summaryrefslogtreecommitdiff
path: root/gst/deinterlace/tvtime/sse.h
blob: 2e00ee0c4a73152ad9f2c1846b4b2d5c6ed01b7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
/*	sse.h

	Streaming SIMD Extenstions (a.k.a. Katmai New Instructions)
	GCC interface library for IA32.

	To use this library, simply include this header file
	and compile with GCC.  You MUST have inlining enabled
	in order for sse_ok() to work; this can be done by
	simply using -O on the GCC command line.

	Compiling with -DSSE_TRACE will cause detailed trace
	output to be sent to stderr for each sse operation.
	This adds lots of code, and obviously slows execution to
	a crawl, but can be very useful for debugging.

	THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
	EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
	LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
	AND FITNESS FOR ANY PARTICULAR PURPOSE.

	1999 by R. Fisher
	Based on libmmx by H. Dietz and R. Fisher

 Notes:
	This is still extremely alpha.
	Because this library depends on an assembler which understands the
	 SSE opcodes, you probably won't be able to use this yet.
	For now, do not use TRACE versions.  These both make use
	 of the MMX registers, not the SSE registers.  This will be resolved
	 at a later date.
 ToDo:
	Rewrite TRACE macros
	Major Debugging Work
*/

#ifndef _SSE_H
#define _SSE_H



/*	The type of an value that fits in an SSE register
	(note that long long constant values MUST be suffixed
	 by LL and unsigned long long values by ULL, lest
	 they be truncated by the compiler)
*/
typedef	union {
	float			sf[4];	/* Single-precision (32-bit) value */
} __attribute__ ((aligned (16))) sse_t;	/* On a 16 byte (128-bit) boundary */


#if 0
/*	Function to test if multimedia instructions are supported...
*/
inline extern int
mm_support(void)
{
	/* Returns 1 if MMX instructions are supported,
	   3 if Cyrix MMX and Extended MMX instructions are supported
	   5 if AMD MMX and 3DNow! instructions are supported
	   9 if MMX and SSE instructions are supported
	   0 if hardware does not support any of these
	*/
	register int rval = 0;

	__asm__ __volatile__ (
		/* See if CPUID instruction is supported ... */
		/* ... Get copies of EFLAGS into eax and ecx */
		"pushf\n\t"
		"popl %%eax\n\t"
		"movl %%eax, %%ecx\n\t"

		/* ... Toggle the ID bit in one copy and store */
		/*     to the EFLAGS reg */
		"xorl $0x200000, %%eax\n\t"
		"push %%eax\n\t"
		"popf\n\t"

		/* ... Get the (hopefully modified) EFLAGS */
		"pushf\n\t"
		"popl %%eax\n\t"

		/* ... Compare and test result */
		"xorl %%eax, %%ecx\n\t"
		"testl $0x200000, %%ecx\n\t"
		"jz NotSupported1\n\t"		/* CPUID not supported */


		/* Get standard CPUID information, and
		       go to a specific vendor section */
		"movl $0, %%eax\n\t"
		"cpuid\n\t"

		/* Check for Intel */
		"cmpl $0x756e6547, %%ebx\n\t"
		"jne TryAMD\n\t"
		"cmpl $0x49656e69, %%edx\n\t"
		"jne TryAMD\n\t"
		"cmpl $0x6c65746e, %%ecx\n"
		"jne TryAMD\n\t"
		"jmp Intel\n\t"

		/* Check for AMD */
		"\nTryAMD:\n\t"
		"cmpl $0x68747541, %%ebx\n\t"
		"jne TryCyrix\n\t"
		"cmpl $0x69746e65, %%edx\n\t"
		"jne TryCyrix\n\t"
		"cmpl $0x444d4163, %%ecx\n"
		"jne TryCyrix\n\t"
		"jmp AMD\n\t"

		/* Check for Cyrix */
		"\nTryCyrix:\n\t"
		"cmpl $0x69727943, %%ebx\n\t"
		"jne NotSupported2\n\t"
		"cmpl $0x736e4978, %%edx\n\t"
		"jne NotSupported3\n\t"
		"cmpl $0x64616574, %%ecx\n\t"
		"jne NotSupported4\n\t"
		/* Drop through to Cyrix... */


		/* Cyrix Section */
		/* See if extended CPUID level 80000001 is supported */
		/* The value of CPUID/80000001 for the 6x86MX is undefined
		   according to the Cyrix CPU Detection Guide (Preliminary
		   Rev. 1.01 table 1), so we'll check the value of eax for
		   CPUID/0 to see if standard CPUID level 2 is supported.
		   According to the table, the only CPU which supports level
		   2 is also the only one which supports extended CPUID levels.
		*/
		"cmpl $0x2, %%eax\n\t"
		"jne MMXtest\n\t"	/* Use standard CPUID instead */

		/* Extended CPUID supported (in theory), so get extended
		   features */
		"movl $0x80000001, %%eax\n\t"
		"cpuid\n\t"
		"testl $0x00800000, %%eax\n\t"	/* Test for MMX */
		"jz NotSupported5\n\t"		/* MMX not supported */
		"testl $0x01000000, %%eax\n\t"	/* Test for Ext'd MMX */
		"jnz EMMXSupported\n\t"
		"movl $1, %0:\n\n\t"		/* MMX Supported */
		"jmp Return\n\n"
		"EMMXSupported:\n\t"
		"movl $3, %0:\n\n\t"		/* EMMX and MMX Supported */
		"jmp Return\n\t"


		/* AMD Section */
		"AMD:\n\t"

		/* See if extended CPUID is supported */
		"movl $0x80000000, %%eax\n\t"
		"cpuid\n\t"
		"cmpl $0x80000000, %%eax\n\t"
		"jl MMXtest\n\t"	/* Use standard CPUID instead */

		/* Extended CPUID supported, so get extended features */
		"movl $0x80000001, %%eax\n\t"
		"cpuid\n\t"
		"testl $0x00800000, %%edx\n\t"	/* Test for MMX */
		"jz NotSupported6\n\t"		/* MMX not supported */
		"testl $0x80000000, %%edx\n\t"	/* Test for 3DNow! */
		"jnz ThreeDNowSupported\n\t"
		"movl $1, %0:\n\n\t"		/* MMX Supported */
		"jmp Return\n\n"
		"ThreeDNowSupported:\n\t"
		"movl $5, %0:\n\n\t"		/* 3DNow! and MMX Supported */
		"jmp Return\n\t"


		/* Intel Section */
		"Intel:\n\t"

		/* Check for SSE */
		"SSEtest:\n\t"
		"movl $1, %%eax\n\t"
		"cpuid\n\t"
		"testl $0x02000000, %%edx\n\t"	/* Test for SSE */
		"jz MMXtest\n\t"		/* SSE Not supported */
		"movl $9, %0:\n\n\t"		/* SSE Supported */
		"jmp Return\n\t"

		/* Check for MMX */
		"MMXtest:\n\t"
		"movl $1, %%eax\n\t"
		"cpuid\n\t"
		"testl $0x00800000, %%edx\n\t"	/* Test for MMX */
		"jz NotSupported7\n\t"		/* MMX Not supported */
		"movl $1, %0:\n\n\t"		/* MMX Supported */
		"jmp Return\n\t"

		/* Nothing supported */
		"\nNotSupported1:\n\t"
		"#movl $101, %0:\n\n\t"
		"\nNotSupported2:\n\t"
		"#movl $102, %0:\n\n\t"
		"\nNotSupported3:\n\t"
		"#movl $103, %0:\n\n\t"
		"\nNotSupported4:\n\t"
		"#movl $104, %0:\n\n\t"
		"\nNotSupported5:\n\t"
		"#movl $105, %0:\n\n\t"
		"\nNotSupported6:\n\t"
		"#movl $106, %0:\n\n\t"
		"\nNotSupported7:\n\t"
		"#movl $107, %0:\n\n\t"
		"movl $0, %0:\n\n\t"

		"Return:\n\t"
		: "=a" (rval)
		: /* no input */
		: "eax", "ebx", "ecx", "edx"
	);

	/* Return */
	return(rval);
}

/*	Function to test if sse instructions are supported...
*/
inline extern int
sse_ok(void)
{
	/* Returns 1 if SSE instructions are supported, 0 otherwise */
	return ( (mm_support() & 0x8) >> 3  );
}
#endif



/*	Helper functions for the instruction macros that follow...
	(note that memory-to-register, m2r, instructions are nearly
	 as efficient as register-to-register, r2r, instructions;
	 however, memory-to-memory instructions are really simulated
	 as a convenience, and are only 1/3 as efficient)
*/
#ifdef	SSE_TRACE

/*	Include the stuff for printing a trace to stderr...
*/

#include <stdio.h>

#define	sse_i2r(op, imm, reg) \
	{ \
		sse_t sse_trace; \
		sse_trace.uq = (imm); \
		fprintf(stderr, #op "_i2r(" #imm "=0x%08x%08x, ", \
			sse_trace.d[1], sse_trace.d[0]); \
		__asm__ __volatile__ ("movq %%" #reg ", %0" \
				      : "=X" (sse_trace) \
				      : /* nothing */ ); \
		fprintf(stderr, #reg "=0x%08x%08x) => ", \
			sse_trace.d[1], sse_trace.d[0]); \
		__asm__ __volatile__ (#op " %0, %%" #reg \
				      : /* nothing */ \
				      : "X" (imm)); \
		__asm__ __volatile__ ("movq %%" #reg ", %0" \
				      : "=X" (sse_trace) \
				      : /* nothing */ ); \
		fprintf(stderr, #reg "=0x%08x%08x\n", \
			sse_trace.d[1], sse_trace.d[0]); \
	}

#define	sse_m2r(op, mem, reg) \
	{ \
		sse_t sse_trace; \
		sse_trace = (mem); \
		fprintf(stderr, #op "_m2r(" #mem "=0x%08x%08x, ", \
			sse_trace.d[1], sse_trace.d[0]); \
		__asm__ __volatile__ ("movq %%" #reg ", %0" \
				      : "=X" (sse_trace) \
				      : /* nothing */ ); \
		fprintf(stderr, #reg "=0x%08x%08x) => ", \
			sse_trace.d[1], sse_trace.d[0]); \
		__asm__ __volatile__ (#op " %0, %%" #reg \
				      : /* nothing */ \
				      : "X" (mem)); \
		__asm__ __volatile__ ("movq %%" #reg ", %0" \
				      : "=X" (sse_trace) \
				      : /* nothing */ ); \
		fprintf(stderr, #reg "=0x%08x%08x\n", \
			sse_trace.d[1], sse_trace.d[0]); \
	}

#define	sse_r2m(op, reg, mem) \
	{ \
		sse_t sse_trace; \
		__asm__ __volatile__ ("movq %%" #reg ", %0" \
				      : "=X" (sse_trace) \
				      : /* nothing */ ); \
		fprintf(stderr, #op "_r2m(" #reg "=0x%08x%08x, ", \
			sse_trace.d[1], sse_trace.d[0]); \
		sse_trace = (mem); \
		fprintf(stderr, #mem "=0x%08x%08x) => ", \
			sse_trace.d[1], sse_trace.d[0]); \
		__asm__ __volatile__ (#op " %%" #reg ", %0" \
				      : "=X" (mem) \
				      : /* nothing */ ); \
		sse_trace = (mem); \
		fprintf(stderr, #mem "=0x%08x%08x\n", \
			sse_trace.d[1], sse_trace.d[0]); \
	}

#define	sse_r2r(op, regs, regd) \
	{ \
		sse_t sse_trace; \
		__asm__ __volatile__ ("movq %%" #regs ", %0" \
				      : "=X" (sse_trace) \
				      : /* nothing */ ); \
		fprintf(stderr, #op "_r2r(" #regs "=0x%08x%08x, ", \
			sse_trace.d[1], sse_trace.d[0]); \
		__asm__ __volatile__ ("movq %%" #regd ", %0" \
				      : "=X" (sse_trace) \
				      : /* nothing */ ); \
		fprintf(stderr, #regd "=0x%08x%08x) => ", \
			sse_trace.d[1], sse_trace.d[0]); \
		__asm__ __volatile__ (#op " %" #regs ", %" #regd); \
		__asm__ __volatile__ ("movq %%" #regd ", %0" \
				      : "=X" (sse_trace) \
				      : /* nothing */ ); \
		fprintf(stderr, #regd "=0x%08x%08x\n", \
			sse_trace.d[1], sse_trace.d[0]); \
	}

#define	sse_m2m(op, mems, memd) \
	{ \
		sse_t sse_trace; \
		sse_trace = (mems); \
		fprintf(stderr, #op "_m2m(" #mems "=0x%08x%08x, ", \
			sse_trace.d[1], sse_trace.d[0]); \
		sse_trace = (memd); \
		fprintf(stderr, #memd "=0x%08x%08x) => ", \
			sse_trace.d[1], sse_trace.d[0]); \
		__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
				      #op " %1, %%mm0\n\t" \
				      "movq %%mm0, %0" \
				      : "=X" (memd) \
				      : "X" (mems)); \
		sse_trace = (memd); \
		fprintf(stderr, #memd "=0x%08x%08x\n", \
			sse_trace.d[1], sse_trace.d[0]); \
	}

#else

/*	These macros are a lot simpler without the tracing...
*/

#define	sse_i2r(op, imm, reg) \
	__asm__ __volatile__ (#op " %0, %%" #reg \
			      : /* nothing */ \
			      : "X" (imm) )

#define	sse_m2r(op, mem, reg) \
	__asm__ __volatile__ (#op " %0, %%" #reg \
			      : /* nothing */ \
			      : "X" (mem))

#define	sse_r2m(op, reg, mem) \
	__asm__ __volatile__ (#op " %%" #reg ", %0" \
			      : "=X" (mem) \
			      : /* nothing */ )

#define	sse_r2r(op, regs, regd) \
	__asm__ __volatile__ (#op " %" #regs ", %" #regd)

#define	sse_r2ri(op, regs, regd, imm) \
	__asm__ __volatile__ (#op " %0, %%" #regs ", %%" #regd \
			      : /* nothing */ \
			      : "X" (imm) )

/* Load data from mems to xmmreg, operate on xmmreg, and store data to memd */
#define	sse_m2m(op, mems, memd, xmmreg) \
	__asm__ __volatile__ ("movups %0, %%xmm0\n\t" \
			      #op " %1, %%xmm0\n\t" \
			      "movups %%mm0, %0" \
			      : "=X" (memd) \
			      : "X" (mems))

#define	sse_m2ri(op, mem, reg, subop) \
	__asm__ __volatile__ (#op " %0, %%" #reg ", " #subop \
			      : /* nothing */ \
			      : "X" (mem))

#define	sse_m2mi(op, mems, memd, xmmreg, subop) \
	__asm__ __volatile__ ("movups %0, %%xmm0\n\t" \
			      #op " %1, %%xmm0, " #subop "\n\t" \
			      "movups %%mm0, %0" \
			      : "=X" (memd) \
			      : "X" (mems))
#endif




/*	1x128 MOVe Aligned four Packed Single-fp
*/
#define	movaps_m2r(var, reg)	sse_m2r(movaps, var, reg)
#define	movaps_r2m(reg, var)	sse_r2m(movaps, reg, var)
#define	movaps_r2r(regs, regd)	sse_r2r(movaps, regs, regd)
#define	movaps(vars, vard) \
	__asm__ __volatile__ ("movaps %1, %%mm0\n\t" \
			      "movaps %%mm0, %0" \
			      : "=X" (vard) \
			      : "X" (vars))


/*	1x128 MOVe aligned Non-Temporal four Packed Single-fp
*/
#define	movntps_r2m(xmmreg, var)	sse_r2m(movntps, xmmreg, var)


/*	1x64 MOVe Non-Temporal Quadword
*/
#define	movntq_r2m(mmreg, var)		sse_r2m(movntq, mmreg, var)


/*	1x128 MOVe Unaligned four Packed Single-fp
*/
#define	movups_m2r(var, reg)	sse_m2r(movups, var, reg)
#define	movups_r2m(reg, var)	sse_r2m(movups, reg, var)
#define	movups_r2r(regs, regd)	sse_r2r(movups, regs, regd)
#define	movups(vars, vard) \
	__asm__ __volatile__ ("movups %1, %%mm0\n\t" \
			      "movups %%mm0, %0" \
			      : "=X" (vard) \
			      : "X" (vars))


/*	MOVe High to Low Packed Single-fp
	high half of 4x32f (x) -> low half of 4x32f (y)
*/
#define	movhlps_r2r(regs, regd)	sse_r2r(movhlps, regs, regd)


/*	MOVe Low to High Packed Single-fp
	low half of 4x32f (x) -> high half of 4x32f (y)
*/
#define	movlhps_r2r(regs, regd)	sse_r2r(movlhps, regs, regd)


/*	MOVe High Packed Single-fp
	2x32f -> high half of 4x32f
*/
#define	movhps_m2r(var, reg)	sse_m2r(movhps, var, reg)
#define	movhps_r2m(reg, var)	sse_r2m(movhps, reg, var)
#define	movhps(vars, vard) \
	__asm__ __volatile__ ("movhps %1, %%mm0\n\t" \
			      "movhps %%mm0, %0" \
			      : "=X" (vard) \
			      : "X" (vars))


/*	MOVe Low Packed Single-fp
	2x32f -> low half of 4x32f
*/
#define	movlps_m2r(var, reg)	sse_m2r(movlps, var, reg)
#define	movlps_r2m(reg, var)	sse_r2m(movlps, reg, var)
#define	movlps(vars, vard) \
	__asm__ __volatile__ ("movlps %1, %%mm0\n\t" \
			      "movlps %%mm0, %0" \
			      : "=X" (vard) \
			      : "X" (vars))


/*	MOVe Scalar Single-fp
	lowest field of 4x32f (x) -> lowest field of 4x32f (y)
*/
#define	movss_m2r(var, reg)	sse_m2r(movss, var, reg)
#define	movss_r2m(reg, var)	sse_r2m(movss, reg, var)
#define	movss_r2r(regs, regd)	sse_r2r(movss, regs, regd)
#define	movss(vars, vard) \
	__asm__ __volatile__ ("movss %1, %%mm0\n\t" \
			      "movss %%mm0, %0" \
			      : "=X" (vard) \
			      : "X" (vars))


/*	4x16 Packed SHUFfle Word
*/
#define	pshufw_m2r(var, reg, index)	sse_m2ri(pshufw, var, reg, index)
#define	pshufw_r2r(regs, regd, index)	sse_r2ri(pshufw, regs, regd, index)


/*	1x128 SHUFfle Packed Single-fp
*/
#define	shufps_m2r(var, reg, index)	sse_m2ri(shufps, var, reg, index)
#define	shufps_r2r(regs, regd, index)	sse_r2ri(shufps, regs, regd, index)


/*	ConVerT Packed signed Int32 to(2) Packed Single-fp
*/
#define	cvtpi2ps_m2r(var, xmmreg)	sse_m2r(cvtpi2ps, var, xmmreg)
#define	cvtpi2ps_r2r(mmreg, xmmreg)	sse_r2r(cvtpi2ps, mmreg, xmmreg)


/*	ConVerT Packed Single-fp to(2) Packed signed Int32
*/
#define	cvtps2pi_m2r(var, mmreg)	sse_m2r(cvtps2pi, var, mmreg)
#define	cvtps2pi_r2r(xmmreg, mmreg)	sse_r2r(cvtps2pi, mmreg, xmmreg)


/*	ConVerT with Truncate Packed Single-fp to(2) Packed Int32
*/
#define	cvttps2pi_m2r(var, mmreg)	sse_m2r(cvttps2pi, var, mmreg)
#define	cvttps2pi_r2r(xmmreg, mmreg)	sse_r2r(cvttps2pi, mmreg, xmmreg)


/*	ConVerT Signed Int32 to(2) Single-fp (Scalar)
*/
#define	cvtsi2ss_m2r(var, xmmreg)	sse_m2r(cvtsi2ss, var, xmmreg)
#define	cvtsi2ss_r2r(reg, xmmreg)	sse_r2r(cvtsi2ss, reg, xmmreg)


/*	ConVerT Scalar Single-fp to(2) Signed Int32
*/
#define	cvtss2si_m2r(var, reg)		sse_m2r(cvtss2si, var, reg)
#define	cvtss2si_r2r(xmmreg, reg)	sse_r2r(cvtss2si, xmmreg, reg)


/*	ConVerT with Truncate Scalar Single-fp to(2) Signed Int32
*/
#define	cvttss2si_m2r(var, reg)		sse_m2r(cvtss2si, var, reg)
#define	cvttss2si_r2r(xmmreg, reg)	sse_r2r(cvtss2si, xmmreg, reg)


/*	Parallel EXTRact Word from 4x16
*/
#define	pextrw_r2r(mmreg, reg, field)	sse_r2ri(pextrw, mmreg, reg, field)


/*	Parallel INSeRt Word from 4x16
*/
#define	pinsrw_r2r(reg, mmreg, field)	sse_r2ri(pinsrw, reg, mmreg, field)



/*	MOVe MaSK from Packed Single-fp
*/
#ifdef	SSE_TRACE
	#define	movmskps(xmmreg, reg) \
	{ \
		fprintf(stderr, "movmskps()\n"); \
		__asm__ __volatile__ ("movmskps %" #xmmreg ", %" #reg) \
	}
#else
	#define	movmskps(xmmreg, reg) \
	__asm__ __volatile__ ("movmskps %" #xmmreg ", %" #reg)
#endif


/*	Parallel MOVe MaSK from mmx reg to 32-bit reg
*/
#ifdef	SSE_TRACE
	#define	pmovmskb(mmreg, reg) \
	{ \
		fprintf(stderr, "movmskps()\n"); \
		__asm__ __volatile__ ("movmskps %" #mmreg ", %" #reg) \
	}
#else
	#define	pmovmskb(mmreg, reg) \
	__asm__ __volatile__ ("movmskps %" #mmreg ", %" #reg)
#endif


/*	MASKed MOVe from 8x8 to memory pointed to by (e)di register
*/
#define	maskmovq(mmregs, fieldreg)	sse_r2ri(maskmovq, mmregs, fieldreg)




/*	4x32f Parallel ADDs
*/
#define	addps_m2r(var, reg)		sse_m2r(addps, var, reg)
#define	addps_r2r(regs, regd)		sse_r2r(addps, regs, regd)
#define	addps(vars, vard, xmmreg)	sse_m2m(addps, vars, vard, xmmreg)


/*	Lowest Field of 4x32f Parallel ADDs
*/
#define	addss_m2r(var, reg)		sse_m2r(addss, var, reg)
#define	addss_r2r(regs, regd)		sse_r2r(addss, regs, regd)
#define	addss(vars, vard, xmmreg)	sse_m2m(addss, vars, vard, xmmreg)


/*	4x32f Parallel SUBs
*/
#define	subps_m2r(var, reg)		sse_m2r(subps, var, reg)
#define	subps_r2r(regs, regd)		sse_r2r(subps, regs, regd)
#define	subps(vars, vard, xmmreg)	sse_m2m(subps, vars, vard, xmmreg)


/*	Lowest Field of 4x32f Parallel SUBs
*/
#define	subss_m2r(var, reg)		sse_m2r(subss, var, reg)
#define	subss_r2r(regs, regd)		sse_r2r(subss, regs, regd)
#define	subss(vars, vard, xmmreg)	sse_m2m(subss, vars, vard, xmmreg)


/*	8x8u -> 4x16u Packed Sum of Absolute Differences
*/
#define	psadbw_m2r(var, reg)		sse_m2r(psadbw, var, reg)
#define	psadbw_r2r(regs, regd)		sse_r2r(psadbw, regs, regd)
#define	psadbw(vars, vard, mmreg)	sse_m2m(psadbw, vars, vard, mmreg)


/*	4x16u Parallel MUL High Unsigned
*/
#define	pmulhuw_m2r(var, reg)		sse_m2r(pmulhuw, var, reg)
#define	pmulhuw_r2r(regs, regd)		sse_r2r(pmulhuw, regs, regd)
#define	pmulhuw(vars, vard, mmreg)	sse_m2m(pmulhuw, vars, vard, mmreg)


/*	4x32f Parallel MULs
*/
#define	mulps_m2r(var, reg)		sse_m2r(mulps, var, reg)
#define	mulps_r2r(regs, regd)		sse_r2r(mulps, regs, regd)
#define	mulps(vars, vard, xmmreg)	sse_m2m(mulps, vars, vard, xmmreg)


/*	Lowest Field of 4x32f Parallel MULs
*/
#define	mulss_m2r(var, reg)		sse_m2r(mulss, var, reg)
#define	mulss_r2r(regs, regd)		sse_r2r(mulss, regs, regd)
#define	mulss(vars, vard, xmmreg)	sse_m2m(mulss, vars, vard, xmmreg)


/*	4x32f Parallel DIVs
*/
#define	divps_m2r(var, reg)		sse_m2r(divps, var, reg)
#define	divps_r2r(regs, regd)		sse_r2r(divps, regs, regd)
#define	divps(vars, vard, xmmreg)	sse_m2m(divps, vars, vard, xmmreg)


/*	Lowest Field of 4x32f Parallel DIVs
*/
#define	divss_m2r(var, reg)		sse_m2r(divss, var, reg)
#define	divss_r2r(regs, regd)		sse_r2r(divss, regs, regd)
#define	divss(vars, vard, xmmreg)	sse_m2m(divss, vars, vard, xmmreg)


/*	4x32f Parallel Reciprocals
*/
#define	rcpps_m2r(var, reg)		sse_m2r(rcpps, var, reg)
#define	rcpps_r2r(regs, regd)		sse_r2r(rcpps, regs, regd)
#define	rcpps(vars, vard, xmmreg)	sse_m2m(rcpps, vars, vard, xmmreg)


/*	Lowest Field of 4x32f Parallel Reciprocals
*/
#define	rcpss_m2r(var, reg)		sse_m2r(rcpss, var, reg)
#define	rcpss_r2r(regs, regd)		sse_r2r(rcpss, regs, regd)
#define	rcpss(vars, vard, xmmreg)	sse_m2m(rcpss, vars, vard, xmmreg)


/*	4x32f Parallel Square Root of Reciprocals
*/
#define	rsqrtps_m2r(var, reg)		sse_m2r(rsqrtps, var, reg)
#define	rsqrtps_r2r(regs, regd)		sse_r2r(rsqrtps, regs, regd)
#define	rsqrtps(vars, vard, xmmreg)	sse_m2m(rsqrtps, vars, vard, xmmreg)


/*	Lowest Field of 4x32f Parallel Square Root of Reciprocals
*/
#define	rsqrtss_m2r(var, reg)		sse_m2r(rsqrtss, var, reg)
#define	rsqrtss_r2r(regs, regd)		sse_r2r(rsqrtss, regs, regd)
#define	rsqrtss(vars, vard, xmmreg)	sse_m2m(rsqrtss, vars, vard, xmmreg)


/*	4x32f Parallel Square Roots
*/
#define	sqrtps_m2r(var, reg)		sse_m2r(sqrtps, var, reg)
#define	sqrtps_r2r(regs, regd)		sse_r2r(sqrtps, regs, regd)
#define	sqrtps(vars, vard, xmmreg)	sse_m2m(sqrtps, vars, vard, xmmreg)


/*	Lowest Field of 4x32f Parallel Square Roots
*/
#define	sqrtss_m2r(var, reg)		sse_m2r(sqrtss, var, reg)
#define	sqrtss_r2r(regs, regd)		sse_r2r(sqrtss, regs, regd)
#define	sqrtss(vars, vard, xmmreg)	sse_m2m(sqrtss, vars, vard, xmmreg)


/*	8x8u and 4x16u Parallel AVeraGe
*/
#define	pavgb_m2r(var, reg)		sse_m2r(pavgb, var, reg)
#define	pavgb_r2r(regs, regd)		sse_r2r(pavgb, regs, regd)
#define	pavgb(vars, vard, mmreg)	sse_m2m(pavgb, vars, vard, mmreg)

#define	pavgw_m2r(var, reg)		sse_m2r(pavgw, var, reg)
#define	pavgw_r2r(regs, regd)		sse_r2r(pavgw, regs, regd)
#define	pavgw(vars, vard, mmreg)	sse_m2m(pavgw, vars, vard, mmreg)


/*	1x128 bitwise AND
*/
#define	andps_m2r(var, reg)		sse_m2r(andps, var, reg)
#define	andps_r2r(regs, regd)		sse_r2r(andps, regs, regd)
#define	andps(vars, vard, xmmreg)	sse_m2m(andps, vars, vard, xmmreg)


/*	1x128 bitwise AND with Not the destination
*/
#define	andnps_m2r(var, reg)		sse_m2r(andnps, var, reg)
#define	andnps_r2r(regs, regd)		sse_r2r(andnps, regs, regd)
#define	andnps(vars, vard, xmmreg)	sse_m2m(andnps, vars, vard, xmmreg)


/*	1x128 bitwise OR
*/
#define	orps_m2r(var, reg)		sse_m2r(orps, var, reg)
#define	orps_r2r(regs, regd)		sse_r2r(orps, regs, regd)
#define	orps(vars, vard, xmmreg)	sse_m2m(orps, vars, vard, xmmreg)


/*	1x128 bitwise eXclusive OR
*/
#define	xorps_m2r(var, reg)		sse_m2r(xorps, var, reg)
#define	xorps_r2r(regs, regd)		sse_r2r(xorps, regs, regd)
#define	xorps(vars, vard, xmmreg)	sse_m2m(xorps, vars, vard, xmmreg)


/*	8x8u, 4x16, and 4x32f Parallel Maximum
*/
#define	pmaxub_m2r(var, reg)		sse_m2r(pmaxub, var, reg)
#define	pmaxub_r2r(regs, regd)		sse_r2r(pmaxub, regs, regd)
#define	pmaxub(vars, vard, mmreg)	sse_m2m(pmaxub, vars, vard, mmreg)

#define	pmaxsw_m2r(var, reg)		sse_m2r(pmaxsw, var, reg)
#define	pmaxsw_r2r(regs, regd)		sse_r2r(pmaxsw, regs, regd)
#define	pmaxsw(vars, vard, mmreg)	sse_m2m(pmaxsw, vars, vard, mmreg)

#define	maxps_m2r(var, reg)		sse_m2r(maxps, var, reg)
#define	maxps_r2r(regs, regd)		sse_r2r(maxps, regs, regd)
#define	maxps(vars, vard, xmmreg)	sse_m2m(maxps, vars, vard, xmmreg)


/*	Lowest Field of 4x32f Parallel Maximum
*/
#define	maxss_m2r(var, reg)		sse_m2r(maxss, var, reg)
#define	maxss_r2r(regs, regd)		sse_r2r(maxss, regs, regd)
#define	maxss(vars, vard, xmmreg)	sse_m2m(maxss, vars, vard, xmmreg)


/*	8x8u, 4x16, and 4x32f Parallel Minimum
*/
#define	pminub_m2r(var, reg)		sse_m2r(pminub, var, reg)
#define	pminub_r2r(regs, regd)		sse_r2r(pminub, regs, regd)
#define	pminub(vars, vard, mmreg)	sse_m2m(pminub, vars, vard, mmreg)

#define	pminsw_m2r(var, reg)		sse_m2r(pminsw, var, reg)
#define	pminsw_r2r(regs, regd)		sse_r2r(pminsw, regs, regd)
#define	pminsw(vars, vard, mmreg)	sse_m2m(pminsw, vars, vard, mmreg)

#define	minps_m2r(var, reg)		sse_m2r(minps, var, reg)
#define	minps_r2r(regs, regd)		sse_r2r(minps, regs, regd)
#define	minps(vars, vard, xmmreg)	sse_m2m(minps, vars, vard, xmmreg)


/*	Lowest Field of 4x32f Parallel Minimum
*/
#define	minss_m2r(var, reg)		sse_m2r(minss, var, reg)
#define	minss_r2r(regs, regd)		sse_r2r(minss, regs, regd)
#define	minss(vars, vard, xmmreg)	sse_m2m(minss, vars, vard, xmmreg)


/*	4x32f Parallel CoMPares
	(resulting fields are either 0 or -1)
*/
#define	cmpps_m2r(var, reg, op)		sse_m2ri(cmpps, var, reg, op)
#define	cmpps_r2r(regs, regd, op)	sse_r2ri(cmpps, regs, regd, op)
#define	cmpps(vars, vard, op, xmmreg)	sse_m2mi(cmpps, vars, vard, xmmreg, op)

#define	cmpeqps_m2r(var, reg)		sse_m2ri(cmpps, var, reg, 0)
#define	cmpeqps_r2r(regs, regd)		sse_r2ri(cmpps, regs, regd, 0)
#define	cmpeqps(vars, vard, xmmreg)	sse_m2mi(cmpps, vars, vard, xmmreg, 0)

#define	cmpltps_m2r(var, reg)		sse_m2ri(cmpps, var, reg, 1)
#define	cmpltps_r2r(regs, regd)		sse_r2ri(cmpps, regs, regd, 1)
#define	cmpltps(vars, vard, xmmreg)	sse_m2mi(cmpps, vars, vard, xmmreg, 1)

#define	cmpleps_m2r(var, reg)		sse_m2ri(cmpps, var, reg, 2)
#define	cmpleps_r2r(regs, regd)		sse_r2ri(cmpps, regs, regd, 2)
#define	cmpleps(vars, vard, xmmreg)	sse_m2mi(cmpps, vars, vard, xmmreg, 2)

#define	cmpunordps_m2r(var, reg)	sse_m2ri(cmpps, var, reg, 3)
#define	cmpunordps_r2r(regs, regd)	sse_r2ri(cmpps, regs, regd, 3)
#define	cmpunordps(vars, vard, xmmreg)	sse_m2mi(cmpps, vars, vard, xmmreg, 3)

#define	cmpneqps_m2r(var, reg)		sse_m2ri(cmpps, var, reg, 4)
#define	cmpneqps_r2r(regs, regd)	sse_r2ri(cmpps, regs, regd, 4)
#define	cmpneqps(vars, vard, xmmreg)	sse_m2mi(cmpps, vars, vard, xmmreg, 4)

#define	cmpnltps_m2r(var, reg)		sse_m2ri(cmpps, var, reg, 5)
#define	cmpnltps_r2r(regs, regd)	sse_r2ri(cmpps, regs, regd, 5)
#define	cmpnltps(vars, vard, xmmreg)	sse_m2mi(cmpps, vars, vard, xmmreg, 5)

#define	cmpnleps_m2r(var, reg)		sse_m2ri(cmpps, var, reg, 6)
#define	cmpnleps_r2r(regs, regd)	sse_r2ri(cmpps, regs, regd, 6)
#define	cmpnleps(vars, vard, xmmreg)	sse_m2mi(cmpps, vars, vard, xmmreg, 6)

#define	cmpordps_m2r(var, reg)		sse_m2ri(cmpps, var, reg, 7)
#define	cmpordps_r2r(regs, regd)	sse_r2ri(cmpps, regs, regd, 7)
#define	cmpordps(vars, vard, xmmreg)	sse_m2mi(cmpps, vars, vard, xmmreg, 7)


/*	Lowest Field of 4x32f Parallel CoMPares
	(resulting fields are either 0 or -1)
*/
#define	cmpss_m2r(var, reg, op)		sse_m2ri(cmpss, var, reg, op)
#define	cmpss_r2r(regs, regd, op)	sse_r2ri(cmpss, regs, regd, op)
#define	cmpss(vars, vard, op, xmmreg)	sse_m2mi(cmpss, vars, vard, xmmreg, op)

#define	cmpeqss_m2r(var, reg)		sse_m2ri(cmpss, var, reg, 0)
#define	cmpeqss_r2r(regs, regd)		sse_r2ri(cmpss, regs, regd, 0)
#define	cmpeqss(vars, vard, xmmreg)	sse_m2mi(cmpss, vars, vard, xmmreg, 0)

#define	cmpltss_m2r(var, reg)		sse_m2ri(cmpss, var, reg, 1)
#define	cmpltss_r2r(regs, regd)		sse_r2ri(cmpss, regs, regd, 1)
#define	cmpltss(vars, vard, xmmreg)	sse_m2mi(cmpss, vars, vard, xmmreg, 1)

#define	cmpless_m2r(var, reg)		sse_m2ri(cmpss, var, reg, 2)
#define	cmpless_r2r(regs, regd)		sse_r2ri(cmpss, regs, regd, 2)
#define	cmpless(vars, vard, xmmreg)	sse_m2mi(cmpss, vars, vard, xmmreg, 2)

#define	cmpunordss_m2r(var, reg)	sse_m2ri(cmpss, var, reg, 3)
#define	cmpunordss_r2r(regs, regd)	sse_r2ri(cmpss, regs, regd, 3)
#define	cmpunordss(vars, vard, xmmreg)	sse_m2mi(cmpss, vars, vard, xmmreg, 3)

#define	cmpneqss_m2r(var, reg)		sse_m2ri(cmpss, var, reg, 4)
#define	cmpneqss_r2r(regs, regd)	sse_r2ri(cmpss, regs, regd, 4)
#define	cmpneqss(vars, vard, xmmreg)	sse_m2mi(cmpss, vars, vard, xmmreg, 4)

#define	cmpnltss_m2r(var, reg)		sse_m2ri(cmpss, var, reg, 5)
#define	cmpnltss_r2r(regs, regd)	sse_r2ri(cmpss, regs, regd, 5)
#define	cmpnltss(vars, vard, xmmreg)	sse_m2mi(cmpss, vars, vard, xmmreg, 5)

#define	cmpnless_m2r(var, reg)		sse_m2ri(cmpss, var, reg, 6)
#define	cmpnless_r2r(regs, regd)	sse_r2ri(cmpss, regs, regd, 6)
#define	cmpnless(vars, vard, xmmreg)	sse_m2mi(cmpss, vars, vard, xmmreg, 6)

#define	cmpordss_m2r(var, reg)		sse_m2ri(cmpss, var, reg, 7)
#define	cmpordss_r2r(regs, regd)	sse_r2ri(cmpss, regs, regd, 7)
#define	cmpordss(vars, vard, xmmreg)	sse_m2mi(cmpss, vars, vard, xmmreg, 7)


/*	Lowest Field of 4x32f Parallel CoMPares to set EFLAGS
	(resulting fields are either 0 or -1)
*/
#define	comiss_m2r(var, reg)		sse_m2r(comiss, var, reg)
#define	comiss_r2r(regs, regd)		sse_r2r(comiss, regs, regd)
#define	comiss(vars, vard, xmmreg)	sse_m2m(comiss, vars, vard, xmmreg)


/*	Lowest Field of 4x32f Unordered Parallel CoMPares to set EFLAGS
	(resulting fields are either 0 or -1)
*/
#define	ucomiss_m2r(var, reg)		sse_m2r(ucomiss, var, reg)
#define	ucomiss_r2r(regs, regd)		sse_r2r(ucomiss, regs, regd)
#define	ucomiss(vars, vard, xmmreg)	sse_m2m(ucomiss, vars, vard, xmmreg)


/*	2-(4x32f) -> 4x32f UNPaCK Low Packed Single-fp
	(interleaves low half of dest with low half of source
	 as padding in each result field)
*/
#define	unpcklps_m2r(var, reg)		sse_m2r(unpcklps, var, reg)
#define	unpcklps_r2r(regs, regd)	sse_r2r(unpcklps, regs, regd)


/*	2-(4x32f) -> 4x32f UNPaCK High Packed Single-fp
	(interleaves high half of dest with high half of source
	 as padding in each result field)
*/
#define	unpckhps_m2r(var, reg)		sse_m2r(unpckhps, var, reg)
#define	unpckhps_r2r(regs, regd)	sse_r2r(unpckhps, regs, regd)



/*	Fp and mmX ReSTORe state
*/
#ifdef	SSE_TRACE
	#define	fxrstor(mem) \
	{ \
		fprintf(stderr, "fxrstor()\n"); \
		__asm__ __volatile__ ("fxrstor %0" \
			      : /* nothing */ \
			      : "X" (mem)) \
	}
#else
	#define	fxrstor(mem) \
	__asm__ __volatile__ ("fxrstor %0" \
			      : /* nothing */ \
			      : "X" (mem))
#endif


/*	Fp and mmX SAVE state
*/
#ifdef	SSE_TRACE
	#define	fxsave(mem) \
	{ \
		fprintf(stderr, "fxsave()\n"); \
		__asm__ __volatile__ ("fxsave %0" \
			      : /* nothing */ \
			      : "X" (mem)) \
	}
#else
	#define	fxsave(mem) \
	__asm__ __volatile__ ("fxsave %0" \
			      : /* nothing */ \
			      : "X" (mem))
#endif


/*	STore streaMing simd eXtensions Control/Status Register
*/
#ifdef	SSE_TRACE
	#define	stmxcsr(mem) \
	{ \
		fprintf(stderr, "stmxcsr()\n"); \
		__asm__ __volatile__ ("stmxcsr %0" \
			      : /* nothing */ \
			      : "X" (mem)) \
	}
#else
	#define	stmxcsr(mem) \
	__asm__ __volatile__ ("stmxcsr %0" \
			      : /* nothing */ \
			      : "X" (mem))
#endif


/*	LoaD streaMing simd eXtensions Control/Status Register
*/
#ifdef	SSE_TRACE
	#define	ldmxcsr(mem) \
	{ \
		fprintf(stderr, "ldmxcsr()\n"); \
		__asm__ __volatile__ ("ldmxcsr %0" \
			      : /* nothing */ \
			      : "X" (mem)) \
	}
#else
	#define	ldmxcsr(mem) \
	__asm__ __volatile__ ("ldmxcsr %0" \
			      : /* nothing */ \
			      : "X" (mem))
#endif


/*	Store FENCE - enforce ordering of stores before fence vs. stores
	occuring after fence in source code.
*/
#ifdef	SSE_TRACE
	#define	sfence() \
	{ \
		fprintf(stderr, "sfence()\n"); \
		__asm__ __volatile__ ("sfence\n\t") \
	}
#else
	#define	sfence() \
	__asm__ __volatile__ ("sfence\n\t")
#endif


/*	PREFETCH data using T0, T1, T2, or NTA hint
		T0  = Prefetch into all cache levels
		T1  = Prefetch into all cache levels except 0th level
		T2  = Prefetch into all cache levels except 0th and 1st levels
		NTA = Prefetch data into non-temporal cache structure
*/
#ifdef	SSE_TRACE
#else
	#define	prefetch(mem, hint) \
	__asm__ __volatile__ ("prefetch" #hint " %0" \
			      : /* nothing */ \
			      : "X" (mem))

	#define	prefetcht0(mem)		prefetch(mem, t0)
	#define	prefetcht1(mem)		prefetch(mem, t1)
	#define	prefetcht2(mem)		prefetch(mem, t2)
	#define	prefetchnta(mem)	prefetch(mem, nta)
#endif



#endif