diff options
author | Kibum Kim <kb0929.kim@samsung.com> | 2012-01-07 00:46:38 +0900 |
---|---|---|
committer | Kibum Kim <kb0929.kim@samsung.com> | 2012-01-07 00:46:38 +0900 |
commit | f5660c6460a863b19f9ef745575780e37cc192a9 (patch) | |
tree | 0b478679da32d706de7b0de546d2e4daf03b160c /cipher/primegen.c | |
parent | 06b9124a4f9d38acc78e6af686bc49a06f6354f8 (diff) | |
download | gnupg-f5660c6460a863b19f9ef745575780e37cc192a9.tar.gz gnupg-f5660c6460a863b19f9ef745575780e37cc192a9.tar.bz2 gnupg-f5660c6460a863b19f9ef745575780e37cc192a9.zip |
Diffstat (limited to 'cipher/primegen.c')
-rw-r--r-- | cipher/primegen.c | 594 |
1 files changed, 594 insertions, 0 deletions
diff --git a/cipher/primegen.c b/cipher/primegen.c new file mode 100644 index 0000000..0662d39 --- /dev/null +++ b/cipher/primegen.c @@ -0,0 +1,594 @@ +/* primegen.c - prime number generator + * Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc. + * + * This file is part of GnuPG. + * + * GnuPG is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * GnuPG is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, + * USA. + * + * *********************************************************************** + * The algorithm used to generate practically save primes is due to + * Lim and Lee as described in the CRYPTO '97 proceedings (ISBN3540633847) + * page 260. + */ + +#include <config.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <assert.h> +#include "util.h" +#include "mpi.h" +#include "cipher.h" +#include "i18n.h" + +static int no_of_small_prime_numbers; +static MPI gen_prime( unsigned nbits, int mode, int randomlevel ); +static int check_prime( MPI prime, MPI val_2 ); +static int is_prime( MPI n, int steps, int *count ); +static void m_out_of_n( char *array, int m, int n ); + +static void (*progress_cb) ( void *, int ); +static void *progress_cb_data; + +void +register_primegen_progress ( void (*cb)( void *, int), void *cb_data ) +{ + progress_cb = cb; + progress_cb_data = cb_data; +} + + +static void +progress( int c ) +{ + if ( progress_cb ) + progress_cb ( progress_cb_data, c ); + else + fputc( c, stderr ); +} + + +/**************** + * Generate a prime number (stored in secure memory) + */ +MPI +generate_secret_prime( unsigned nbits ) +{ + MPI prime; + + prime = gen_prime( nbits, 1, 2 ); + progress('\n'); + return prime; +} + +MPI +generate_public_prime( unsigned nbits ) +{ + MPI prime; + + prime = gen_prime( nbits, 0, 2 ); + progress('\n'); + return prime; +} + + +/**************** + * We do not need to use the strongest RNG because we gain no extra + * security from it - The prime number is public and we could also + * offer the factors for those who are willing to check that it is + * indeed a strong prime. + * + * mode 0: Standard + * 1: Make sure that at least one factor is of size qbits. + */ +MPI +generate_elg_prime( int mode, unsigned pbits, unsigned qbits, + MPI g, MPI **ret_factors ) +{ + int n; /* number of factors */ + int m; /* number of primes in pool */ + unsigned fbits; /* length of prime factors */ + MPI *factors; /* current factors */ + MPI *pool; /* pool of primes */ + MPI q; /* first prime factor (variable)*/ + MPI prime; /* prime test value */ + MPI q_factor; /* used for mode 1 */ + byte *perms = NULL; + int i, j; + int count1, count2; + unsigned nprime; + unsigned req_qbits = qbits; /* the requested q bits size */ + MPI val_2 = mpi_alloc_set_ui( 2 ); + + /* find number of needed prime factors */ + for(n=1; (pbits - qbits - 1) / n >= qbits; n++ ) + ; + n--; + if( !n || (mode==1 && n < 2) ) + log_fatal(_("can't gen prime with pbits=%u qbits=%u\n"), + pbits, qbits ); + if( mode == 1 ) { + n--; + fbits = (pbits - 2*req_qbits -1) / n; + qbits = pbits - req_qbits - n*fbits; + } + else { + fbits = (pbits - req_qbits -1) / n; + qbits = pbits - n*fbits; + } + if( DBG_CIPHER ) + log_debug("gen prime: pbits=%u qbits=%u fbits=%u/%u n=%d\n", + pbits, req_qbits, qbits, fbits, n ); + prime = mpi_alloc( (pbits + BITS_PER_MPI_LIMB - 1) / BITS_PER_MPI_LIMB ); + q = gen_prime( qbits, 0, 0 ); + q_factor = mode==1? gen_prime( req_qbits, 0, 0 ) : NULL; + + /* allocate an array to hold the factors + 2 for later usage */ + factors = xmalloc_clear( (n+2) * sizeof *factors ); + + /* make a pool of 3n+5 primes (this is an arbitrary value) */ + m = n*3+5; + if( mode == 1 ) + m += 5; /* need some more for DSA */ + if( m < 25 ) + m = 25; + pool = xmalloc_clear( m * sizeof *pool ); + + /* permutate over the pool of primes */ + count1=count2=0; + do { + next_try: + if( !perms ) { + /* allocate new primes */ + for(i=0; i < m; i++ ) { + mpi_free(pool[i]); + pool[i] = NULL; + } + /* init m_out_of_n() */ + perms = xmalloc_clear( m ); + for(i=0; i < n; i++ ) { + perms[i] = 1; + pool[i] = gen_prime( fbits, 0, 0 ); + factors[i] = pool[i]; + } + } + else { + m_out_of_n( perms, n, m ); + for(i=j=0; i < m && j < n ; i++ ) + if( perms[i] ) { + if( !pool[i] ) + pool[i] = gen_prime( fbits, 0, 0 ); + factors[j++] = pool[i]; + } + if( i == n ) { + xfree(perms); perms = NULL; + progress('!'); + goto next_try; /* allocate new primes */ + } + } + + mpi_set( prime, q ); + mpi_mul_ui( prime, prime, 2 ); + if( mode == 1 ) + mpi_mul( prime, prime, q_factor ); + for(i=0; i < n; i++ ) + mpi_mul( prime, prime, factors[i] ); + mpi_add_ui( prime, prime, 1 ); + nprime = mpi_get_nbits(prime); + if( nprime < pbits ) { + if( ++count1 > 20 ) { + count1 = 0; + qbits++; + progress('>'); + mpi_free (q); + q = gen_prime( qbits, 0, 0 ); + goto next_try; + } + } + else + count1 = 0; + if( nprime > pbits ) { + if( ++count2 > 20 ) { + count2 = 0; + qbits--; + progress('<'); + mpi_free (q); + q = gen_prime( qbits, 0, 0 ); + goto next_try; + } + } + else + count2 = 0; + } while( !(nprime == pbits && check_prime( prime, val_2 )) ); + + if( DBG_CIPHER ) { + progress('\n'); + log_mpidump( "prime : ", prime ); + log_mpidump( "factor q: ", q ); + if( mode == 1 ) + log_mpidump( "factor q0: ", q_factor ); + for(i=0; i < n; i++ ) + log_mpidump( "factor pi: ", factors[i] ); + log_debug("bit sizes: prime=%u, q=%u", mpi_get_nbits(prime), mpi_get_nbits(q) ); + if( mode == 1 ) + fprintf(stderr, ", q0=%u", mpi_get_nbits(q_factor) ); + for(i=0; i < n; i++ ) + fprintf(stderr, ", p%d=%u", i, mpi_get_nbits(factors[i]) ); + progress('\n'); + } + + if( ret_factors ) { /* caller wants the factors */ + *ret_factors = xmalloc_clear( (n+2) * sizeof **ret_factors); + i = 0; + if( mode == 1 ) { + (*ret_factors)[i++] = mpi_copy( q_factor ); + for(; i <= n; i++ ) + (*ret_factors)[i] = mpi_copy( factors[i-1] ); + } + else { + for(; i < n; i++ ) + (*ret_factors)[i] = mpi_copy( factors[i] ); + } + } + + if( g ) { /* create a generator (start with 3)*/ + MPI tmp = mpi_alloc( mpi_get_nlimbs(prime) ); + MPI b = mpi_alloc( mpi_get_nlimbs(prime) ); + MPI pmin1 = mpi_alloc( mpi_get_nlimbs(prime) ); + + if( mode == 1 ) + BUG(); /* not yet implemented */ + factors[n] = q; + factors[n+1] = mpi_alloc_set_ui(2); + mpi_sub_ui( pmin1, prime, 1 ); + mpi_set_ui(g,2); + do { + mpi_add_ui(g, g, 1); + if( DBG_CIPHER ) { + log_debug("checking g: "); + mpi_print( stderr, g, 1 ); + } + else + progress('^'); + for(i=0; i < n+2; i++ ) { + /*fputc('~', stderr);*/ + mpi_fdiv_q(tmp, pmin1, factors[i] ); + /* (no mpi_pow(), but it is okay to use this with mod prime) */ + mpi_powm(b, g, tmp, prime ); + if( !mpi_cmp_ui(b, 1) ) + break; + } + if( DBG_CIPHER ) + progress('\n'); + } while( i < n+2 ); + mpi_free(factors[n+1]); + mpi_free(tmp); + mpi_free(b); + mpi_free(pmin1); + } + if( !DBG_CIPHER ) + progress('\n'); + + xfree( factors ); /* (factors are shallow copies) */ + for(i=0; i < m; i++ ) + mpi_free( pool[i] ); + xfree( pool ); + xfree(perms); + mpi_free(val_2); + mpi_free(q); + return prime; +} + + + +static MPI +gen_prime( unsigned int nbits, int secret, int randomlevel ) +{ + unsigned nlimbs; + MPI prime, ptest, pminus1, val_2, val_3, result; + int i; + unsigned x, step; + int count1, count2; + int *mods; + + if( 0 && DBG_CIPHER ) + log_debug("generate a prime of %u bits ", nbits ); + + if (nbits < 16) + { + log_error (_("can't generate a prime with less than %d bits\n"), 16); + exit (2); + } + + if( !no_of_small_prime_numbers ) { + for(i=0; small_prime_numbers[i]; i++ ) + no_of_small_prime_numbers++; + } + mods = xmalloc( no_of_small_prime_numbers * sizeof *mods ); + /* make nbits fit into MPI implementation */ + nlimbs = (nbits + BITS_PER_MPI_LIMB - 1) / BITS_PER_MPI_LIMB; + val_2 = mpi_alloc_set_ui( 2 ); + val_3 = mpi_alloc_set_ui( 3); + prime = secret? mpi_alloc_secure( nlimbs ): mpi_alloc( nlimbs ); + result = mpi_alloc_like( prime ); + pminus1= mpi_alloc_like( prime ); + ptest = mpi_alloc_like( prime ); + count1 = count2 = 0; + for(;;) { /* try forvever */ + int dotcount=0; + + /* generate a random number */ + { char *p = get_random_bits( nbits, randomlevel, secret ); + mpi_set_buffer( prime, p, (nbits+7)/8, 0 ); + xfree(p); + } + + /* Set high order bit to 1, set low order bit to 0. + If we are generating a secret prime we are most probably + doing that for RSA, to make sure that the modulus does have + the requested keysize we set the 2 high order bits */ + mpi_set_highbit( prime, nbits-1 ); + if (secret) + mpi_set_bit (prime, nbits-2); + mpi_set_bit( prime, 0 ); + + /* calculate all remainders */ + for(i=0; (x = small_prime_numbers[i]); i++ ) + mods[i] = mpi_fdiv_r_ui(NULL, prime, x); + + /* now try some primes starting with prime */ + for(step=0; step < 20000; step += 2 ) { + /* check against all the small primes we have in mods */ + count1++; + for(i=0; (x = small_prime_numbers[i]); i++ ) { + while( mods[i] + step >= x ) + mods[i] -= x; + if( !(mods[i] + step) ) + break; + } + if( x ) + continue; /* found a multiple of an already known prime */ + + mpi_add_ui( ptest, prime, step ); + + /* do a faster Fermat test */ + count2++; + mpi_sub_ui( pminus1, ptest, 1); + mpi_powm( result, val_2, pminus1, ptest ); + if( !mpi_cmp_ui( result, 1 ) ) { /* not composite */ + /* perform stronger tests */ + if( is_prime(ptest, 5, &count2 ) ) { + if( !mpi_test_bit( ptest, nbits-1 ) ) { + progress('\n'); + log_debug("overflow in prime generation\n"); + break; /* step loop, continue with a new prime */ + } + + mpi_free(val_2); + mpi_free(val_3); + mpi_free(result); + mpi_free(pminus1); + mpi_free(prime); + xfree(mods); + return ptest; + } + } + if( ++dotcount == 10 ) { + progress('.'); + dotcount = 0; + } + } + progress(':'); /* restart with a new random value */ + } +} + +/**************** + * Returns: true if this may be a prime + */ +static int +check_prime( MPI prime, MPI val_2 ) +{ + int i; + unsigned x; + int count=0; + + /* check against small primes */ + for(i=0; (x = small_prime_numbers[i]); i++ ) { + if( mpi_divisible_ui( prime, x ) ) + return 0; + } + + /* a quick fermat test */ + { + MPI result = mpi_alloc_like( prime ); + MPI pminus1 = mpi_alloc_like( prime ); + mpi_sub_ui( pminus1, prime, 1); + mpi_powm( result, val_2, pminus1, prime ); + mpi_free( pminus1 ); + if( mpi_cmp_ui( result, 1 ) ) { /* if composite */ + mpi_free( result ); + progress('.'); + return 0; + } + mpi_free( result ); + } + + /* perform stronger tests */ + if( is_prime(prime, 5, &count ) ) + return 1; /* is probably a prime */ + progress('.'); + return 0; +} + + +/**************** + * Return true if n is probably a prime + */ +static int +is_prime( MPI n, int steps, int *count ) +{ + MPI x = mpi_alloc( mpi_get_nlimbs( n ) ); + MPI y = mpi_alloc( mpi_get_nlimbs( n ) ); + MPI z = mpi_alloc( mpi_get_nlimbs( n ) ); + MPI nminus1 = mpi_alloc( mpi_get_nlimbs( n ) ); + MPI a2 = mpi_alloc_set_ui( 2 ); + MPI q; + unsigned i, j, k; + int rc = 0; + unsigned nbits = mpi_get_nbits( n ); + + mpi_sub_ui( nminus1, n, 1 ); + + /* find q and k, so that n = 1 + 2^k * q */ + q = mpi_copy( nminus1 ); + k = mpi_trailing_zeros( q ); + mpi_tdiv_q_2exp(q, q, k); + + for(i=0 ; i < steps; i++ ) { + ++*count; + if( !i ) { + mpi_set_ui( x, 2 ); + } + else { + char *p; + + p = get_random_bits( nbits, 0, 0 ); + mpi_set_buffer( x, p, (nbits+7)/8, 0 ); + xfree(p); + + /* Make sure that the number is smaller than the prime + * and keep the randomness of the high bit. */ + if( mpi_test_bit( x, nbits-2 ) ) { + mpi_set_highbit( x, nbits-2 ); /* Clear all higher bits */ + } + else { + mpi_set_highbit( x, nbits-2 ); + mpi_clear_bit( x, nbits-2 ); + } + assert( mpi_cmp( x, nminus1 ) < 0 && mpi_cmp_ui( x, 1 ) > 0 ); + } + mpi_powm( y, x, q, n); + if( mpi_cmp_ui(y, 1) && mpi_cmp( y, nminus1 ) ) { + for( j=1; j < k && mpi_cmp( y, nminus1 ); j++ ) { + mpi_powm(y, y, a2, n); + if( !mpi_cmp_ui( y, 1 ) ) + goto leave; /* not a prime */ + } + if( mpi_cmp( y, nminus1 ) ) + goto leave; /* not a prime */ + } + progress('+'); + } + rc = 1; /* may be a prime */ + + leave: + mpi_free( x ); + mpi_free( y ); + mpi_free( z ); + mpi_free( nminus1 ); + mpi_free( q ); + mpi_free (a2); + + return rc; +} + + +static void +m_out_of_n( char *array, int m, int n ) +{ + int i=0, i1=0, j=0, jp=0, j1=0, k1=0, k2=0; + + if( !m || m >= n ) + return; + + if( m == 1 ) { /* special case */ + for(i=0; i < n; i++ ) + if( array[i] ) { + array[i++] = 0; + if( i >= n ) + i = 0; + array[i] = 1; + return; + } + BUG(); + } + + for(j=1; j < n; j++ ) { + if( array[n-1] == array[n-j-1] ) + continue; + j1 = j; + break; + } + + if( m & 1 ) { /* m is odd */ + if( array[n-1] ) { + if( j1 & 1 ) { + k1 = n - j1; + k2 = k1+2; + if( k2 > n ) + k2 = n; + goto leave; + } + goto scan; + } + k2 = n - j1 - 1; + if( k2 == 0 ) { + k1 = i; + k2 = n - j1; + } + else if( array[k2] && array[k2-1] ) + k1 = n; + else + k1 = k2 + 1; + } + else { /* m is even */ + if( !array[n-1] ) { + k1 = n - j1; + k2 = k1 + 1; + goto leave; + } + + if( !(j1 & 1) ) { + k1 = n - j1; + k2 = k1+2; + if( k2 > n ) + k2 = n; + goto leave; + } + scan: + jp = n - j1 - 1; + for(i=1; i <= jp; i++ ) { + i1 = jp + 2 - i; + if( array[i1-1] ) { + if( array[i1-2] ) { + k1 = i1 - 1; + k2 = n - j1; + } + else { + k1 = i1 - 1; + k2 = n + 1 - j1; + } + goto leave; + } + } + k1 = 1; + k2 = n + 1 - m; + } + leave: + array[k1-1] = !array[k1-1]; + array[k2-1] = !array[k2-1]; +} + |