ blA += pk*3*Traits::LhsProgress;
+
+ EIGEN_ASM_COMMENT("end gebp micro kernel 3pX4");
+ }
+ // process remaining peeled loop
+ for(Index k=peeled_kc; k<depth; k++)
+ {
+ RhsPacket B_0, T0;
+ LhsPacket A2;
+ EIGEN_GEBP_ONESTEP(0);
+ blB += 4*RhsProgress;
+ blA += 3*Traits::LhsProgress;
+ }
+
+#undef EIGEN_GEBP_ONESTEP
+
+ ResPacket R0, R1, R2;
+ ResPacket alphav = pset1<ResPacket>(alpha);
+
+ R0 = r0.loadPacket(0 * Traits::ResPacketSize);
+ R1 = r0.loadPacket(1 * Traits::ResPacketSize);
+ R2 = r0.loadPacket(2 * Traits::ResPacketSize);
+ traits.acc(C0, alphav, R0);
+ traits.acc(C4, alphav, R1);
+ traits.acc(C8, alphav, R2);
+ r0.storePacket(0 * Traits::ResPacketSize, R0);
+ r0.storePacket(1 * Traits::ResPacketSize, R1);
+ r0.storePacket(2 * Traits::ResPacketSize, R2);
+
+ R0 = r1.loadPacket(0 * Traits::ResPacketSize);
+ R1 = r1.loadPacket(1 * Traits::ResPacketSize);
+ R2 = r1.loadPacket(2 * Traits::ResPacketSize);
+ traits.acc(C1, alphav, R0);
+ traits.acc(C5, alphav, R1);
+ traits.acc(C9, alphav, R2);
+ r1.storePacket(0 * Traits::ResPacketSize, R0);
+ r1.storePacket(1 * Traits::ResPacketSize, R1);
+ r1.storePacket(2 * Traits::ResPacketSize, R2);
+
+ R0 = r2.loadPacket(0 * Traits::ResPacketSize);
+ R1 = r2.loadPacket(1 * Traits::ResPacketSize);
+ R2 = r2.loadPacket(2 * Traits::ResPacketSize);
+ traits.acc(C2, alphav, R0);
+ traits.acc(C6, alphav, R1);
+ traits.acc(C10, alphav, R2);
+ r2.storePacket(0 * Traits::ResPacketSize, R0);
+ r2.storePacket(1 * Traits::ResPacketSize, R1);
+ r2.storePacket(2 * Traits::ResPacketSize, R2);
+
+ R0 = r3.loadPacket(0 * Traits::ResPacketSize);
+ R1 = r3.loadPacket(1 * Traits::ResPacketSize);
+ R2 = r3.loadPacket(2 * Traits::ResPacketSize);
+ traits.acc(C3, alphav, R0);
+ traits.acc(C7, alphav, R1);
+ traits.acc(C11, alphav, R2);
+ r3.storePacket(0 * Traits::ResPacketSize, R0);
+ r3.storePacket(1 * Traits::ResPacketSize, R1);
+ r3.storePacket(2 * Traits::ResPacketSize, R2);
+ }
+ }
+
+ // Deal with remaining columns of the rhs
+ for(Index j2=packet_cols4; j2<cols; j2++)
+ {
+ for(Index i=i1; i<actual_panel_end; i+=3*LhsProgress)
+ {
+ // One column at a time
+ const LhsScalar* blA = &blockA[i*strideA+offsetA*(3*Traits::LhsProgress)];
+ prefetch(&blA[0]);
+
+ // gets res block as register
+ AccPacket C0, C4, C8;
+ traits.initAcc(C0);
+ traits.initAcc(C4);
+ traits.initAcc(C8);
+
+ LinearMapper r0 = res.getLinearMapper(i, j2);
+ r0.prefetch(0);
+
+ // performs "inner" products
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB];
+ LhsPacket A0, A1, A2;
+
+ for(Index k=0; k<peeled_kc; k+=pk)
+ {
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 3pX1");
+ RhsPacket B_0;
+#define EIGEN_GEBGP_ONESTEP(K) \
+ do { \
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 3pX1"); \
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
+ traits.loadLhs(&blA[(0+3*K)*LhsProgress], A0); \
+ traits.loadLhs(&blA[(1+3*K)*LhsProgress], A1); \
+ traits.loadLhs(&blA[(2+3*K)*LhsProgress], A2); \
+ traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \
+ traits.madd(A0, B_0, C0, B_0); \
+ traits.madd(A1, B_0, C4, B_0); \
+ traits.madd(A2, B_0, C8, B_0); \
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 3pX1"); \
+ } while(false)
+
+ EIGEN_GEBGP_ONESTEP(0);
+ EIGEN_GEBGP_ONESTEP(1);
+ EIGEN_GEBGP_ONESTEP(2);
+ EIGEN_GEBGP_ONESTEP(3);
+ EIGEN_GEBGP_ONESTEP(4);
+ EIGEN_GEBGP_ONESTEP(5);
+ EIGEN_GEBGP_ONESTEP(6);
+ EIGEN_GEBGP_ONESTEP(7);
+
+ blB += pk*RhsProgress;
+ blA += pk*3*Traits::LhsProgress;
+
+ EIGEN_ASM_COMMENT("end gebp micro kernel 3pX1");
+ }
+
+ // process remaining peeled loop
+ for(Index k=peeled_kc; k<depth; k++)
+ {
+ RhsPacket B_0;
+ EIGEN_GEBGP_ONESTEP(0);
+ blB += RhsProgress;
+ blA += 3*Traits::LhsProgress;
+ }
+#undef EIGEN_GEBGP_ONESTEP
+ ResPacket R0, R1, R2;
+ ResPacket alphav = pset1<ResPacket>(alpha);
+
+ R0 = r0.loadPacket(0 * Traits::ResPacketSize);
+ R1 = r0.loadPacket(1 * Traits::ResPacketSize);
+ R2 = r0.loadPacket(2 * Traits::ResPacketSize);
+ traits.acc(C0, alphav, R0);
+ traits.acc(C4, alphav, R1);
+ traits.acc(C8, alphav, R2);
+ r0.storePacket(0 * Traits::ResPacketSize, R0);
+ r0.storePacket(1 * Traits::ResPacketSize, R1);
+ r0.storePacket(2 * Traits::ResPacketSize, R2);
+ }
+ }
+ }
+ }
+
+ //---------- Process 2 * LhsProgress rows at once ----------
+ if(mr>=2*Traits::LhsProgress)
+ {
+ const Index l1 = defaultL1CacheSize; // in Bytes, TODO, l1 should be passed to this function.
+ // The max(1, ...) here is needed because we may be using blocking params larger than what our known l1 cache size
+ // suggests we should be using: either because our known l1 cache size is inaccurate (e.g. on Android, we can only guess),
+ // or because we are testing specific blocking sizes.
+ Index actual_panel_rows = (2*LhsProgress) * std::max<Index>(1,( (l1 - sizeof(ResScalar)*mr*nr - depth*nr*sizeof(RhsScalar)) / (depth * sizeof(LhsScalar) * 2*LhsProgress) ));
+
+ for(Index i1=peeled_mc3; i1<peeled_mc2; i1+=actual_panel_rows)
+ {
+ Index actual_panel_end = (std::min)(i1+actual_panel_rows, peeled_mc2);
+ for(Index j2=0; j2<packet_cols4; j2+=nr)
+ {
+ for(Index i=i1; i<actual_panel_end; i+=2*LhsProgress)
+ {
+
+ // We selected a 2*Traits::LhsProgress x nr micro block of res which is entirely
+ // stored into 2 x nr registers.
+
+ const LhsScalar* blA = &blockA[i*strideA+offsetA*(2*Traits::LhsProgress)];
+ prefetch(&blA[0]);
+
+ // gets res block as register
+ AccPacket C0, C1, C2, C3,
+ C4, C5, C6, C7;
+ traits.initAcc(C0); traits.initAcc(C1); traits.initAcc(C2); traits.initAcc(C3);
+ traits.initAcc(C4); traits.initAcc(C5); traits.initAcc(C6); traits.initAcc(C7);
+
+ LinearMapper r0 = res.getLinearMapper(i, j2 + 0);
+ LinearMapper r1 = res.getLinearMapper(i, j2 + 1);
+ LinearMapper r2 = res.getLinearMapper(i, j2 + 2);
+ LinearMapper r3 = res.getLinearMapper(i, j2 + 3);
+
+ r0.prefetch(prefetch_res_offset);
+ r1.prefetch(prefetch_res_offset);
+ r2.prefetch(prefetch_res_offset);
+ r3.prefetch(prefetch_res_offset);
+
+ // performs "inner" products
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
+ prefetch(&blB[0]);
+ LhsPacket A0, A1;
+
+ for(Index k=0; k<peeled_kc; k+=pk)
+ {
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 2pX4");
+ RhsPacket B_0, B1, B2, B3, T0;
+
+ #define EIGEN_GEBGP_ONESTEP(K) \
+ do { \
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX4"); \
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
+ traits.loadLhs(&blA[(0+2*K)*LhsProgress], A0); \
+ traits.loadLhs(&blA[(1+2*K)*LhsProgress], A1); \
+ traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], B_0, B1, B2, B3); \
+ traits.madd(A0, B_0, C0, T0); \
+ traits.madd(A1, B_0, C4, B_0); \
+ traits.madd(A0, B1, C1, T0); \
+ traits.madd(A1, B1, C5, B1); \
+ traits.madd(A0, B2, C2, T0); \
+ traits.madd(A1, B2, C6, B2); \
+ traits.madd(A0, B3, C3, T0); \
+ traits.madd(A1, B3, C7, B3); \
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX4"); \
+ } while(false)
+
+ internal::prefetch(blB+(48+0));
+ EIGEN_GEBGP_ONESTEP(0);
+ EIGEN_GEBGP_ONESTEP(1);
+ EIGEN_GEBGP_ONESTEP(2);
+ EIGEN_GEBGP_ONESTEP(3);
+ internal::prefetch(blB+(48+16));
+ EIGEN_GEBGP_ONESTEP(4);
+ EIGEN_GEBGP_ONESTEP(5);
+ EIGEN_GEBGP_ONESTEP(6);
+ EIGEN_GEBGP_ONESTEP(7);
+
+ blB += pk*4*RhsProgress;
+ blA += pk*(2*Traits::LhsProgress);
+
+ EIGEN_ASM_COMMENT("end gebp micro kernel 2pX4");
+ }
+ // process remaining peeled loop
+ for(Index k=peeled_kc; k<depth; k++)
+ {
+ RhsPacket B_0, B1, B2, B3, T0;
+ EIGEN_GEBGP_ONESTEP(0);
+ blB += 4*RhsProgress;
+ blA += 2*Traits::LhsProgress;
+ }
+#undef EIGEN_GEBGP_ONESTEP
+
+ ResPacket R0, R1, R2, R3;
+ ResPacket alphav = pset1<ResPacket>(alpha);
+
+ R0 = r0.loadPacket(0 * Traits::ResPacketSize);
+ R1 = r0.loadPacket(1 * Traits::ResPacketSize);
+ R2 = r1.loadPacket(0 * Traits::ResPacketSize);
+ R3 = r1.loadPacket(1 * Traits::ResPacketSize);
+ traits.acc(C0, alphav, R0);
+ traits.acc(C4, alphav, R1);
+ traits.acc(C1, alphav, R2);
+ traits.acc(C5, alphav, R3);
+ r0.storePacket(0 * Traits::ResPacketSize, R0);
+ r0.storePacket(1 * Traits::ResPacketSize, R1);
+ r1.storePacket(0 * Traits::ResPacketSize, R2);
+ r1.storePacket(1 * Traits::ResPacketSize, R3);
+
+ R0 = r2.loadPacket(0 * Traits::ResPacketSize);
+ R1 = r2.loadPacket(1 * Traits::ResPacketSize);
+ R2 = r3.loadPacket(0 * Traits::ResPacketSize);
+ R3 = r3.loadPacket(1 * Traits::ResPacketSize);
+ traits.acc(C2, alphav, R0);
+ traits.acc(C6, alphav, R1);
+ traits.acc(C3, alphav, R2);
+ traits.acc(C7, alphav, R3);
+ r2.storePacket(0 * Traits::ResPacketSize, R0);
+ r2.storePacket(1 * Traits::ResPacketSize, R1);
+ r3.storePacket(0 * Traits::ResPacketSize, R2);
+ r3.storePacket(1 * Traits::ResPacketSize, R3);
+ }
+ }
+
+ // Deal with remaining columns of the rhs
+ for(Index j2=packet_cols4; j2<cols; j2++)
+ {
+ for(Index i=i1; i<actual_panel_end; i+=2*LhsProgress)
+ {
+ // One column at a time
+ const LhsScalar* blA = &blockA[i*strideA+offsetA*(2*Traits::LhsProgress)];
+ prefetch(&blA[0]);
+
+ // gets res block as register
+ AccPacket C0, C4;
+ traits.initAcc(C0);
+ traits.initAcc(C4);
+
+ LinearMapper r0 = res.getLinearMapper(i, j2);
+ r0.prefetch(prefetch_res_offset);
+
+ // performs "inner" products
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB];
+ LhsPacket A0, A1;
+
+ for(Index k=0; k<peeled_kc; k+=pk)
+ {
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 2pX1");
+ RhsPacket B_0, B1;
+
+#define EIGEN_GEBGP_ONESTEP(K) \
+ do { \
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX1"); \
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
+ traits.loadLhs(&blA[(0+2*K)*LhsProgress], A0); \
+ traits.loadLhs(&blA[(1+2*K)*LhsProgress], A1); \
+ traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \
+ traits.madd(A0, B_0, C0, B1); \
+ traits.madd(A1, B_0, C4, B_0); \
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX1"); \
+ } while(false)
+
+ EIGEN_GEBGP_ONESTEP(0);
+ EIGEN_GEBGP_ONESTEP(1);
+ EIGEN_GEBGP_ONESTEP(2);
+ EIGEN_GEBGP_ONESTEP(3);
+ EIGEN_GEBGP_ONESTEP(4);
+ EIGEN_GEBGP_ONESTEP(5);
+ EIGEN_GEBGP_ONESTEP(6);
+ EIGEN_GEBGP_ONESTEP(7);
+
+ blB += pk*RhsProgress;
+ blA += pk*2*Traits::LhsProgress;
+
+ EIGEN_ASM_COMMENT("end gebp micro kernel 2pX1");
+ }
+
+ // process remaining peeled loop
+ for(Index k=peeled_kc; k<depth; k++)
+ {
+ RhsPacket B_0, B1;
+ EIGEN_GEBGP_ONESTEP(0);
+ blB += RhsProgress;
+ blA += 2*Traits::LhsProgress;
+ }
+#undef EIGEN_GEBGP_ONESTEP
+ ResPacket R0, R1;
+ ResPacket alphav = pset1<ResPacket>(alpha);
+
+ R0 = r0.loadPacket(0 * Traits::ResPacketSize);
+ R1 = r0.loadPacket(1 * Traits::ResPacketSize);
+ traits.acc(C0, alphav, R0);
+ traits.acc(C4, alphav, R1);
+ r0.storePacket(0 * Traits::ResPacketSize, R0);
+ r0.storePacket(1 * Traits::ResPacketSize, R1);
+ }
+ }
+ }
+ }
+ //---------- Process 1 * LhsProgress rows at once ----------
+ if(mr>=1*Traits::LhsProgress)
+ {
+ // loops on each largest micro horizontal panel of lhs (1*LhsProgress x depth)
+ for(Index i=peeled_mc2; i<peeled_mc1; i+=1*LhsProgress)
+ {
+ // loops on each largest micro vertical panel of rhs (depth * nr)
+ for(Index j2=0; j2<packet_cols4; j2+=nr)
+ {
+ // We select a 1*Traits::LhsProgress x nr micro block of res which is entirely
+ // stored into 1 x nr registers.
+
+ const LhsScalar* blA = &blockA[i*strideA+offsetA*(1*Traits::LhsProgress)];
+ prefetch(&blA[0]);
+
+ // gets res block as register
+ AccPacket C0, C1, C2, C3;
+ traits.initAcc(C0);
+ traits.initAcc(C1);
+ traits.initAcc(C2);
+ traits.initAcc(C3);
+
+ LinearMapper r0 = res.getLinearMapper(i, j2 + 0);
+ LinearMapper r1 = res.getLinearMapper(i, j2 + 1);
+ LinearMapper r2 = res.getLinearMapper(i, j2 + 2);
+ LinearMapper r3 = res.getLinearMapper(i, j2 + 3);
+
+ r0.prefetch(prefetch_res_offset);
+ r1.prefetch(prefetch_res_offset);
+ r2.prefetch(prefetch_res_offset);
+ r3.prefetch(prefetch_res_offset);
+
+ // performs "inner" products
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
+ prefetch(&blB[0]);
+ LhsPacket A0;
+
+ for(Index k=0; k<peeled_kc; k+=pk)
+ {
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 1pX4");
+ RhsPacket B_0, B1, B2, B3;
+
+#define EIGEN_GEBGP_ONESTEP(K) \
+ do { \
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 1pX4"); \
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
+ traits.loadLhs(&blA[(0+1*K)*LhsProgress], A0); \
+ traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], B_0, B1, B2, B3); \
+ traits.madd(A0, B_0, C0, B_0); \
+ traits.madd(A0, B1, C1, B1); \
+ traits.madd(A0, B2, C2, B2); \
+ traits.madd(A0, B3, C3, B3); \
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 1pX4"); \
+ } while(false)
+
+ internal::prefetch(blB+(48+0));
+ EIGEN_GEBGP_ONESTEP(0);
+ EIGEN_GEBGP_ONESTEP(1);
+ EIGEN_GEBGP_ONESTEP(2);
+ EIGEN_GEBGP_ONESTEP(3);
+ internal::prefetch(blB+(48+16));
+ EIGEN_GEBGP_ONESTEP(4);
+ EIGEN_GEBGP_ONESTEP(5);
+ EIGEN_GEBGP_ONESTEP(6);
+ EIGEN_GEBGP_ONESTEP(7);
+
+ blB += pk*4*RhsProgress;
+ blA += pk*1*LhsProgress;
+
+ EIGEN_ASM_COMMENT("end gebp micro kernel 1pX4");
+ }
+ // process remaining peeled loop
+ for(Index k=peeled_kc; k<depth; k++)
+ {
+ RhsPacket B_0, B1, B2, B3;
+ EIGEN_GEBGP_ONESTEP(0);
+ blB += 4*RhsProgress;
+ blA += 1*LhsProgress;
+ }
+#undef EIGEN_GEBGP_ONESTEP
+
+ ResPacket R0, R1;
+ ResPacket alphav = pset1<ResPacket>(alpha);
+
+ R0 = r0.loadPacket(0 * Traits::ResPacketSize);
+ R1 = r1.loadPacket(0 * Traits::ResPacketSize);
+ traits.acc(C0, alphav, R0);
+ traits.acc(C1, alphav, R1);
+ r0.storePacket(0 * Traits::ResPacketSize, R0);
+ r1.storePacket(0 * Traits::ResPacketSize, R1);
+
+ R0 = r2.loadPacket(0 * Traits::ResPacketSize);
+ R1 = r3.loadPacket(0 * Traits::ResPacketSize);
+ traits.acc(C2, alphav, R0);
+ traits.acc(C3, alphav, R1);
+ r2.storePacket(0 * Traits::ResPacketSize, R0);
+ r3.storePacket(0 * Traits::ResPacketSize, R1);
+ }
+
+ // Deal with remaining columns of the rhs
+ for(Index j2=packet_cols4; j2<cols; j2++)
+ {
+ // One column at a time
+ const LhsScalar* blA = &blockA[i*strideA+offsetA*(1*Traits::LhsProgress)];
+ prefetch(&blA[0]);
+
+ // gets res block as register
+ AccPacket C0;
+ traits.initAcc(C0);
+
+ LinearMapper r0 = res.getLinearMapper(i, j2);
+
+ // performs "inner" products
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB];
+ LhsPacket A0;
+
+ for(Index k=0; k<peeled_kc; k+=pk)
+ {
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 1pX1");
+ RhsPacket B_0;
+
+#define EIGEN_GEBGP_ONESTEP(K) \
+ do { \
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 1pX1"); \
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
+ traits.loadLhs(&blA[(0+1*K)*LhsProgress], A0); \
+ traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \
+ traits.madd(A0, B_0, C0, B_0); \
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 1pX1"); \
+ } while(false);
+
+ EIGEN_GEBGP_ONESTEP(0);
+ EIGEN_GEBGP_ONESTEP(1);
+ EIGEN_GEBGP_ONESTEP(2);
+ EIGEN_GEBGP_ONESTEP(3);
+ EIGEN_GEBGP_ONESTEP(4);
+ EIGEN_GEBGP_ONESTEP(5);
+ EIGEN_GEBGP_ONESTEP(6);
+ EIGEN_GEBGP_ONESTEP(7);
+
+ blB += pk*RhsProgress;
+ blA += pk*1*Traits::LhsProgress;
+
+ EIGEN_ASM_COMMENT("end gebp micro kernel 1pX1");
+ }
+
+ // process remaining peeled loop
+ for(Index k=peeled_kc; k<depth; k++)
+ {
+ RhsPacket B_0;
+ EIGEN_GEBGP_ONESTEP(0);
+ blB += RhsProgress;
+ blA += 1*Traits::LhsProgress;
+ }
+#undef EIGEN_GEBGP_ONESTEP
+ ResPacket R0;
+ ResPacket alphav = pset1<ResPacket>(alpha);
+ R0 = r0.loadPacket(0 * Traits::ResPacketSize);
+ traits.acc(C0, alphav, R0);
+ r0.storePacket(0 * Traits::ResPacketSize, R0);
+ }
+ }
+ }
+ //---------- Process remaining rows, 1 at once ----------
+ if(peeled_mc1<rows)
+ {
+ // loop on each panel of the rhs
+ for(Index j2=0; j2<packet_cols4; j2+=nr)
+ {
+ // loop on each row of the lhs (1*LhsProgress x depth)
+ for(Index i=peeled_mc1; i<rows; i+=1)
+ {
+ const LhsScalar* blA = &blockA[i*strideA+offsetA];
+ prefetch(&blA[0]);
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
+
+ // The following piece of code wont work for 512 bit registers
+ // Moreover, if LhsProgress==8 it assumes that there is a half packet of the same size
+ // as nr (which is currently 4) for the return type.
+ typedef typename unpacket_traits<SResPacket>::half SResPacketHalf;
+ if ((SwappedTraits::LhsProgress % 4) == 0 &&
+ (SwappedTraits::LhsProgress <= 8) &&
+ (SwappedTraits::LhsProgress!=8 || unpacket_traits<SResPacketHalf>::size==nr))
+ {
+ SAccPacket C0, C1, C2, C3;
+ straits.initAcc(C0);
+ straits.initAcc(C1);
+ straits.initAcc(C2);
+ straits.initAcc(C3);
+
+ const Index spk = (std::max)(1,SwappedTraits::LhsProgress/4);
+ const Index endk = (depth/spk)*spk;
+ const Index endk4 = (depth/(spk*4))*(spk*4);
+
+ Index k=0;
+ for(; k<endk4; k+=4*spk)
+ {
+ SLhsPacket A0,A1;
+ SRhsPacket B_0,B_1;
+
+ straits.loadLhsUnaligned(blB+0*SwappedTraits::LhsProgress, A0);
+ straits.loadLhsUnaligned(blB+1*SwappedTraits::LhsProgress, A1);
+
+ straits.loadRhsQuad(blA+0*spk, B_0);
+ straits.loadRhsQuad(blA+1*spk, B_1);
+ straits.madd(A0,B_0,C0,B_0);
+ straits.madd(A1,B_1,C1,B_1);
+
+ straits.loadLhsUnaligned(blB+2*SwappedTraits::LhsProgress, A0);
+ straits.loadLhsUnaligned(blB+3*SwappedTraits::LhsProgress, A1);
+ straits.loadRhsQuad(blA+2*spk, B_0);
+ straits.loadRhsQuad(blA+3*spk, B_1);
+ straits.madd(A0,B_0,C2,B_0);
+ straits.madd(A1,B_1,C3,B_1);
+
+ blB += 4*SwappedTraits::LhsProgress;
+ blA += 4*spk;
+ }
+ C0 = padd(padd(C0,C1),padd(C2,C3));
+ for(; k<endk; k+=spk)
+ {
+ SLhsPacket A0;
+ SRhsPacket B_0;
+
+ straits.loadLhsUnaligned(blB, A0);
+ straits.loadRhsQuad(blA, B_0);
+ straits.madd(A0,B_0,C0,B_0);
+
+ blB += SwappedTraits::LhsProgress;
+ blA += spk;
+ }
+ if(SwappedTraits::LhsProgress==8)
+ {
+ // Special case where we have to first reduce the accumulation register C0
+ typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SResPacket>::half,SResPacket>::type SResPacketHalf;
+ typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SLhsPacket>::half,SLhsPacket>::type SLhsPacketHalf;
+ typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SLhsPacket>::half,SRhsPacket>::type SRhsPacketHalf;
+ typedef typename conditional<SwappedTraits::LhsProgress>=8,typename unpacket_traits<SAccPacket>::half,SAccPacket>::type SAccPacketHalf;
+
+ SResPacketHalf R = res.template gatherPacket<SResPacketHalf>(i, j2);
+ SResPacketHalf alphav = pset1<SResPacketHalf>(alpha);
+
+ if(depth-endk>0)
+ {
+ // We have to handle the last row of the rhs which corresponds to a half-packet
+ SLhsPacketHalf a0;
+ SRhsPacketHalf b0;
+ straits.loadLhsUnaligned(blB, a0);
+ straits.loadRhs(blA, b0);
+ SAccPacketHalf c0 = predux_downto4(C0);
+ straits.madd(a0,b0,c0,b0);
+ straits.acc(c0, alphav, R);
+ }
+ else
+ {
+ straits.acc(predux_downto4(C0), alphav, R);
+ }
+ res.scatterPacket(i, j2, R);
+ }
+ else
+ {
+ SResPacket R = res.template gatherPacket<SResPacket>(i, j2);
+ SResPacket alphav = pset1<SResPacket>(alpha);
+ straits.acc(C0, alphav, R);
+ res.scatterPacket(i, j2, R);
+ }
+ }
+ else // scalar path
+ {
+ // get a 1 x 4 res block as registers
+ ResScalar C0(0), C1(0), C2(0), C3(0);
+
+ for(Index k=0; k<depth; k++)
+ {
+ LhsScalar A0;
+ RhsScalar B_0, B_1;
+
+ A0 = blA[k];
+
+ B_0 = blB[0];
+ B_1 = blB[1];
+ CJMADD(cj,A0,B_0,C0, B_0);
+ CJMADD(cj,A0,B_1,C1, B_1);
+
+ B_0 = blB[2];
+ B_1 = blB[3];
+ CJMADD(cj,A0,B_0,C2, B_0);
+ CJMADD(cj,A0,B_1,C3, B_1);
+
+ blB += 4;
+ }
+ res(i, j2 + 0) += alpha * C0;
+ res(i, j2 + 1) += alpha * C1;
+ res(i, j2 + 2) += alpha * C2;
+ res(i, j2 + 3) += alpha * C3;
+ }
+ }
+ }
+ // remaining columns
+ for(Index j2=packet_cols4; j2<cols; j2++)
+ {
+ // loop on each row of the lhs (1*LhsProgress x depth)
+ for(Index i=peeled_mc1; i<rows; i+=1)
+ {
+ const LhsScalar* blA = &blockA[i*strideA+offsetA];
+ prefetch(&blA[0]);
+ // gets a 1 x 1 res block as registers
+ ResScalar C0(0);
+ const RhsScalar* blB = &blockB[j2*strideB+offsetB];
+ for(Index k=0; k<depth; k++)
+ {
+ LhsScalar A0 = blA[k];
+ RhsScalar B_0 = blB[k];
+ CJMADD(cj, A0, B_0, C0, B_0);
+ }
+ res(i, j2) += alpha * C0;
+ }
+ }
+ }
+ }
+
+
+#undef CJMADD
+
+// pack a block of the lhs
+// The traversal is as follow (mr==4):
+// 0 4 8 12 ...
+// 1 5 9 13 ...
+// 2 6 10 14 ...
+// 3 7 11 15 ...
+//
+// 16 20 24 28 ...
+// 17 21 25 29 ...
+// 18 22 26 30 ...
+// 19 23 27 31 ...
+//
+// 32 33 34 35 ...
+// 36 36 38 39 ...
+template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
+struct gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, ColMajor, Conjugate, PanelMode>
+{
+ typedef typename DataMapper::LinearMapper LinearMapper;
+ EIGEN_DONT_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
+};
+
+template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
+EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, ColMajor, Conjugate, PanelMode>
+ ::operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
+{
+ typedef typename packet_traits<Scalar>::type Packet;
+ enum { PacketSize = packet_traits<Scalar>::size };
+
+ EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS");
+ EIGEN_UNUSED_VARIABLE(stride);
+ EIGEN_UNUSED_VARIABLE(offset);
+ eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
+ eigen_assert( ((Pack1%PacketSize)==0 && Pack1<=4*PacketSize) || (Pack1<=4) );
+ conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
+ Index count = 0;
+
+ const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0;
+ const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0;
+ const Index peeled_mc1 = Pack1>=1*PacketSize ? (rows/(1*PacketSize))*(1*PacketSize) : 0;
+ const Index peeled_mc0 = Pack2>=1*PacketSize ? peeled_mc1
+ : Pack2>1 ? (rows/Pack2)*Pack2 : 0;
+
+ Index i=0;
+
+ // Pack 3 packets
+ if(Pack1>=3*PacketSize)
+ {
+ for(; i<peeled_mc3; i+=3*PacketSize)
+ {
+ if(PanelMode) count += (3*PacketSize) * offset;
+
+ for(Index k=0; k<depth; k++)
+ {
+ Packet A, B, C;
+ A = lhs.loadPacket(i+0*PacketSize, k);
+ B = lhs.loadPacket(i+1*PacketSize, k);
+ C = lhs.loadPacket(i+2*PacketSize, k);
+ pstore(blockA+count, cj.pconj(A)); count+=PacketSize;
+ pstore(blockA+count, cj.pconj(B)); count+=PacketSize;
+ pstore(blockA+count, cj.pconj(C)); count+=PacketSize;
+ }
+ if(PanelMode) count += (3*PacketSize) * (stride-offset-depth);
+ }
+ }
+ // Pack 2 packets
+ if(Pack1>=2*PacketSize)
+ {
+ for(; i<peeled_mc2; i+=2*PacketSize)
+ {
+ if(PanelMode) count += (2*PacketSize) * offset;
+
+ for(Index k=0; k<depth; k++)
+ {
+ Packet A, B;
+ A = lhs.loadPacket(i+0*PacketSize, k);
+ B = lhs.loadPacket(i+1*PacketSize, k);
+ pstore(blockA+count, cj.pconj(A)); count+=PacketSize;
+ pstore(blockA+count, cj.pconj(B)); count+=PacketSize;
+ }
+ if(PanelMode) count += (2*PacketSize) * (stride-offset-depth);
+ }
+ }
+ // Pack 1 packets
+ if(Pack1>=1*PacketSize)
+ {
+ for(; i<peeled_mc1; i+=1*PacketSize)
+ {
+ if(PanelMode) count += (1*PacketSize) * offset;
+
+ for(Index k=0; k<depth; k++)
+ {
+ Packet A;
+ A = lhs.loadPacket(i+0*PacketSize, k);
+ pstore(blockA+count, cj.pconj(A));
+ count+=PacketSize;
+ }
+ if(PanelMode) count += (1*PacketSize) * (stride-offset-depth);
+ }
+ }
+ // Pack scalars
+ if(Pack2<PacketSize && Pack2>1)
+ {
+ for(; i<peeled_mc0; i+=Pack2)
+ {
+ if(PanelMode) count += Pack2 * offset;
+
+ for(Index k=0; k<depth; k++)
+ for(Index w=0; w<Pack2; w++)
+ blockA[count++] = cj(lhs(i+w, k));
+
+ if(PanelMode) count += Pack2 * (stride-offset-depth);
+ }
+ }
+ for(; i<rows; i++)
+ {
+ if(PanelMode) count += offset;
+ for(Index k=0; k<depth; k++)
+ blockA[count++] = cj(lhs(i, k));
+ if(PanelMode) count += (stride-offset-depth);
+ }
+}
+
+template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
+struct gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, RowMajor, Conjugate, PanelMode>
+{
+ typedef typename DataMapper::LinearMapper LinearMapper;
+ EIGEN_DONT_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0);
+};
+
+template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, bool Conjugate, bool PanelMode>
+EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, DataMapper, Pack1, Pack2, RowMajor, Conjugate, PanelMode>
+ ::operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset)
+{
+ typedef typename packet_traits<Scalar>::type Packet;
+ enum { PacketSize = packet_traits<Scalar>::size };
+
+ EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS");
+ EIGEN_UNUSED_VARIABLE(stride);
+ EIGEN_UNUSED_VARIABLE(offset);
+ eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
+ conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
+ Index count = 0;
+
+// const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0;
+// const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0;
+// const Index peeled_mc1 = Pack1>=1*PacketSize ? (rows/(1*PacketSize))*(1*PacketSize) : 0;
+
+ int pack = Pack1;
+ Index i = 0;
+ while(pack>0)
+ {
+ Index remaining_rows = rows-i;
+ Index peeled_mc = i+(remaining_rows/pack)*pack;
+ for(; i<peeled_mc; i+=pack)
+ {
+ if(PanelMode) count += pack * offset;
+
+ const Index peeled_k = (depth/PacketSize)*PacketSize;
+ Index k=0;
+ if(pack>=PacketSize)
+ {
+ for(; k<peeled_k; k+=PacketSize)
+ {
+ for (Index m = 0; m < pack; m += PacketSize)
+ {
+ PacketBlock<Packet> kernel;
+ for (int p = 0; p < PacketSize; ++p) kernel.packet[p] = lhs.loadPacket(i+p+m, k);
+ ptranspose(kernel);
+ for (int p = 0; p < PacketSize; ++p) pstore(blockA+count+m+(pack)*p, cj.pconj(kernel.packet[p]));
+ }
+ count += PacketSize*pack;
+ }
+ }
+ for(; k<depth; k++)
+ {
+ Index w=0;
+ for(; w<pack-3; w+=4)
+ {
+ Scalar a(cj(lhs(i+w+0, k))),
+ b(cj(lhs(i+w+1, k))),
+ c(cj(lhs(i+w+2, k))),
+ d(cj(lhs(i+w+3, k)));
+ blockA[count++] = a;
+ blockA[count++] = b;
+ blockA[count++] = c;
+ blockA[count++] = d;
+ }
+ if(pack%4)
+ for(;w<pack;++w)
+ blockA[count++] = cj(lhs(i+w, k));
+ }
+
+ if(PanelMode) count += pack * (stride-offset-depth);
+ }
+
+ pack -= PacketSize;
+ if(pack<Pack2 && (pack+PacketSize)!=Pack2)
+ pack = Pack2;
+ }
+
+ for(; i<rows; i++)
+ {
+ if(PanelMode) count += offset;
+ for(Index k=0; k<depth; k++)
+ blockA[count++] = cj(lhs(i, k));
+ if(PanelMode) count += (stride-offset-depth);
+ }
+}
+
+// copy a complete panel of the rhs
+// this version is optimized for column major matrices
+// The traversal order is as follow: (nr==4):
+// 0 1 2 3 12 13 14 15 24 27
+// 4 5 6 7 16 17 18 19 25 28
+// 8 9 10 11 20 21 22 23 26 29
+// . . . . . . . . . .
+template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
+struct gemm_pack_rhs<Scalar, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
+{
+ typedef typename packet_traits<Scalar>::type Packet;
+ typedef typename DataMapper::LinearMapper LinearMapper;
+ enum { PacketSize = packet_traits<Scalar>::size };
+ EIGEN_DONT_INLINE void operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
+};
+
+template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
+EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, DataMapper, nr, ColMajor, Conjugate, PanelMode>
+ ::operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
+{
+ EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS COLMAJOR");
+ EIGEN_UNUSED_VARIABLE(stride);
+ EIGEN_UNUSED_VARIABLE(offset);
+ eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
+ conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
+ Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0;
+ Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0;
+ Index count = 0;
+ const Index peeled_k = (depth/PacketSize)*PacketSize;
+// if(nr>=8)
+// {
+// for(Index j2=0; j2<packet_cols8; j2+=8)
+// {
+// // skip what we have before
+// if(PanelMode) count += 8 * offset;
+// const Scalar* b0 = &rhs[(j2+0)*rhsStride];
+// const Scalar* b1 = &rhs[(j2+1)*rhsStride];
+// const Scalar* b2 = &rhs[(j2+2)*rhsStride];
+// const Scalar* b3 = &rhs[(j2+3)*rhsStride];
+// const Scalar* b4 = &rhs[(j2+4)*rhsStride];
+// const Scalar* b5 = &rhs[(j2+5)*rhsStride];
+// const Scalar* b6 = &rhs[(j2+6)*rhsStride];
+// const Scalar* b7 = &rhs[(j2+7)*rhsStride];
+// Index k=0;
+// if(PacketSize==8) // TODO enbale vectorized transposition for PacketSize==4
+// {
+// for(; k<peeled_k; k+=PacketSize) {
+// PacketBlock<Packet> kernel;
+// for (int p = 0; p < PacketSize; ++p) {
+// kernel.packet[p] = ploadu<Packet>(&rhs[(j2+p)*rhsStride+k]);
+// }
+// ptranspose(kernel);
+// for (int p = 0; p < PacketSize; ++p) {
+// pstoreu(blockB+count, cj.pconj(kernel.packet[p]));
+// count+=PacketSize;
+// }
+// }
+// }
+// for(; k<depth; k++)
+// {
+// blockB[count+0] = cj(b0[k]);
+// blockB[count+1] = cj(b1[k]);
+// blockB[count+2] = cj(b2[k]);
+// blockB[count+3] = cj(b3[k]);
+// blockB[count+4] = cj(b4[k]);
+// blockB[count+5] = cj(b5[k]);
+// blockB[count+6] = cj(b6[k]);
+// blockB[count+7] = cj(b7[k]);
+// count += 8;
+// }
+// // skip what we have after
+// if(PanelMode) count += 8 * (stride-offset-depth);
+// }
+// }
+
+ if(nr>=4)
+ {
+ for(Index j2=packet_cols8; j2<packet_cols4; j2+=4)
+ {
+ // skip what we have before
+ if(PanelMode) count += 4 * offset;
+ const LinearMapper dm0 = rhs.getLinearMapper(0, j2 + 0);
+ const LinearMapper dm1 = rhs.getLinearMapper(0, j2 + 1);
+ const LinearMapper dm2 = rhs.getLinearMapper(0, j2 + 2);
+ const LinearMapper dm3 = rhs.getLinearMapper(0, j2 + 3);
+
+ Index k=0;
+ if((PacketSize%4)==0) // TODO enable vectorized transposition for PacketSize==2 ??
+ {
+ for(; k<peeled_k; k+=PacketSize) {
+ PacketBlock<Packet,(PacketSize%4)==0?4:PacketSize> kernel;
+ kernel.packet[0] = dm0.loadPacket(k);
+ kernel.packet[1%PacketSize] = dm1.loadPacket(k);
+ kernel.packet[2%PacketSize] = dm2.loadPacket(k);
+ kernel.packet[3%PacketSize] = dm3.loadPacket(k);
+ ptranspose(kernel);
+ pstoreu(blockB+count+0*PacketSize, cj.pconj(kernel.packet[0]));
+ pstoreu(blockB+count+1*PacketSize, cj.pconj(kernel.packet[1%PacketSize]));
+ pstoreu(blockB+count+2*PacketSize, cj.pconj(kernel.packet[2%PacketSize]));
+ pstoreu(blockB+count+3*PacketSize, cj.pconj(kernel.packet[3%PacketSize]));
+ count+=4*PacketSize;
+ }
+ }
+ for(; k<depth; k++)
+ {
+ blockB[count+0] = cj(dm0(k));
+ blockB[count+1] = cj(dm1(k));
+ blockB[count+2] = cj(dm2(k));
+ blockB[count+3] = cj(dm3(k));
+ count += 4;
+ }
+ // skip what we have after
+ if(PanelMode) count += 4 * (stride-offset-depth);
+ }
+ }
+
+ // copy the remaining columns one at a time (nr==1)
+ for(Index j2=packet_cols4; j2<cols; ++j2)
+ {
+ if(PanelMode) count += offset;
+ const LinearMapper dm0 = rhs.getLinearMapper(0, j2);
+ for(Index k=0; k<depth; k++)
+ {
+ blockB[count] = cj(dm0(k));
+ count += 1;
+ }
+ if(PanelMode) count += (stride-offset-depth);
+ }
+}
+
+// this version is optimized for row major matrices
+template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
+struct gemm_pack_rhs<Scalar, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
+{
+ typedef typename packet_traits<Scalar>::type Packet;
+ typedef typename DataMapper::LinearMapper LinearMapper;
+ enum { PacketSize = packet_traits<Scalar>::size };
+ EIGEN_DONT_INLINE void operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0);
+};
+
+template<typename Scalar, typename Index, typename DataMapper, int nr, bool Conjugate, bool PanelMode>
+EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, DataMapper, nr, RowMajor, Conjugate, PanelMode>
+ ::operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset)
+{
+ EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS ROWMAJOR");
+ EIGEN_UNUSED_VARIABLE(stride);
+ EIGEN_UNUSED_VARIABLE(offset);
+ eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
+ conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
+ Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0;
+ Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0;
+ Index count = 0;
+
+// if(nr>=8)
+// {
+// for(Index j2=0; j2<packet_cols8; j2+=8)
+// {
+// // skip what we have before
+// if(PanelMode) count += 8 * offset;
+// for(Index k=0; k<depth; k++)
+// {
+// if (PacketSize==8) {
+// Packet A = ploadu<Packet>(&rhs[k*rhsStride + j2]);
+// pstoreu(blockB+count, cj.pconj(A));
+// } else if (PacketSize==4) {
+// Packet A = ploadu<Packet>(&rhs[k*rhsStride + j2]);
+// Packet B = ploadu<Packet>(&rhs[k*rhsStride + j2 + PacketSize]);
+// pstoreu(blockB+count, cj.pconj(A));
+// pstoreu(blockB+count+PacketSize, cj.pconj(B));
+// } else {
+// const Scalar* b0 = &rhs[k*rhsStride + j2];
+// blockB[count+0] = cj(b0[0]);
+// blockB[count+1] = cj(b0[1]);
+// blockB[count+2] = cj(b0[2]);
+// blockB[count+3] = cj(b0[3]);
+// blockB[count+4] = cj(b0[4]);
+// blockB[count+5] = cj(b0[5]);
+// blockB[count+6] = cj(b0[6]);
+// blockB[count+7] = cj(b0[7]);
+// }
+// count += 8;
+// }
+// // skip what we have after
+// if(PanelMode) count += 8 * (stride-offset-depth);
+// }
+// }
+ if(nr>=4)
+ {
+ for(Index j2=packet_cols8; j2<packet_cols4; j2+=4)
+ {
+ // skip what we have before
+ if(PanelMode) count += 4 * offset;
+ for(Index k=0; k<depth; k++)
+ {
+ if (PacketSize==4) {
+ Packet A = rhs.loadPacket(k, j2);
+ pstoreu(blockB+count, cj.pconj(A));
+ count += PacketSize;
+ } else {
+ const LinearMapper dm0 = rhs.getLinearMapper(k, j2);
+ blockB[count+0] = cj(dm0(0));
+ blockB[count+1] = cj(dm0(1));
+ blockB[count+2] = cj(dm0(2));
+ blockB[count+3] = cj(dm0(3));
+ count += 4;
+ }
+ }
+ // skip what we have after
+ if(PanelMode) count += 4 * (stride-offset-depth);
+ }
+ }
+ // copy the remaining columns one at a time (nr==1)
+ for(Index j2=packet_cols4; j2<cols; ++j2)
+ {
+ if(PanelMode) count += offset;
+ for(Index k=0; k<depth; k++)
+ {
+ blockB[count] = cj(rhs(k, j2));
+ count += 1;
+ }
+ if(PanelMode) count += stride-offset-depth;
+ }
+}
+
+} // end namespace internal
+
+/** \returns the currently set level 1 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
+ * \sa setCpuCacheSize */
+inline std::ptrdiff_t l1CacheSize()
+{
+ std::ptrdiff_t l1, l2, l3;
+ internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
+ return l1;
+}
+
+/** \returns the currently set level 2 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
+ * \sa setCpuCacheSize */
+inline std::ptrdiff_t l2CacheSize()
+{
+ std::ptrdiff_t l1, l2, l3;
+ internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
+ return l2;
+}
+
+/** \returns the currently set level 3 cpu cache size (in bytes) used to estimate the ideal blocking size paramete\
+rs.
+* \sa setCpuCacheSize */
+inline std::ptrdiff_t l3CacheSize()
+{
+ std::ptrdiff_t l1, l2, l3;
+ internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
+ return l3;
+}
+
+/** Set the cpu L1 and L2 cache sizes (in bytes).
+ * These values are use to adjust the size of the blocks
+ * for the algorithms working per blocks.
+ *
+ * \sa computeProductBlockingSizes */
+inline void setCpuCacheSizes(std::ptrdiff_t l1, std::ptrdiff_t l2, std::ptrdiff_t l3)
+{
+ internal::manage_caching_sizes(SetAction, &l1, &l2, &l3);
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_GENERAL_BLOCK_PANEL_H