diff options
author | Kibum Kim <kb0929.kim@samsung.com> | 2012-01-07 00:46:38 +0900 |
---|---|---|
committer | Kibum Kim <kb0929.kim@samsung.com> | 2012-01-07 00:46:38 +0900 |
commit | f5660c6460a863b19f9ef745575780e37cc192a9 (patch) | |
tree | 0b478679da32d706de7b0de546d2e4daf03b160c /cipher/dsa.c | |
parent | 06b9124a4f9d38acc78e6af686bc49a06f6354f8 (diff) | |
download | gnupg-f5660c6460a863b19f9ef745575780e37cc192a9.tar.gz gnupg-f5660c6460a863b19f9ef745575780e37cc192a9.tar.bz2 gnupg-f5660c6460a863b19f9ef745575780e37cc192a9.zip |
Diffstat (limited to 'cipher/dsa.c')
-rw-r--r-- | cipher/dsa.c | 496 |
1 files changed, 496 insertions, 0 deletions
diff --git a/cipher/dsa.c b/cipher/dsa.c new file mode 100644 index 0000000..9745656 --- /dev/null +++ b/cipher/dsa.c @@ -0,0 +1,496 @@ +/* dsa.c - DSA signature algorithm + * Copyright (C) 1998, 1999, 2000, 2003, 2006 Free Software Foundation, Inc. + * + * This file is part of GnuPG. + * + * GnuPG is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * GnuPG is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, + * USA. + */ + +#include <config.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <assert.h> +#include "util.h" +#include "mpi.h" +#include "cipher.h" +#include "dsa.h" + +typedef struct { + MPI p; /* prime */ + MPI q; /* group order */ + MPI g; /* group generator */ + MPI y; /* g^x mod p */ +} DSA_public_key; + + +typedef struct { + MPI p; /* prime */ + MPI q; /* group order */ + MPI g; /* group generator */ + MPI y; /* g^x mod p */ + MPI x; /* secret exponent */ +} DSA_secret_key; + + +static MPI gen_k( MPI q ); +static void test_keys( DSA_secret_key *sk, unsigned qbits ); +static int check_secret_key( DSA_secret_key *sk ); +static void generate( DSA_secret_key *sk, unsigned nbits, unsigned qbits, + MPI **ret_factors ); +static void sign(MPI r, MPI s, MPI input, DSA_secret_key *skey); +static int verify(MPI r, MPI s, MPI input, DSA_public_key *pkey); + + +static void (*progress_cb) ( void *, int ); +static void *progress_cb_data; + +void +register_pk_dsa_progress ( void (*cb)( void *, int), void *cb_data ) +{ + progress_cb = cb; + progress_cb_data = cb_data; +} + + +static void +progress( int c ) +{ + if ( progress_cb ) + progress_cb ( progress_cb_data, c ); + else + fputc( c, stderr ); +} + + + +/**************** + * Generate a random secret exponent k less than q + */ +static MPI +gen_k( MPI q ) +{ + MPI k = mpi_alloc_secure( mpi_get_nlimbs(q) ); + unsigned int nbits = mpi_get_nbits(q); + unsigned int nbytes = (nbits+7)/8; + char *rndbuf = NULL; + + if( DBG_CIPHER ) + log_debug("choosing a random k "); + for(;;) { + if( DBG_CIPHER ) + progress('.'); + + if( !rndbuf || nbits < 32 ) { + xfree(rndbuf); + rndbuf = get_random_bits( nbits, 1, 1 ); + } + else { /* change only some of the higher bits */ + /* we could imporove this by directly requesting more memory + * at the first call to get_random_bits() and use this the here + * maybe it is easier to do this directly in random.c */ + char *pp = get_random_bits( 32, 1, 1 ); + memcpy( rndbuf,pp, 4 ); + xfree(pp); + } + mpi_set_buffer( k, rndbuf, nbytes, 0 ); + if( mpi_test_bit( k, nbits-1 ) ) + mpi_set_highbit( k, nbits-1 ); + else { + mpi_set_highbit( k, nbits-1 ); + mpi_clear_bit( k, nbits-1 ); + } + + if( !(mpi_cmp( k, q ) < 0) ) { /* check: k < q */ + if( DBG_CIPHER ) + progress('+'); + continue; /* no */ + } + if( !(mpi_cmp_ui( k, 0 ) > 0) ) { /* check: k > 0 */ + if( DBG_CIPHER ) + progress('-'); + continue; /* no */ + } + break; /* okay */ + } + xfree(rndbuf); + if( DBG_CIPHER ) + progress('\n'); + + return k; +} + + +static void +test_keys( DSA_secret_key *sk, unsigned qbits ) +{ + DSA_public_key pk; + MPI test = mpi_alloc( qbits / BITS_PER_MPI_LIMB ); + MPI out1_a = mpi_alloc( qbits / BITS_PER_MPI_LIMB ); + MPI out1_b = mpi_alloc( qbits / BITS_PER_MPI_LIMB ); + + pk.p = sk->p; + pk.q = sk->q; + pk.g = sk->g; + pk.y = sk->y; + /*mpi_set_bytes( test, qbits, get_random_byte, 0 );*/ + { char *p = get_random_bits( qbits, 0, 0 ); + mpi_set_buffer( test, p, (qbits+7)/8, 0 ); + xfree(p); + } + + sign( out1_a, out1_b, test, sk ); + if( !verify( out1_a, out1_b, test, &pk ) ) + log_fatal("DSA:: sign, verify failed\n"); + + mpi_free( test ); + mpi_free( out1_a ); + mpi_free( out1_b ); +} + + + +/**************** + * Generate a DSA key pair with a key of size NBITS + * Returns: 2 structures filled with all needed values + * and an array with the n-1 factors of (p-1) + */ +static void +generate( DSA_secret_key *sk, unsigned nbits, unsigned qbits, + MPI **ret_factors ) +{ + MPI p; /* the prime */ + MPI q; /* the prime factor */ + MPI g; /* the generator */ + MPI y; /* g^x mod p */ + MPI x; /* the secret exponent */ + MPI h, e; /* helper */ + byte *rndbuf; + + assert( nbits >= 512 ); + assert( qbits >= 160 ); + assert( qbits %8 == 0 ); + + p = generate_elg_prime( 1, nbits, qbits, NULL, ret_factors ); + /* get q out of factors */ + q = mpi_copy((*ret_factors)[0]); + if( mpi_get_nbits(q) != qbits ) + BUG(); + + /* find a generator g (h and e are helpers)*/ + /* e = (p-1)/q */ + e = mpi_alloc( mpi_get_nlimbs(p) ); + mpi_sub_ui( e, p, 1 ); + mpi_fdiv_q( e, e, q ); + g = mpi_alloc( mpi_get_nlimbs(p) ); + h = mpi_alloc_set_ui( 1 ); /* we start with 2 */ + do { + mpi_add_ui( h, h, 1 ); + /* g = h^e mod p */ + mpi_powm( g, h, e, p ); + } while( !mpi_cmp_ui( g, 1 ) ); /* continue until g != 1 */ + + /* select a random number which has these properties: + * 0 < x < q-1 + * This must be a very good random number because this + * is the secret part. */ + if( DBG_CIPHER ) + log_debug("choosing a random x "); + x = mpi_alloc_secure( mpi_get_nlimbs(q) ); + mpi_sub_ui( h, q, 1 ); /* put q-1 into h */ + rndbuf = NULL; + do { + if( DBG_CIPHER ) + progress('.'); + if( !rndbuf ) + rndbuf = get_random_bits( qbits, 2, 1 ); + else { /* change only some of the higher bits (= 2 bytes)*/ + char *r = get_random_bits( 16, 2, 1 ); + memcpy(rndbuf, r, 16/8 ); + xfree(r); + } + mpi_set_buffer( x, rndbuf, (qbits+7)/8, 0 ); + mpi_clear_highbit( x, qbits+1 ); + } while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, h )<0 ) ); + xfree(rndbuf); + mpi_free( e ); + mpi_free( h ); + + /* y = g^x mod p */ + y = mpi_alloc( mpi_get_nlimbs(p) ); + mpi_powm( y, g, x, p ); + + if( DBG_CIPHER ) { + progress('\n'); + log_mpidump("dsa p= ", p ); + log_mpidump("dsa q= ", q ); + log_mpidump("dsa g= ", g ); + log_mpidump("dsa y= ", y ); + log_mpidump("dsa x= ", x ); + } + + /* copy the stuff to the key structures */ + sk->p = p; + sk->q = q; + sk->g = g; + sk->y = y; + sk->x = x; + + /* now we can test our keys (this should never fail!) */ + test_keys( sk, qbits ); +} + + + +/**************** + * Test whether the secret key is valid. + * Returns: if this is a valid key. + */ +static int +check_secret_key( DSA_secret_key *sk ) +{ + int rc; + MPI y = mpi_alloc( mpi_get_nlimbs(sk->y) ); + + mpi_powm( y, sk->g, sk->x, sk->p ); + rc = !mpi_cmp( y, sk->y ); + mpi_free( y ); + return rc; +} + + + +/**************** + * Make a DSA signature from HASH and put it into r and s. + * + * Without generating the k this function runs in + * about 26ms on a 300 Mhz Mobile Pentium + */ + +static void +sign(MPI r, MPI s, MPI hash, DSA_secret_key *skey ) +{ + MPI k; + MPI kinv; + MPI tmp; + + /* select a random k with 0 < k < q */ + k = gen_k( skey->q ); + + /* r = (a^k mod p) mod q */ + mpi_powm( r, skey->g, k, skey->p ); + mpi_fdiv_r( r, r, skey->q ); + + /* kinv = k^(-1) mod q */ + kinv = mpi_alloc( mpi_get_nlimbs(k) ); + mpi_invm(kinv, k, skey->q ); + + /* s = (kinv * ( hash + x * r)) mod q */ + tmp = mpi_alloc( mpi_get_nlimbs(skey->p) ); + mpi_mul( tmp, skey->x, r ); + mpi_add( tmp, tmp, hash ); + mpi_mulm( s , kinv, tmp, skey->q ); + + mpi_free(k); + mpi_free(kinv); + mpi_free(tmp); +} + + +/**************** + * Returns true if the signature composed from R and S is valid. + * + * Without the checks this function runs in + * about 31ms on a 300 Mhz Mobile Pentium + */ +static int +verify(MPI r, MPI s, MPI hash, DSA_public_key *pkey ) +{ + int rc; + MPI w, u1, u2, v; + MPI base[3]; + MPI exponent[3]; + + + if( !(mpi_cmp_ui( r, 0 ) > 0 && mpi_cmp( r, pkey->q ) < 0) ) + return 0; /* assertion 0 < r < q failed */ + if( !(mpi_cmp_ui( s, 0 ) > 0 && mpi_cmp( s, pkey->q ) < 0) ) + return 0; /* assertion 0 < s < q failed */ + + w = mpi_alloc( mpi_get_nlimbs(pkey->q) ); + u1 = mpi_alloc( mpi_get_nlimbs(pkey->q) ); + u2 = mpi_alloc( mpi_get_nlimbs(pkey->q) ); + v = mpi_alloc( mpi_get_nlimbs(pkey->p) ); + + /* w = s^(-1) mod q */ + mpi_invm( w, s, pkey->q ); + + /* u1 = (hash * w) mod q */ + mpi_mulm( u1, hash, w, pkey->q ); + + /* u2 = r * w mod q */ + mpi_mulm( u2, r, w, pkey->q ); + + /* v = g^u1 * y^u2 mod p mod q */ + base[0] = pkey->g; exponent[0] = u1; + base[1] = pkey->y; exponent[1] = u2; + base[2] = NULL; exponent[2] = NULL; + mpi_mulpowm( v, base, exponent, pkey->p ); + mpi_fdiv_r( v, v, pkey->q ); + + rc = !mpi_cmp( v, r ); + + mpi_free(w); + mpi_free(u1); + mpi_free(u2); + mpi_free(v); + return rc; +} + + +/********************************************* + ************** interface ****************** + *********************************************/ + +/* DSA2 has a variable-sized q, which adds an extra parameter to the + pubkey generation. I'm doing this as a different function as it is + only called from one place and is thus cleaner than revamping the + pubkey_generate interface to carry an extra parameter which would + be meaningless for all algorithms other than DSA. */ + +int +dsa2_generate( int algo, unsigned nbits, unsigned qbits, + MPI *skey, MPI **retfactors ) +{ + DSA_secret_key sk; + + if( algo != PUBKEY_ALGO_DSA ) + return G10ERR_PUBKEY_ALGO; + + generate( &sk, nbits, qbits, retfactors ); + skey[0] = sk.p; + skey[1] = sk.q; + skey[2] = sk.g; + skey[3] = sk.y; + skey[4] = sk.x; + return 0; +} + + +int +dsa_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors ) +{ + return dsa2_generate(algo,nbits,160,skey,retfactors); +} + + +int +dsa_check_secret_key( int algo, MPI *skey ) +{ + DSA_secret_key sk; + + if( algo != PUBKEY_ALGO_DSA ) + return G10ERR_PUBKEY_ALGO; + if( !skey[0] || !skey[1] || !skey[2] || !skey[3] || !skey[4] ) + return G10ERR_BAD_MPI; + + sk.p = skey[0]; + sk.q = skey[1]; + sk.g = skey[2]; + sk.y = skey[3]; + sk.x = skey[4]; + if( !check_secret_key( &sk ) ) + return G10ERR_BAD_SECKEY; + + return 0; +} + + + +int +dsa_sign( int algo, MPI *resarr, MPI data, MPI *skey ) +{ + DSA_secret_key sk; + + if( algo != PUBKEY_ALGO_DSA ) + return G10ERR_PUBKEY_ALGO; + if( !data || !skey[0] || !skey[1] || !skey[2] || !skey[3] || !skey[4] ) + return G10ERR_BAD_MPI; + + sk.p = skey[0]; + sk.q = skey[1]; + sk.g = skey[2]; + sk.y = skey[3]; + sk.x = skey[4]; + resarr[0] = mpi_alloc( mpi_get_nlimbs( sk.p ) ); + resarr[1] = mpi_alloc( mpi_get_nlimbs( sk.p ) ); + sign( resarr[0], resarr[1], data, &sk ); + return 0; +} + +int +dsa_verify( int algo, MPI hash, MPI *data, MPI *pkey ) +{ + DSA_public_key pk; + + if( algo != PUBKEY_ALGO_DSA ) + return G10ERR_PUBKEY_ALGO; + if( !data[0] || !data[1] || !hash + || !pkey[0] || !pkey[1] || !pkey[2] || !pkey[3] ) + return G10ERR_BAD_MPI; + + pk.p = pkey[0]; + pk.q = pkey[1]; + pk.g = pkey[2]; + pk.y = pkey[3]; + if( !verify( data[0], data[1], hash, &pk ) ) + return G10ERR_BAD_SIGN; + return 0; +} + + + +unsigned +dsa_get_nbits( int algo, MPI *pkey ) +{ + if( algo != PUBKEY_ALGO_DSA ) + return 0; + return mpi_get_nbits( pkey[0] ); +} + + +/**************** + * Return some information about the algorithm. We need algo here to + * distinguish different flavors of the algorithm. + * Returns: A pointer to string describing the algorithm or NULL if + * the ALGO is invalid. + * Usage: Bit 0 set : allows signing + * 1 set : allows encryption + */ +const char * +dsa_get_info( int algo, int *npkey, int *nskey, int *nenc, int *nsig, + int *use ) +{ + *npkey = 4; + *nskey = 5; + *nenc = 0; + *nsig = 2; + + switch( algo ) { + case PUBKEY_ALGO_DSA: *use = PUBKEY_USAGE_SIG; return "DSA"; + default: *use = 0; return NULL; + } +} |