summaryrefslogtreecommitdiff
path: root/exec.c
diff options
context:
space:
mode:
authorGui Chen <gui.chen@intel.com>2014-08-01 02:25:56 -0400
committerGui Chen <gui.chen@intel.com>2014-08-01 02:25:56 -0400
commit6bedc38620a0358406b933725234f6615eed96be (patch)
treeac3085313c069ba8d035984fa5754675d46c718c /exec.c
downloadqemu-arm-static-6bedc38620a0358406b933725234f6615eed96be.tar.gz
qemu-arm-static-6bedc38620a0358406b933725234f6615eed96be.tar.bz2
qemu-arm-static-6bedc38620a0358406b933725234f6615eed96be.zip
Signed-off-by: Gui Chen <gui.chen@intel.com>
Diffstat (limited to 'exec.c')
-rw-r--r--exec.c2683
1 files changed, 2683 insertions, 0 deletions
diff --git a/exec.c b/exec.c
new file mode 100644
index 000000000..3ca938121
--- /dev/null
+++ b/exec.c
@@ -0,0 +1,2683 @@
+/*
+ * Virtual page mapping
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#include "config.h"
+#ifdef _WIN32
+#include <windows.h>
+#else
+#include <sys/types.h>
+#include <sys/mman.h>
+#endif
+
+#include "qemu-common.h"
+#include "cpu.h"
+#include "tcg.h"
+#include "hw/hw.h"
+#include "hw/qdev.h"
+#include "qemu/osdep.h"
+#include "sysemu/kvm.h"
+#include "sysemu/sysemu.h"
+#include "hw/xen/xen.h"
+#include "qemu/timer.h"
+#include "qemu/config-file.h"
+#include "exec/memory.h"
+#include "sysemu/dma.h"
+#include "exec/address-spaces.h"
+#if defined(CONFIG_USER_ONLY)
+#include <qemu.h>
+#else /* !CONFIG_USER_ONLY */
+#include "sysemu/xen-mapcache.h"
+#include "trace.h"
+#endif
+#include "exec/cpu-all.h"
+
+#include "exec/cputlb.h"
+#include "translate-all.h"
+
+#include "exec/memory-internal.h"
+
+//#define DEBUG_SUBPAGE
+
+#if !defined(CONFIG_USER_ONLY)
+static int in_migration;
+
+RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
+
+static MemoryRegion *system_memory;
+static MemoryRegion *system_io;
+
+AddressSpace address_space_io;
+AddressSpace address_space_memory;
+
+MemoryRegion io_mem_rom, io_mem_notdirty;
+static MemoryRegion io_mem_unassigned;
+
+#endif
+
+CPUState *first_cpu;
+/* current CPU in the current thread. It is only valid inside
+ cpu_exec() */
+DEFINE_TLS(CPUState *, current_cpu);
+/* 0 = Do not count executed instructions.
+ 1 = Precise instruction counting.
+ 2 = Adaptive rate instruction counting. */
+int use_icount;
+
+#if !defined(CONFIG_USER_ONLY)
+
+typedef struct PhysPageEntry PhysPageEntry;
+
+struct PhysPageEntry {
+ uint16_t is_leaf : 1;
+ /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
+ uint16_t ptr : 15;
+};
+
+typedef PhysPageEntry Node[L2_SIZE];
+
+struct AddressSpaceDispatch {
+ /* This is a multi-level map on the physical address space.
+ * The bottom level has pointers to MemoryRegionSections.
+ */
+ PhysPageEntry phys_map;
+ Node *nodes;
+ MemoryRegionSection *sections;
+ AddressSpace *as;
+};
+
+#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
+typedef struct subpage_t {
+ MemoryRegion iomem;
+ AddressSpace *as;
+ hwaddr base;
+ uint16_t sub_section[TARGET_PAGE_SIZE];
+} subpage_t;
+
+#define PHYS_SECTION_UNASSIGNED 0
+#define PHYS_SECTION_NOTDIRTY 1
+#define PHYS_SECTION_ROM 2
+#define PHYS_SECTION_WATCH 3
+
+typedef struct PhysPageMap {
+ unsigned sections_nb;
+ unsigned sections_nb_alloc;
+ unsigned nodes_nb;
+ unsigned nodes_nb_alloc;
+ Node *nodes;
+ MemoryRegionSection *sections;
+} PhysPageMap;
+
+static PhysPageMap *prev_map;
+static PhysPageMap next_map;
+
+#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
+
+static void io_mem_init(void);
+static void memory_map_init(void);
+static void *qemu_safe_ram_ptr(ram_addr_t addr);
+
+static MemoryRegion io_mem_watch;
+#endif
+
+#if !defined(CONFIG_USER_ONLY)
+
+static void phys_map_node_reserve(unsigned nodes)
+{
+ if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
+ next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
+ 16);
+ next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
+ next_map.nodes_nb + nodes);
+ next_map.nodes = g_renew(Node, next_map.nodes,
+ next_map.nodes_nb_alloc);
+ }
+}
+
+static uint16_t phys_map_node_alloc(void)
+{
+ unsigned i;
+ uint16_t ret;
+
+ ret = next_map.nodes_nb++;
+ assert(ret != PHYS_MAP_NODE_NIL);
+ assert(ret != next_map.nodes_nb_alloc);
+ for (i = 0; i < L2_SIZE; ++i) {
+ next_map.nodes[ret][i].is_leaf = 0;
+ next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
+ }
+ return ret;
+}
+
+static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
+ hwaddr *nb, uint16_t leaf,
+ int level)
+{
+ PhysPageEntry *p;
+ int i;
+ hwaddr step = (hwaddr)1 << (level * L2_BITS);
+
+ if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
+ lp->ptr = phys_map_node_alloc();
+ p = next_map.nodes[lp->ptr];
+ if (level == 0) {
+ for (i = 0; i < L2_SIZE; i++) {
+ p[i].is_leaf = 1;
+ p[i].ptr = PHYS_SECTION_UNASSIGNED;
+ }
+ }
+ } else {
+ p = next_map.nodes[lp->ptr];
+ }
+ lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
+
+ while (*nb && lp < &p[L2_SIZE]) {
+ if ((*index & (step - 1)) == 0 && *nb >= step) {
+ lp->is_leaf = true;
+ lp->ptr = leaf;
+ *index += step;
+ *nb -= step;
+ } else {
+ phys_page_set_level(lp, index, nb, leaf, level - 1);
+ }
+ ++lp;
+ }
+}
+
+static void phys_page_set(AddressSpaceDispatch *d,
+ hwaddr index, hwaddr nb,
+ uint16_t leaf)
+{
+ /* Wildly overreserve - it doesn't matter much. */
+ phys_map_node_reserve(3 * P_L2_LEVELS);
+
+ phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
+}
+
+static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
+ Node *nodes, MemoryRegionSection *sections)
+{
+ PhysPageEntry *p;
+ int i;
+
+ for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
+ if (lp.ptr == PHYS_MAP_NODE_NIL) {
+ return &sections[PHYS_SECTION_UNASSIGNED];
+ }
+ p = nodes[lp.ptr];
+ lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
+ }
+ return &sections[lp.ptr];
+}
+
+bool memory_region_is_unassigned(MemoryRegion *mr)
+{
+ return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
+ && mr != &io_mem_watch;
+}
+
+static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
+ hwaddr addr,
+ bool resolve_subpage)
+{
+ MemoryRegionSection *section;
+ subpage_t *subpage;
+
+ section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
+ d->nodes, d->sections);
+ if (resolve_subpage && section->mr->subpage) {
+ subpage = container_of(section->mr, subpage_t, iomem);
+ section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
+ }
+ return section;
+}
+
+static MemoryRegionSection *
+address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
+ hwaddr *plen, bool resolve_subpage)
+{
+ MemoryRegionSection *section;
+ Int128 diff;
+
+ section = address_space_lookup_region(d, addr, resolve_subpage);
+ /* Compute offset within MemoryRegionSection */
+ addr -= section->offset_within_address_space;
+
+ /* Compute offset within MemoryRegion */
+ *xlat = addr + section->offset_within_region;
+
+ diff = int128_sub(section->mr->size, int128_make64(addr));
+ *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
+ return section;
+}
+
+MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
+ hwaddr *xlat, hwaddr *plen,
+ bool is_write)
+{
+ IOMMUTLBEntry iotlb;
+ MemoryRegionSection *section;
+ MemoryRegion *mr;
+ hwaddr len = *plen;
+
+ for (;;) {
+ section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
+ mr = section->mr;
+
+ if (!mr->iommu_ops) {
+ break;
+ }
+
+ iotlb = mr->iommu_ops->translate(mr, addr);
+ addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
+ | (addr & iotlb.addr_mask));
+ len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
+ if (!(iotlb.perm & (1 << is_write))) {
+ mr = &io_mem_unassigned;
+ break;
+ }
+
+ as = iotlb.target_as;
+ }
+
+ *plen = len;
+ *xlat = addr;
+ return mr;
+}
+
+MemoryRegionSection *
+address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
+ hwaddr *plen)
+{
+ MemoryRegionSection *section;
+ section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
+
+ assert(!section->mr->iommu_ops);
+ return section;
+}
+#endif
+
+void cpu_exec_init_all(void)
+{
+#if !defined(CONFIG_USER_ONLY)
+ qemu_mutex_init(&ram_list.mutex);
+ memory_map_init();
+ io_mem_init();
+#endif
+}
+
+#if !defined(CONFIG_USER_ONLY)
+
+static int cpu_common_post_load(void *opaque, int version_id)
+{
+ CPUState *cpu = opaque;
+
+ /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
+ version_id is increased. */
+ cpu->interrupt_request &= ~0x01;
+ tlb_flush(cpu->env_ptr, 1);
+
+ return 0;
+}
+
+const VMStateDescription vmstate_cpu_common = {
+ .name = "cpu_common",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .minimum_version_id_old = 1,
+ .post_load = cpu_common_post_load,
+ .fields = (VMStateField []) {
+ VMSTATE_UINT32(halted, CPUState),
+ VMSTATE_UINT32(interrupt_request, CPUState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+#endif
+
+CPUState *qemu_get_cpu(int index)
+{
+ CPUState *cpu = first_cpu;
+
+ while (cpu) {
+ if (cpu->cpu_index == index) {
+ break;
+ }
+ cpu = cpu->next_cpu;
+ }
+
+ return cpu;
+}
+
+void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
+{
+ CPUState *cpu;
+
+ cpu = first_cpu;
+ while (cpu) {
+ func(cpu, data);
+ cpu = cpu->next_cpu;
+ }
+}
+
+void cpu_exec_init(CPUArchState *env)
+{
+ CPUState *cpu = ENV_GET_CPU(env);
+ CPUClass *cc = CPU_GET_CLASS(cpu);
+ CPUState **pcpu;
+ int cpu_index;
+
+#if defined(CONFIG_USER_ONLY)
+ cpu_list_lock();
+#endif
+ cpu->next_cpu = NULL;
+ pcpu = &first_cpu;
+ cpu_index = 0;
+ while (*pcpu != NULL) {
+ pcpu = &(*pcpu)->next_cpu;
+ cpu_index++;
+ }
+ cpu->cpu_index = cpu_index;
+ cpu->numa_node = 0;
+ QTAILQ_INIT(&env->breakpoints);
+ QTAILQ_INIT(&env->watchpoints);
+#ifndef CONFIG_USER_ONLY
+ cpu->thread_id = qemu_get_thread_id();
+#endif
+ *pcpu = cpu;
+#if defined(CONFIG_USER_ONLY)
+ cpu_list_unlock();
+#endif
+ if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
+ vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
+ }
+#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
+ register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
+ cpu_save, cpu_load, env);
+ assert(cc->vmsd == NULL);
+ assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
+#endif
+ if (cc->vmsd != NULL) {
+ vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
+ }
+}
+
+#if defined(TARGET_HAS_ICE)
+#if defined(CONFIG_USER_ONLY)
+static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
+{
+ tb_invalidate_phys_page_range(pc, pc + 1, 0);
+}
+#else
+static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
+{
+ tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) |
+ (pc & ~TARGET_PAGE_MASK));
+}
+#endif
+#endif /* TARGET_HAS_ICE */
+
+#if defined(CONFIG_USER_ONLY)
+void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
+
+{
+}
+
+int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
+ int flags, CPUWatchpoint **watchpoint)
+{
+ return -ENOSYS;
+}
+#else
+/* Add a watchpoint. */
+int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
+ int flags, CPUWatchpoint **watchpoint)
+{
+ target_ulong len_mask = ~(len - 1);
+ CPUWatchpoint *wp;
+
+ /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
+ if ((len & (len - 1)) || (addr & ~len_mask) ||
+ len == 0 || len > TARGET_PAGE_SIZE) {
+ fprintf(stderr, "qemu: tried to set invalid watchpoint at "
+ TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
+ return -EINVAL;
+ }
+ wp = g_malloc(sizeof(*wp));
+
+ wp->vaddr = addr;
+ wp->len_mask = len_mask;
+ wp->flags = flags;
+
+ /* keep all GDB-injected watchpoints in front */
+ if (flags & BP_GDB)
+ QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
+ else
+ QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
+
+ tlb_flush_page(env, addr);
+
+ if (watchpoint)
+ *watchpoint = wp;
+ return 0;
+}
+
+/* Remove a specific watchpoint. */
+int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
+ int flags)
+{
+ target_ulong len_mask = ~(len - 1);
+ CPUWatchpoint *wp;
+
+ QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
+ if (addr == wp->vaddr && len_mask == wp->len_mask
+ && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
+ cpu_watchpoint_remove_by_ref(env, wp);
+ return 0;
+ }
+ }
+ return -ENOENT;
+}
+
+/* Remove a specific watchpoint by reference. */
+void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
+{
+ QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
+
+ tlb_flush_page(env, watchpoint->vaddr);
+
+ g_free(watchpoint);
+}
+
+/* Remove all matching watchpoints. */
+void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
+{
+ CPUWatchpoint *wp, *next;
+
+ QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
+ if (wp->flags & mask)
+ cpu_watchpoint_remove_by_ref(env, wp);
+ }
+}
+#endif
+
+/* Add a breakpoint. */
+int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
+ CPUBreakpoint **breakpoint)
+{
+#if defined(TARGET_HAS_ICE)
+ CPUBreakpoint *bp;
+
+ bp = g_malloc(sizeof(*bp));
+
+ bp->pc = pc;
+ bp->flags = flags;
+
+ /* keep all GDB-injected breakpoints in front */
+ if (flags & BP_GDB) {
+ QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
+ } else {
+ QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
+ }
+
+ breakpoint_invalidate(ENV_GET_CPU(env), pc);
+
+ if (breakpoint) {
+ *breakpoint = bp;
+ }
+ return 0;
+#else
+ return -ENOSYS;
+#endif
+}
+
+/* Remove a specific breakpoint. */
+int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
+{
+#if defined(TARGET_HAS_ICE)
+ CPUBreakpoint *bp;
+
+ QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
+ if (bp->pc == pc && bp->flags == flags) {
+ cpu_breakpoint_remove_by_ref(env, bp);
+ return 0;
+ }
+ }
+ return -ENOENT;
+#else
+ return -ENOSYS;
+#endif
+}
+
+/* Remove a specific breakpoint by reference. */
+void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
+{
+#if defined(TARGET_HAS_ICE)
+ QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
+
+ breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
+
+ g_free(breakpoint);
+#endif
+}
+
+/* Remove all matching breakpoints. */
+void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
+{
+#if defined(TARGET_HAS_ICE)
+ CPUBreakpoint *bp, *next;
+
+ QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
+ if (bp->flags & mask)
+ cpu_breakpoint_remove_by_ref(env, bp);
+ }
+#endif
+}
+
+/* enable or disable single step mode. EXCP_DEBUG is returned by the
+ CPU loop after each instruction */
+void cpu_single_step(CPUState *cpu, int enabled)
+{
+#if defined(TARGET_HAS_ICE)
+ if (cpu->singlestep_enabled != enabled) {
+ cpu->singlestep_enabled = enabled;
+ if (kvm_enabled()) {
+ kvm_update_guest_debug(cpu, 0);
+ } else {
+ /* must flush all the translated code to avoid inconsistencies */
+ /* XXX: only flush what is necessary */
+ CPUArchState *env = cpu->env_ptr;
+ tb_flush(env);
+ }
+ }
+#endif
+}
+
+void cpu_abort(CPUArchState *env, const char *fmt, ...)
+{
+ CPUState *cpu = ENV_GET_CPU(env);
+ va_list ap;
+ va_list ap2;
+
+ va_start(ap, fmt);
+ va_copy(ap2, ap);
+ fprintf(stderr, "qemu: fatal: ");
+ vfprintf(stderr, fmt, ap);
+ fprintf(stderr, "\n");
+ cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
+ if (qemu_log_enabled()) {
+ qemu_log("qemu: fatal: ");
+ qemu_log_vprintf(fmt, ap2);
+ qemu_log("\n");
+ log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
+ qemu_log_flush();
+ qemu_log_close();
+ }
+ va_end(ap2);
+ va_end(ap);
+#if defined(CONFIG_USER_ONLY)
+ {
+ struct sigaction act;
+ sigfillset(&act.sa_mask);
+ act.sa_handler = SIG_DFL;
+ sigaction(SIGABRT, &act, NULL);
+ }
+#endif
+ abort();
+}
+
+CPUArchState *cpu_copy(CPUArchState *env)
+{
+ CPUArchState *new_env = cpu_init(env->cpu_model_str);
+#if defined(TARGET_HAS_ICE)
+ CPUBreakpoint *bp;
+ CPUWatchpoint *wp;
+#endif
+
+ /* Reset non arch specific state */
+ cpu_reset(ENV_GET_CPU(new_env));
+
+ /* Copy arch specific state into the new CPU */
+ memcpy(new_env, env, sizeof(CPUArchState));
+
+ /* Clone all break/watchpoints.
+ Note: Once we support ptrace with hw-debug register access, make sure
+ BP_CPU break/watchpoints are handled correctly on clone. */
+ QTAILQ_INIT(&env->breakpoints);
+ QTAILQ_INIT(&env->watchpoints);
+#if defined(TARGET_HAS_ICE)
+ QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
+ cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
+ }
+ QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
+ cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
+ wp->flags, NULL);
+ }
+#endif
+
+ return new_env;
+}
+
+#if !defined(CONFIG_USER_ONLY)
+static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
+ uintptr_t length)
+{
+ uintptr_t start1;
+
+ /* we modify the TLB cache so that the dirty bit will be set again
+ when accessing the range */
+ start1 = (uintptr_t)qemu_safe_ram_ptr(start);
+ /* Check that we don't span multiple blocks - this breaks the
+ address comparisons below. */
+ if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
+ != (end - 1) - start) {
+ abort();
+ }
+ cpu_tlb_reset_dirty_all(start1, length);
+
+}
+
+/* Note: start and end must be within the same ram block. */
+void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
+ int dirty_flags)
+{
+ uintptr_t length;
+
+ start &= TARGET_PAGE_MASK;
+ end = TARGET_PAGE_ALIGN(end);
+
+ length = end - start;
+ if (length == 0)
+ return;
+ cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
+
+ if (tcg_enabled()) {
+ tlb_reset_dirty_range_all(start, end, length);
+ }
+}
+
+static int cpu_physical_memory_set_dirty_tracking(int enable)
+{
+ int ret = 0;
+ in_migration = enable;
+ return ret;
+}
+
+hwaddr memory_region_section_get_iotlb(CPUArchState *env,
+ MemoryRegionSection *section,
+ target_ulong vaddr,
+ hwaddr paddr, hwaddr xlat,
+ int prot,
+ target_ulong *address)
+{
+ hwaddr iotlb;
+ CPUWatchpoint *wp;
+
+ if (memory_region_is_ram(section->mr)) {
+ /* Normal RAM. */
+ iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + xlat;
+ if (!section->readonly) {
+ iotlb |= PHYS_SECTION_NOTDIRTY;
+ } else {
+ iotlb |= PHYS_SECTION_ROM;
+ }
+ } else {
+ iotlb = section - address_space_memory.dispatch->sections;
+ iotlb += xlat;
+ }
+
+ /* Make accesses to pages with watchpoints go via the
+ watchpoint trap routines. */
+ QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
+ if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
+ /* Avoid trapping reads of pages with a write breakpoint. */
+ if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
+ iotlb = PHYS_SECTION_WATCH + paddr;
+ *address |= TLB_MMIO;
+ break;
+ }
+ }
+ }
+
+ return iotlb;
+}
+#endif /* defined(CONFIG_USER_ONLY) */
+
+#if !defined(CONFIG_USER_ONLY)
+
+static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
+ uint16_t section);
+static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
+
+static uint16_t phys_section_add(MemoryRegionSection *section)
+{
+ /* The physical section number is ORed with a page-aligned
+ * pointer to produce the iotlb entries. Thus it should
+ * never overflow into the page-aligned value.
+ */
+ assert(next_map.sections_nb < TARGET_PAGE_SIZE);
+
+ if (next_map.sections_nb == next_map.sections_nb_alloc) {
+ next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
+ 16);
+ next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
+ next_map.sections_nb_alloc);
+ }
+ next_map.sections[next_map.sections_nb] = *section;
+ memory_region_ref(section->mr);
+ return next_map.sections_nb++;
+}
+
+static void phys_section_destroy(MemoryRegion *mr)
+{
+ memory_region_unref(mr);
+
+ if (mr->subpage) {
+ subpage_t *subpage = container_of(mr, subpage_t, iomem);
+ memory_region_destroy(&subpage->iomem);
+ g_free(subpage);
+ }
+}
+
+static void phys_sections_free(PhysPageMap *map)
+{
+ while (map->sections_nb > 0) {
+ MemoryRegionSection *section = &map->sections[--map->sections_nb];
+ phys_section_destroy(section->mr);
+ }
+ g_free(map->sections);
+ g_free(map->nodes);
+ g_free(map);
+}
+
+static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
+{
+ subpage_t *subpage;
+ hwaddr base = section->offset_within_address_space
+ & TARGET_PAGE_MASK;
+ MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
+ next_map.nodes, next_map.sections);
+ MemoryRegionSection subsection = {
+ .offset_within_address_space = base,
+ .size = int128_make64(TARGET_PAGE_SIZE),
+ };
+ hwaddr start, end;
+
+ assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
+
+ if (!(existing->mr->subpage)) {
+ subpage = subpage_init(d->as, base);
+ subsection.mr = &subpage->iomem;
+ phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
+ phys_section_add(&subsection));
+ } else {
+ subpage = container_of(existing->mr, subpage_t, iomem);
+ }
+ start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
+ end = start + int128_get64(section->size) - 1;
+ subpage_register(subpage, start, end, phys_section_add(section));
+}
+
+
+static void register_multipage(AddressSpaceDispatch *d,
+ MemoryRegionSection *section)
+{
+ hwaddr start_addr = section->offset_within_address_space;
+ uint16_t section_index = phys_section_add(section);
+ uint64_t num_pages = int128_get64(int128_rshift(section->size,
+ TARGET_PAGE_BITS));
+
+ assert(num_pages);
+ phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
+}
+
+static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
+{
+ AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
+ AddressSpaceDispatch *d = as->next_dispatch;
+ MemoryRegionSection now = *section, remain = *section;
+ Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
+
+ if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
+ uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
+ - now.offset_within_address_space;
+
+ now.size = int128_min(int128_make64(left), now.size);
+ register_subpage(d, &now);
+ } else {
+ now.size = int128_zero();
+ }
+ while (int128_ne(remain.size, now.size)) {
+ remain.size = int128_sub(remain.size, now.size);
+ remain.offset_within_address_space += int128_get64(now.size);
+ remain.offset_within_region += int128_get64(now.size);
+ now = remain;
+ if (int128_lt(remain.size, page_size)) {
+ register_subpage(d, &now);
+ } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
+ now.size = page_size;
+ register_subpage(d, &now);
+ } else {
+ now.size = int128_and(now.size, int128_neg(page_size));
+ register_multipage(d, &now);
+ }
+ }
+}
+
+void qemu_flush_coalesced_mmio_buffer(void)
+{
+ if (kvm_enabled())
+ kvm_flush_coalesced_mmio_buffer();
+}
+
+void qemu_mutex_lock_ramlist(void)
+{
+ qemu_mutex_lock(&ram_list.mutex);
+}
+
+void qemu_mutex_unlock_ramlist(void)
+{
+ qemu_mutex_unlock(&ram_list.mutex);
+}
+
+#if defined(__linux__) && !defined(TARGET_S390X)
+
+#include <sys/vfs.h>
+
+#define HUGETLBFS_MAGIC 0x958458f6
+
+static long gethugepagesize(const char *path)
+{
+ struct statfs fs;
+ int ret;
+
+ do {
+ ret = statfs(path, &fs);
+ } while (ret != 0 && errno == EINTR);
+
+ if (ret != 0) {
+ perror(path);
+ return 0;
+ }
+
+ if (fs.f_type != HUGETLBFS_MAGIC)
+ fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
+
+ return fs.f_bsize;
+}
+
+static void *file_ram_alloc(RAMBlock *block,
+ ram_addr_t memory,
+ const char *path)
+{
+ char *filename;
+ char *sanitized_name;
+ char *c;
+ void *area;
+ int fd;
+#ifdef MAP_POPULATE
+ int flags;
+#endif
+ unsigned long hpagesize;
+
+ hpagesize = gethugepagesize(path);
+ if (!hpagesize) {
+ return NULL;
+ }
+
+ if (memory < hpagesize) {
+ return NULL;
+ }
+
+ if (kvm_enabled() && !kvm_has_sync_mmu()) {
+ fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
+ return NULL;
+ }
+
+ /* Make name safe to use with mkstemp by replacing '/' with '_'. */
+ sanitized_name = g_strdup(block->mr->name);
+ for (c = sanitized_name; *c != '\0'; c++) {
+ if (*c == '/')
+ *c = '_';
+ }
+
+ filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
+ sanitized_name);
+ g_free(sanitized_name);
+
+ fd = mkstemp(filename);
+ if (fd < 0) {
+ perror("unable to create backing store for hugepages");
+ g_free(filename);
+ return NULL;
+ }
+ unlink(filename);
+ g_free(filename);
+
+ memory = (memory+hpagesize-1) & ~(hpagesize-1);
+
+ /*
+ * ftruncate is not supported by hugetlbfs in older
+ * hosts, so don't bother bailing out on errors.
+ * If anything goes wrong with it under other filesystems,
+ * mmap will fail.
+ */
+ if (ftruncate(fd, memory))
+ perror("ftruncate");
+
+#ifdef MAP_POPULATE
+ /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
+ * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
+ * to sidestep this quirk.
+ */
+ flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
+ area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
+#else
+ area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
+#endif
+ if (area == MAP_FAILED) {
+ perror("file_ram_alloc: can't mmap RAM pages");
+ close(fd);
+ return (NULL);
+ }
+ block->fd = fd;
+ return area;
+}
+#endif
+
+static ram_addr_t find_ram_offset(ram_addr_t size)
+{
+ RAMBlock *block, *next_block;
+ ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
+
+ assert(size != 0); /* it would hand out same offset multiple times */
+
+ if (QTAILQ_EMPTY(&ram_list.blocks))
+ return 0;
+
+ QTAILQ_FOREACH(block, &ram_list.blocks, next) {
+ ram_addr_t end, next = RAM_ADDR_MAX;
+
+ end = block->offset + block->length;
+
+ QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
+ if (next_block->offset >= end) {
+ next = MIN(next, next_block->offset);
+ }
+ }
+ if (next - end >= size && next - end < mingap) {
+ offset = end;
+ mingap = next - end;
+ }
+ }
+
+ if (offset == RAM_ADDR_MAX) {
+ fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
+ (uint64_t)size);
+ abort();
+ }
+
+ return offset;
+}
+
+ram_addr_t last_ram_offset(void)
+{
+ RAMBlock *block;
+ ram_addr_t last = 0;
+
+ QTAILQ_FOREACH(block, &ram_list.blocks, next)
+ last = MAX(last, block->offset + block->length);
+
+ return last;
+}
+
+static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
+{
+ int ret;
+
+ /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
+ if (!qemu_opt_get_bool(qemu_get_machine_opts(),
+ "dump-guest-core", true)) {
+ ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
+ if (ret) {
+ perror("qemu_madvise");
+ fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
+ "but dump_guest_core=off specified\n");
+ }
+ }
+}
+
+void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
+{
+ RAMBlock *new_block, *block;
+
+ new_block = NULL;
+ QTAILQ_FOREACH(block, &ram_list.blocks, next) {
+ if (block->offset == addr) {
+ new_block = block;
+ break;
+ }
+ }
+ assert(new_block);
+ assert(!new_block->idstr[0]);
+
+ if (dev) {
+ char *id = qdev_get_dev_path(dev);
+ if (id) {
+ snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
+ g_free(id);
+ }
+ }
+ pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
+
+ /* This assumes the iothread lock is taken here too. */
+ qemu_mutex_lock_ramlist();
+ QTAILQ_FOREACH(block, &ram_list.blocks, next) {
+ if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
+ fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
+ new_block->idstr);
+ abort();
+ }
+ }
+ qemu_mutex_unlock_ramlist();
+}
+
+static int memory_try_enable_merging(void *addr, size_t len)
+{
+ if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
+ /* disabled by the user */
+ return 0;
+ }
+
+ return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
+}
+
+ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
+ MemoryRegion *mr)
+{
+ RAMBlock *block, *new_block;
+
+ size = TARGET_PAGE_ALIGN(size);
+ new_block = g_malloc0(sizeof(*new_block));
+
+ /* This assumes the iothread lock is taken here too. */
+ qemu_mutex_lock_ramlist();
+ new_block->mr = mr;
+ new_block->offset = find_ram_offset(size);
+ if (host) {
+ new_block->host = host;
+ new_block->flags |= RAM_PREALLOC_MASK;
+ } else {
+ if (mem_path) {
+#if defined (__linux__) && !defined(TARGET_S390X)
+ new_block->host = file_ram_alloc(new_block, size, mem_path);
+ if (!new_block->host) {
+ new_block->host = qemu_anon_ram_alloc(size);
+ memory_try_enable_merging(new_block->host, size);
+ }
+#else
+ fprintf(stderr, "-mem-path option unsupported\n");
+ exit(1);
+#endif
+ } else {
+ if (xen_enabled()) {
+ xen_ram_alloc(new_block->offset, size, mr);
+ } else if (kvm_enabled()) {
+ /* some s390/kvm configurations have special constraints */
+ new_block->host = kvm_ram_alloc(size);
+ } else {
+ new_block->host = qemu_anon_ram_alloc(size);
+ }
+ memory_try_enable_merging(new_block->host, size);
+ }
+ }
+ new_block->length = size;
+
+ /* Keep the list sorted from biggest to smallest block. */
+ QTAILQ_FOREACH(block, &ram_list.blocks, next) {
+ if (block->length < new_block->length) {
+ break;
+ }
+ }
+ if (block) {
+ QTAILQ_INSERT_BEFORE(block, new_block, next);
+ } else {
+ QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
+ }
+ ram_list.mru_block = NULL;
+
+ ram_list.version++;
+ qemu_mutex_unlock_ramlist();
+
+ ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
+ last_ram_offset() >> TARGET_PAGE_BITS);
+ memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
+ 0, size >> TARGET_PAGE_BITS);
+ cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
+
+ qemu_ram_setup_dump(new_block->host, size);
+ qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
+
+ if (kvm_enabled())
+ kvm_setup_guest_memory(new_block->host, size);
+
+ return new_block->offset;
+}
+
+ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
+{
+ return qemu_ram_alloc_from_ptr(size, NULL, mr);
+}
+
+void qemu_ram_free_from_ptr(ram_addr_t addr)
+{
+ RAMBlock *block;
+
+ /* This assumes the iothread lock is taken here too. */
+ qemu_mutex_lock_ramlist();
+ QTAILQ_FOREACH(block, &ram_list.blocks, next) {
+ if (addr == block->offset) {
+ QTAILQ_REMOVE(&ram_list.blocks, block, next);
+ ram_list.mru_block = NULL;
+ ram_list.version++;
+ g_free(block);
+ break;
+ }
+ }
+ qemu_mutex_unlock_ramlist();
+}
+
+void qemu_ram_free(ram_addr_t addr)
+{
+ RAMBlock *block;
+
+ /* This assumes the iothread lock is taken here too. */
+ qemu_mutex_lock_ramlist();
+ QTAILQ_FOREACH(block, &ram_list.blocks, next) {
+ if (addr == block->offset) {
+ QTAILQ_REMOVE(&ram_list.blocks, block, next);
+ ram_list.mru_block = NULL;
+ ram_list.version++;
+ if (block->flags & RAM_PREALLOC_MASK) {
+ ;
+ } else if (mem_path) {
+#if defined (__linux__) && !defined(TARGET_S390X)
+ if (block->fd) {
+ munmap(block->host, block->length);
+ close(block->fd);
+ } else {
+ qemu_anon_ram_free(block->host, block->length);
+ }
+#else
+ abort();
+#endif
+ } else {
+ if (xen_enabled()) {
+ xen_invalidate_map_cache_entry(block->host);
+ } else {
+ qemu_anon_ram_free(block->host, block->length);
+ }
+ }
+ g_free(block);
+ break;
+ }
+ }
+ qemu_mutex_unlock_ramlist();
+
+}
+
+#ifndef _WIN32
+void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
+{
+ RAMBlock *block;
+ ram_addr_t offset;
+ int flags;
+ void *area, *vaddr;
+
+ QTAILQ_FOREACH(block, &ram_list.blocks, next) {
+ offset = addr - block->offset;
+ if (offset < block->length) {
+ vaddr = block->host + offset;
+ if (block->flags & RAM_PREALLOC_MASK) {
+ ;
+ } else {
+ flags = MAP_FIXED;
+ munmap(vaddr, length);
+ if (mem_path) {
+#if defined(__linux__) && !defined(TARGET_S390X)
+ if (block->fd) {
+#ifdef MAP_POPULATE
+ flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
+ MAP_PRIVATE;
+#else
+ flags |= MAP_PRIVATE;
+#endif
+ area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
+ flags, block->fd, offset);
+ } else {
+ flags |= MAP_PRIVATE | MAP_ANONYMOUS;
+ area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
+ flags, -1, 0);
+ }
+#else
+ abort();
+#endif
+ } else {
+#if defined(TARGET_S390X) && defined(CONFIG_KVM)
+ flags |= MAP_SHARED | MAP_ANONYMOUS;
+ area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
+ flags, -1, 0);
+#else
+ flags |= MAP_PRIVATE | MAP_ANONYMOUS;
+ area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
+ flags, -1, 0);
+#endif
+ }
+ if (area != vaddr) {
+ fprintf(stderr, "Could not remap addr: "
+ RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
+ length, addr);
+ exit(1);
+ }
+ memory_try_enable_merging(vaddr, length);
+ qemu_ram_setup_dump(vaddr, length);
+ }
+ return;
+ }
+ }
+}
+#endif /* !_WIN32 */
+
+static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
+{
+ RAMBlock *block;
+
+ /* The list is protected by the iothread lock here. */
+ block = ram_list.mru_block;
+ if (block && addr - block->offset < block->length) {
+ goto found;
+ }
+ QTAILQ_FOREACH(block, &ram_list.blocks, next) {
+ if (addr - block->offset < block->length) {
+ goto found;
+ }
+ }
+
+ fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
+ abort();
+
+found:
+ ram_list.mru_block = block;
+ return block;
+}
+
+/* Return a host pointer to ram allocated with qemu_ram_alloc.
+ With the exception of the softmmu code in this file, this should
+ only be used for local memory (e.g. video ram) that the device owns,
+ and knows it isn't going to access beyond the end of the block.
+
+ It should not be used for general purpose DMA.
+ Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
+ */
+void *qemu_get_ram_ptr(ram_addr_t addr)
+{
+ RAMBlock *block = qemu_get_ram_block(addr);
+
+ if (xen_enabled()) {
+ /* We need to check if the requested address is in the RAM
+ * because we don't want to map the entire memory in QEMU.
+ * In that case just map until the end of the page.
+ */
+ if (block->offset == 0) {
+ return xen_map_cache(addr, 0, 0);
+ } else if (block->host == NULL) {
+ block->host =
+ xen_map_cache(block->offset, block->length, 1);
+ }
+ }
+ return block->host + (addr - block->offset);
+}
+
+/* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
+ * qemu_get_ram_ptr but do not touch ram_list.mru_block.
+ *
+ * ??? Is this still necessary?
+ */
+static void *qemu_safe_ram_ptr(ram_addr_t addr)
+{
+ RAMBlock *block;
+
+ /* The list is protected by the iothread lock here. */
+ QTAILQ_FOREACH(block, &ram_list.blocks, next) {
+ if (addr - block->offset < block->length) {
+ if (xen_enabled()) {
+ /* We need to check if the requested address is in the RAM
+ * because we don't want to map the entire memory in QEMU.
+ * In that case just map until the end of the page.
+ */
+ if (block->offset == 0) {
+ return xen_map_cache(addr, 0, 0);
+ } else if (block->host == NULL) {
+ block->host =
+ xen_map_cache(block->offset, block->length, 1);
+ }
+ }
+ return block->host + (addr - block->offset);
+ }
+ }
+
+ fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
+ abort();
+
+ return NULL;
+}
+
+/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
+ * but takes a size argument */
+static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
+{
+ if (*size == 0) {
+ return NULL;
+ }
+ if (xen_enabled()) {
+ return xen_map_cache(addr, *size, 1);
+ } else {
+ RAMBlock *block;
+
+ QTAILQ_FOREACH(block, &ram_list.blocks, next) {
+ if (addr - block->offset < block->length) {
+ if (addr - block->offset + *size > block->length)
+ *size = block->length - addr + block->offset;
+ return block->host + (addr - block->offset);
+ }
+ }
+
+ fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
+ abort();
+ }
+}
+
+/* Some of the softmmu routines need to translate from a host pointer
+ (typically a TLB entry) back to a ram offset. */
+MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
+{
+ RAMBlock *block;
+ uint8_t *host = ptr;
+
+ if (xen_enabled()) {
+ *ram_addr = xen_ram_addr_from_mapcache(ptr);
+ return qemu_get_ram_block(*ram_addr)->mr;
+ }
+
+ block = ram_list.mru_block;
+ if (block && block->host && host - block->host < block->length) {
+ goto found;
+ }
+
+ QTAILQ_FOREACH(block, &ram_list.blocks, next) {
+ /* This case append when the block is not mapped. */
+ if (block->host == NULL) {
+ continue;
+ }
+ if (host - block->host < block->length) {
+ goto found;
+ }
+ }
+
+ return NULL;
+
+found:
+ *ram_addr = block->offset + (host - block->host);
+ return block->mr;
+}
+
+static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
+ uint64_t val, unsigned size)
+{
+ int dirty_flags;
+ dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
+ if (!(dirty_flags & CODE_DIRTY_FLAG)) {
+ tb_invalidate_phys_page_fast(ram_addr, size);
+ dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
+ }
+ switch (size) {
+ case 1:
+ stb_p(qemu_get_ram_ptr(ram_addr), val);
+ break;
+ case 2:
+ stw_p(qemu_get_ram_ptr(ram_addr), val);
+ break;
+ case 4:
+ stl_p(qemu_get_ram_ptr(ram_addr), val);
+ break;
+ default:
+ abort();
+ }
+ dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
+ cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
+ /* we remove the notdirty callback only if the code has been
+ flushed */
+ if (dirty_flags == 0xff) {
+ CPUArchState *env = current_cpu->env_ptr;
+ tlb_set_dirty(env, env->mem_io_vaddr);
+ }
+}
+
+static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
+ unsigned size, bool is_write)
+{
+ return is_write;
+}
+
+static const MemoryRegionOps notdirty_mem_ops = {
+ .write = notdirty_mem_write,
+ .valid.accepts = notdirty_mem_accepts,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+/* Generate a debug exception if a watchpoint has been hit. */
+static void check_watchpoint(int offset, int len_mask, int flags)
+{
+ CPUArchState *env = current_cpu->env_ptr;
+ target_ulong pc, cs_base;
+ target_ulong vaddr;
+ CPUWatchpoint *wp;
+ int cpu_flags;
+
+ if (env->watchpoint_hit) {
+ /* We re-entered the check after replacing the TB. Now raise
+ * the debug interrupt so that is will trigger after the
+ * current instruction. */
+ cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
+ return;
+ }
+ vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
+ QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
+ if ((vaddr == (wp->vaddr & len_mask) ||
+ (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
+ wp->flags |= BP_WATCHPOINT_HIT;
+ if (!env->watchpoint_hit) {
+ env->watchpoint_hit = wp;
+ tb_check_watchpoint(env);
+ if (wp->flags & BP_STOP_BEFORE_ACCESS) {
+ env->exception_index = EXCP_DEBUG;
+ cpu_loop_exit(env);
+ } else {
+ cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
+ tb_gen_code(env, pc, cs_base, cpu_flags, 1);
+ cpu_resume_from_signal(env, NULL);
+ }
+ }
+ } else {
+ wp->flags &= ~BP_WATCHPOINT_HIT;
+ }
+ }
+}
+
+/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
+ so these check for a hit then pass through to the normal out-of-line
+ phys routines. */
+static uint64_t watch_mem_read(void *opaque, hwaddr addr,
+ unsigned size)
+{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
+ switch (size) {
+ case 1: return ldub_phys(addr);
+ case 2: return lduw_phys(addr);
+ case 4: return ldl_phys(addr);
+ default: abort();
+ }
+}
+
+static void watch_mem_write(void *opaque, hwaddr addr,
+ uint64_t val, unsigned size)
+{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
+ switch (size) {
+ case 1:
+ stb_phys(addr, val);
+ break;
+ case 2:
+ stw_phys(addr, val);
+ break;
+ case 4:
+ stl_phys(addr, val);
+ break;
+ default: abort();
+ }
+}
+
+static const MemoryRegionOps watch_mem_ops = {
+ .read = watch_mem_read,
+ .write = watch_mem_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+static uint64_t subpage_read(void *opaque, hwaddr addr,
+ unsigned len)
+{
+ subpage_t *subpage = opaque;
+ uint8_t buf[4];
+
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
+ subpage, len, addr);
+#endif
+ address_space_read(subpage->as, addr + subpage->base, buf, len);
+ switch (len) {
+ case 1:
+ return ldub_p(buf);
+ case 2:
+ return lduw_p(buf);
+ case 4:
+ return ldl_p(buf);
+ default:
+ abort();
+ }
+}
+
+static void subpage_write(void *opaque, hwaddr addr,
+ uint64_t value, unsigned len)
+{
+ subpage_t *subpage = opaque;
+ uint8_t buf[4];
+
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: subpage %p len %d addr " TARGET_FMT_plx
+ " value %"PRIx64"\n",
+ __func__, subpage, len, addr, value);
+#endif
+ switch (len) {
+ case 1:
+ stb_p(buf, value);
+ break;
+ case 2:
+ stw_p(buf, value);
+ break;
+ case 4:
+ stl_p(buf, value);
+ break;
+ default:
+ abort();
+ }
+ address_space_write(subpage->as, addr + subpage->base, buf, len);
+}
+
+static bool subpage_accepts(void *opaque, hwaddr addr,
+ unsigned size, bool is_write)
+{
+ subpage_t *subpage = opaque;
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
+ __func__, subpage, is_write ? 'w' : 'r', len, addr);
+#endif
+
+ return address_space_access_valid(subpage->as, addr + subpage->base,
+ size, is_write);
+}
+
+static const MemoryRegionOps subpage_ops = {
+ .read = subpage_read,
+ .write = subpage_write,
+ .valid.accepts = subpage_accepts,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
+ uint16_t section)
+{
+ int idx, eidx;
+
+ if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
+ return -1;
+ idx = SUBPAGE_IDX(start);
+ eidx = SUBPAGE_IDX(end);
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
+ mmio, start, end, idx, eidx, memory);
+#endif
+ for (; idx <= eidx; idx++) {
+ mmio->sub_section[idx] = section;
+ }
+
+ return 0;
+}
+
+static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
+{
+ subpage_t *mmio;
+
+ mmio = g_malloc0(sizeof(subpage_t));
+
+ mmio->as = as;
+ mmio->base = base;
+ memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
+ "subpage", TARGET_PAGE_SIZE);
+ mmio->iomem.subpage = true;
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
+ mmio, base, TARGET_PAGE_SIZE, subpage_memory);
+#endif
+ subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
+
+ return mmio;
+}
+
+static uint16_t dummy_section(MemoryRegion *mr)
+{
+ MemoryRegionSection section = {
+ .mr = mr,
+ .offset_within_address_space = 0,
+ .offset_within_region = 0,
+ .size = int128_2_64(),
+ };
+
+ return phys_section_add(&section);
+}
+
+MemoryRegion *iotlb_to_region(hwaddr index)
+{
+ return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
+}
+
+static void io_mem_init(void)
+{
+ memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
+ memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
+ "unassigned", UINT64_MAX);
+ memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
+ "notdirty", UINT64_MAX);
+ memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
+ "watch", UINT64_MAX);
+}
+
+static void mem_begin(MemoryListener *listener)
+{
+ AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
+ AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
+
+ d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
+ d->as = as;
+ as->next_dispatch = d;
+}
+
+static void mem_commit(MemoryListener *listener)
+{
+ AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
+ AddressSpaceDispatch *cur = as->dispatch;
+ AddressSpaceDispatch *next = as->next_dispatch;
+
+ next->nodes = next_map.nodes;
+ next->sections = next_map.sections;
+
+ as->dispatch = next;
+ g_free(cur);
+}
+
+static void core_begin(MemoryListener *listener)
+{
+ uint16_t n;
+
+ prev_map = g_new(PhysPageMap, 1);
+ *prev_map = next_map;
+
+ memset(&next_map, 0, sizeof(next_map));
+ n = dummy_section(&io_mem_unassigned);
+ assert(n == PHYS_SECTION_UNASSIGNED);
+ n = dummy_section(&io_mem_notdirty);
+ assert(n == PHYS_SECTION_NOTDIRTY);
+ n = dummy_section(&io_mem_rom);
+ assert(n == PHYS_SECTION_ROM);
+ n = dummy_section(&io_mem_watch);
+ assert(n == PHYS_SECTION_WATCH);
+}
+
+/* This listener's commit run after the other AddressSpaceDispatch listeners'.
+ * All AddressSpaceDispatch instances have switched to the next map.
+ */
+static void core_commit(MemoryListener *listener)
+{
+ phys_sections_free(prev_map);
+}
+
+static void tcg_commit(MemoryListener *listener)
+{
+ CPUState *cpu;
+
+ /* since each CPU stores ram addresses in its TLB cache, we must
+ reset the modified entries */
+ /* XXX: slow ! */
+ for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
+ CPUArchState *env = cpu->env_ptr;
+
+ tlb_flush(env, 1);
+ }
+}
+
+static void core_log_global_start(MemoryListener *listener)
+{
+ cpu_physical_memory_set_dirty_tracking(1);
+}
+
+static void core_log_global_stop(MemoryListener *listener)
+{
+ cpu_physical_memory_set_dirty_tracking(0);
+}
+
+static MemoryListener core_memory_listener = {
+ .begin = core_begin,
+ .commit = core_commit,
+ .log_global_start = core_log_global_start,
+ .log_global_stop = core_log_global_stop,
+ .priority = 1,
+};
+
+static MemoryListener tcg_memory_listener = {
+ .commit = tcg_commit,
+};
+
+void address_space_init_dispatch(AddressSpace *as)
+{
+ as->dispatch = NULL;
+ as->dispatch_listener = (MemoryListener) {
+ .begin = mem_begin,
+ .commit = mem_commit,
+ .region_add = mem_add,
+ .region_nop = mem_add,
+ .priority = 0,
+ };
+ memory_listener_register(&as->dispatch_listener, as);
+}
+
+void address_space_destroy_dispatch(AddressSpace *as)
+{
+ AddressSpaceDispatch *d = as->dispatch;
+
+ memory_listener_unregister(&as->dispatch_listener);
+ g_free(d);
+ as->dispatch = NULL;
+}
+
+static void memory_map_init(void)
+{
+ system_memory = g_malloc(sizeof(*system_memory));
+ memory_region_init(system_memory, NULL, "system", INT64_MAX);
+ address_space_init(&address_space_memory, system_memory, "memory");
+
+ system_io = g_malloc(sizeof(*system_io));
+ memory_region_init(system_io, NULL, "io", 65536);
+ address_space_init(&address_space_io, system_io, "I/O");
+
+ memory_listener_register(&core_memory_listener, &address_space_memory);
+ memory_listener_register(&tcg_memory_listener, &address_space_memory);
+}
+
+MemoryRegion *get_system_memory(void)
+{
+ return system_memory;
+}
+
+MemoryRegion *get_system_io(void)
+{
+ return system_io;
+}
+
+#endif /* !defined(CONFIG_USER_ONLY) */
+
+/* physical memory access (slow version, mainly for debug) */
+#if defined(CONFIG_USER_ONLY)
+int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
+ uint8_t *buf, int len, int is_write)
+{
+ int l, flags;
+ target_ulong page;
+ void * p;
+
+ while (len > 0) {
+ page = addr & TARGET_PAGE_MASK;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ flags = page_get_flags(page);
+ if (!(flags & PAGE_VALID))
+ return -1;
+ if (is_write) {
+ if (!(flags & PAGE_WRITE))
+ return -1;
+ /* XXX: this code should not depend on lock_user */
+ if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
+ return -1;
+ memcpy(p, buf, l);
+ unlock_user(p, addr, l);
+ } else {
+ if (!(flags & PAGE_READ))
+ return -1;
+ /* XXX: this code should not depend on lock_user */
+ if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
+ return -1;
+ memcpy(buf, p, l);
+ unlock_user(p, addr, 0);
+ }
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+ return 0;
+}
+
+#else
+
+static void invalidate_and_set_dirty(hwaddr addr,
+ hwaddr length)
+{
+ if (!cpu_physical_memory_is_dirty(addr)) {
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr, addr + length, 0);
+ /* set dirty bit */
+ cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
+ }
+ xen_modified_memory(addr, length);
+}
+
+static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
+{
+ if (memory_region_is_ram(mr)) {
+ return !(is_write && mr->readonly);
+ }
+ if (memory_region_is_romd(mr)) {
+ return !is_write;
+ }
+
+ return false;
+}
+
+static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
+{
+ unsigned access_size_max = mr->ops->valid.max_access_size;
+
+ /* Regions are assumed to support 1-4 byte accesses unless
+ otherwise specified. */
+ if (access_size_max == 0) {
+ access_size_max = 4;
+ }
+
+ /* Bound the maximum access by the alignment of the address. */
+ if (!mr->ops->impl.unaligned) {
+ unsigned align_size_max = addr & -addr;
+ if (align_size_max != 0 && align_size_max < access_size_max) {
+ access_size_max = align_size_max;
+ }
+ }
+
+ /* Don't attempt accesses larger than the maximum. */
+ if (l > access_size_max) {
+ l = access_size_max;
+ }
+
+ return l;
+}
+
+bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
+ int len, bool is_write)
+{
+ hwaddr l;
+ uint8_t *ptr;
+ uint64_t val;
+ hwaddr addr1;
+ MemoryRegion *mr;
+ bool error = false;
+
+ while (len > 0) {
+ l = len;
+ mr = address_space_translate(as, addr, &addr1, &l, is_write);
+
+ if (is_write) {
+ if (!memory_access_is_direct(mr, is_write)) {
+ l = memory_access_size(mr, l, addr1);
+ /* XXX: could force current_cpu to NULL to avoid
+ potential bugs */
+ switch (l) {
+ case 8:
+ /* 64 bit write access */
+ val = ldq_p(buf);
+ error |= io_mem_write(mr, addr1, val, 8);
+ break;
+ case 4:
+ /* 32 bit write access */
+ val = ldl_p(buf);
+ error |= io_mem_write(mr, addr1, val, 4);
+ break;
+ case 2:
+ /* 16 bit write access */
+ val = lduw_p(buf);
+ error |= io_mem_write(mr, addr1, val, 2);
+ break;
+ case 1:
+ /* 8 bit write access */
+ val = ldub_p(buf);
+ error |= io_mem_write(mr, addr1, val, 1);
+ break;
+ default:
+ abort();
+ }
+ } else {
+ addr1 += memory_region_get_ram_addr(mr);
+ /* RAM case */
+ ptr = qemu_get_ram_ptr(addr1);
+ memcpy(ptr, buf, l);
+ invalidate_and_set_dirty(addr1, l);
+ }
+ } else {
+ if (!memory_access_is_direct(mr, is_write)) {
+ /* I/O case */
+ l = memory_access_size(mr, l, addr1);
+ switch (l) {
+ case 8:
+ /* 64 bit read access */
+ error |= io_mem_read(mr, addr1, &val, 8);
+ stq_p(buf, val);
+ break;
+ case 4:
+ /* 32 bit read access */
+ error |= io_mem_read(mr, addr1, &val, 4);
+ stl_p(buf, val);
+ break;
+ case 2:
+ /* 16 bit read access */
+ error |= io_mem_read(mr, addr1, &val, 2);
+ stw_p(buf, val);
+ break;
+ case 1:
+ /* 8 bit read access */
+ error |= io_mem_read(mr, addr1, &val, 1);
+ stb_p(buf, val);
+ break;
+ default:
+ abort();
+ }
+ } else {
+ /* RAM case */
+ ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
+ memcpy(buf, ptr, l);
+ }
+ }
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+
+ return error;
+}
+
+bool address_space_write(AddressSpace *as, hwaddr addr,
+ const uint8_t *buf, int len)
+{
+ return address_space_rw(as, addr, (uint8_t *)buf, len, true);
+}
+
+bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
+{
+ return address_space_rw(as, addr, buf, len, false);
+}
+
+
+void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
+ int len, int is_write)
+{
+ address_space_rw(&address_space_memory, addr, buf, len, is_write);
+}
+
+/* used for ROM loading : can write in RAM and ROM */
+void cpu_physical_memory_write_rom(hwaddr addr,
+ const uint8_t *buf, int len)
+{
+ hwaddr l;
+ uint8_t *ptr;
+ hwaddr addr1;
+ MemoryRegion *mr;
+
+ while (len > 0) {
+ l = len;
+ mr = address_space_translate(&address_space_memory,
+ addr, &addr1, &l, true);
+
+ if (!(memory_region_is_ram(mr) ||
+ memory_region_is_romd(mr))) {
+ /* do nothing */
+ } else {
+ addr1 += memory_region_get_ram_addr(mr);
+ /* ROM/RAM case */
+ ptr = qemu_get_ram_ptr(addr1);
+ memcpy(ptr, buf, l);
+ invalidate_and_set_dirty(addr1, l);
+ }
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+}
+
+typedef struct {
+ MemoryRegion *mr;
+ void *buffer;
+ hwaddr addr;
+ hwaddr len;
+} BounceBuffer;
+
+static BounceBuffer bounce;
+
+typedef struct MapClient {
+ void *opaque;
+ void (*callback)(void *opaque);
+ QLIST_ENTRY(MapClient) link;
+} MapClient;
+
+static QLIST_HEAD(map_client_list, MapClient) map_client_list
+ = QLIST_HEAD_INITIALIZER(map_client_list);
+
+void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
+{
+ MapClient *client = g_malloc(sizeof(*client));
+
+ client->opaque = opaque;
+ client->callback = callback;
+ QLIST_INSERT_HEAD(&map_client_list, client, link);
+ return client;
+}
+
+static void cpu_unregister_map_client(void *_client)
+{
+ MapClient *client = (MapClient *)_client;
+
+ QLIST_REMOVE(client, link);
+ g_free(client);
+}
+
+static void cpu_notify_map_clients(void)
+{
+ MapClient *client;
+
+ while (!QLIST_EMPTY(&map_client_list)) {
+ client = QLIST_FIRST(&map_client_list);
+ client->callback(client->opaque);
+ cpu_unregister_map_client(client);
+ }
+}
+
+bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
+{
+ MemoryRegion *mr;
+ hwaddr l, xlat;
+
+ while (len > 0) {
+ l = len;
+ mr = address_space_translate(as, addr, &xlat, &l, is_write);
+ if (!memory_access_is_direct(mr, is_write)) {
+ l = memory_access_size(mr, l, addr);
+ if (!memory_region_access_valid(mr, xlat, l, is_write)) {
+ return false;
+ }
+ }
+
+ len -= l;
+ addr += l;
+ }
+ return true;
+}
+
+/* Map a physical memory region into a host virtual address.
+ * May map a subset of the requested range, given by and returned in *plen.
+ * May return NULL if resources needed to perform the mapping are exhausted.
+ * Use only for reads OR writes - not for read-modify-write operations.
+ * Use cpu_register_map_client() to know when retrying the map operation is
+ * likely to succeed.
+ */
+void *address_space_map(AddressSpace *as,
+ hwaddr addr,
+ hwaddr *plen,
+ bool is_write)
+{
+ hwaddr len = *plen;
+ hwaddr done = 0;
+ hwaddr l, xlat, base;
+ MemoryRegion *mr, *this_mr;
+ ram_addr_t raddr;
+
+ if (len == 0) {
+ return NULL;
+ }
+
+ l = len;
+ mr = address_space_translate(as, addr, &xlat, &l, is_write);
+ if (!memory_access_is_direct(mr, is_write)) {
+ if (bounce.buffer) {
+ return NULL;
+ }
+ bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
+ bounce.addr = addr;
+ bounce.len = l;
+
+ memory_region_ref(mr);
+ bounce.mr = mr;
+ if (!is_write) {
+ address_space_read(as, addr, bounce.buffer, l);
+ }
+
+ *plen = l;
+ return bounce.buffer;
+ }
+
+ base = xlat;
+ raddr = memory_region_get_ram_addr(mr);
+
+ for (;;) {
+ len -= l;
+ addr += l;
+ done += l;
+ if (len == 0) {
+ break;
+ }
+
+ l = len;
+ this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
+ if (this_mr != mr || xlat != base + done) {
+ break;
+ }
+ }
+
+ memory_region_ref(mr);
+ *plen = done;
+ return qemu_ram_ptr_length(raddr + base, plen);
+}
+
+/* Unmaps a memory region previously mapped by address_space_map().
+ * Will also mark the memory as dirty if is_write == 1. access_len gives
+ * the amount of memory that was actually read or written by the caller.
+ */
+void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
+ int is_write, hwaddr access_len)
+{
+ if (buffer != bounce.buffer) {
+ MemoryRegion *mr;
+ ram_addr_t addr1;
+
+ mr = qemu_ram_addr_from_host(buffer, &addr1);
+ assert(mr != NULL);
+ if (is_write) {
+ while (access_len) {
+ unsigned l;
+ l = TARGET_PAGE_SIZE;
+ if (l > access_len)
+ l = access_len;
+ invalidate_and_set_dirty(addr1, l);
+ addr1 += l;
+ access_len -= l;
+ }
+ }
+ if (xen_enabled()) {
+ xen_invalidate_map_cache_entry(buffer);
+ }
+ memory_region_unref(mr);
+ return;
+ }
+ if (is_write) {
+ address_space_write(as, bounce.addr, bounce.buffer, access_len);
+ }
+ qemu_vfree(bounce.buffer);
+ bounce.buffer = NULL;
+ memory_region_unref(bounce.mr);
+ cpu_notify_map_clients();
+}
+
+void *cpu_physical_memory_map(hwaddr addr,
+ hwaddr *plen,
+ int is_write)
+{
+ return address_space_map(&address_space_memory, addr, plen, is_write);
+}
+
+void cpu_physical_memory_unmap(void *buffer, hwaddr len,
+ int is_write, hwaddr access_len)
+{
+ return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
+}
+
+/* warning: addr must be aligned */
+static inline uint32_t ldl_phys_internal(hwaddr addr,
+ enum device_endian endian)
+{
+ uint8_t *ptr;
+ uint64_t val;
+ MemoryRegion *mr;
+ hwaddr l = 4;
+ hwaddr addr1;
+
+ mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
+ false);
+ if (l < 4 || !memory_access_is_direct(mr, false)) {
+ /* I/O case */
+ io_mem_read(mr, addr1, &val, 4);
+#if defined(TARGET_WORDS_BIGENDIAN)
+ if (endian == DEVICE_LITTLE_ENDIAN) {
+ val = bswap32(val);
+ }
+#else
+ if (endian == DEVICE_BIG_ENDIAN) {
+ val = bswap32(val);
+ }
+#endif
+ } else {
+ /* RAM case */
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
+ & TARGET_PAGE_MASK)
+ + addr1);
+ switch (endian) {
+ case DEVICE_LITTLE_ENDIAN:
+ val = ldl_le_p(ptr);
+ break;
+ case DEVICE_BIG_ENDIAN:
+ val = ldl_be_p(ptr);
+ break;
+ default:
+ val = ldl_p(ptr);
+ break;
+ }
+ }
+ return val;
+}
+
+uint32_t ldl_phys(hwaddr addr)
+{
+ return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
+}
+
+uint32_t ldl_le_phys(hwaddr addr)
+{
+ return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
+}
+
+uint32_t ldl_be_phys(hwaddr addr)
+{
+ return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
+}
+
+/* warning: addr must be aligned */
+static inline uint64_t ldq_phys_internal(hwaddr addr,
+ enum device_endian endian)
+{
+ uint8_t *ptr;
+ uint64_t val;
+ MemoryRegion *mr;
+ hwaddr l = 8;
+ hwaddr addr1;
+
+ mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
+ false);
+ if (l < 8 || !memory_access_is_direct(mr, false)) {
+ /* I/O case */
+ io_mem_read(mr, addr1, &val, 8);
+#if defined(TARGET_WORDS_BIGENDIAN)
+ if (endian == DEVICE_LITTLE_ENDIAN) {
+ val = bswap64(val);
+ }
+#else
+ if (endian == DEVICE_BIG_ENDIAN) {
+ val = bswap64(val);
+ }
+#endif
+ } else {
+ /* RAM case */
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
+ & TARGET_PAGE_MASK)
+ + addr1);
+ switch (endian) {
+ case DEVICE_LITTLE_ENDIAN:
+ val = ldq_le_p(ptr);
+ break;
+ case DEVICE_BIG_ENDIAN:
+ val = ldq_be_p(ptr);
+ break;
+ default:
+ val = ldq_p(ptr);
+ break;
+ }
+ }
+ return val;
+}
+
+uint64_t ldq_phys(hwaddr addr)
+{
+ return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
+}
+
+uint64_t ldq_le_phys(hwaddr addr)
+{
+ return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
+}
+
+uint64_t ldq_be_phys(hwaddr addr)
+{
+ return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
+}
+
+/* XXX: optimize */
+uint32_t ldub_phys(hwaddr addr)
+{
+ uint8_t val;
+ cpu_physical_memory_read(addr, &val, 1);
+ return val;
+}
+
+/* warning: addr must be aligned */
+static inline uint32_t lduw_phys_internal(hwaddr addr,
+ enum device_endian endian)
+{
+ uint8_t *ptr;
+ uint64_t val;
+ MemoryRegion *mr;
+ hwaddr l = 2;
+ hwaddr addr1;
+
+ mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
+ false);
+ if (l < 2 || !memory_access_is_direct(mr, false)) {
+ /* I/O case */
+ io_mem_read(mr, addr1, &val, 2);
+#if defined(TARGET_WORDS_BIGENDIAN)
+ if (endian == DEVICE_LITTLE_ENDIAN) {
+ val = bswap16(val);
+ }
+#else
+ if (endian == DEVICE_BIG_ENDIAN) {
+ val = bswap16(val);
+ }
+#endif
+ } else {
+ /* RAM case */
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
+ & TARGET_PAGE_MASK)
+ + addr1);
+ switch (endian) {
+ case DEVICE_LITTLE_ENDIAN:
+ val = lduw_le_p(ptr);
+ break;
+ case DEVICE_BIG_ENDIAN:
+ val = lduw_be_p(ptr);
+ break;
+ default:
+ val = lduw_p(ptr);
+ break;
+ }
+ }
+ return val;
+}
+
+uint32_t lduw_phys(hwaddr addr)
+{
+ return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
+}
+
+uint32_t lduw_le_phys(hwaddr addr)
+{
+ return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
+}
+
+uint32_t lduw_be_phys(hwaddr addr)
+{
+ return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
+}
+
+/* warning: addr must be aligned. The ram page is not masked as dirty
+ and the code inside is not invalidated. It is useful if the dirty
+ bits are used to track modified PTEs */
+void stl_phys_notdirty(hwaddr addr, uint32_t val)
+{
+ uint8_t *ptr;
+ MemoryRegion *mr;
+ hwaddr l = 4;
+ hwaddr addr1;
+
+ mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
+ true);
+ if (l < 4 || !memory_access_is_direct(mr, true)) {
+ io_mem_write(mr, addr1, val, 4);
+ } else {
+ addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
+ ptr = qemu_get_ram_ptr(addr1);
+ stl_p(ptr, val);
+
+ if (unlikely(in_migration)) {
+ if (!cpu_physical_memory_is_dirty(addr1)) {
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
+ /* set dirty bit */
+ cpu_physical_memory_set_dirty_flags(
+ addr1, (0xff & ~CODE_DIRTY_FLAG));
+ }
+ }
+ }
+}
+
+/* warning: addr must be aligned */
+static inline void stl_phys_internal(hwaddr addr, uint32_t val,
+ enum device_endian endian)
+{
+ uint8_t *ptr;
+ MemoryRegion *mr;
+ hwaddr l = 4;
+ hwaddr addr1;
+
+ mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
+ true);
+ if (l < 4 || !memory_access_is_direct(mr, true)) {
+#if defined(TARGET_WORDS_BIGENDIAN)
+ if (endian == DEVICE_LITTLE_ENDIAN) {
+ val = bswap32(val);
+ }
+#else
+ if (endian == DEVICE_BIG_ENDIAN) {
+ val = bswap32(val);
+ }
+#endif
+ io_mem_write(mr, addr1, val, 4);
+ } else {
+ /* RAM case */
+ addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
+ ptr = qemu_get_ram_ptr(addr1);
+ switch (endian) {
+ case DEVICE_LITTLE_ENDIAN:
+ stl_le_p(ptr, val);
+ break;
+ case DEVICE_BIG_ENDIAN:
+ stl_be_p(ptr, val);
+ break;
+ default:
+ stl_p(ptr, val);
+ break;
+ }
+ invalidate_and_set_dirty(addr1, 4);
+ }
+}
+
+void stl_phys(hwaddr addr, uint32_t val)
+{
+ stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
+}
+
+void stl_le_phys(hwaddr addr, uint32_t val)
+{
+ stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
+}
+
+void stl_be_phys(hwaddr addr, uint32_t val)
+{
+ stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
+}
+
+/* XXX: optimize */
+void stb_phys(hwaddr addr, uint32_t val)
+{
+ uint8_t v = val;
+ cpu_physical_memory_write(addr, &v, 1);
+}
+
+/* warning: addr must be aligned */
+static inline void stw_phys_internal(hwaddr addr, uint32_t val,
+ enum device_endian endian)
+{
+ uint8_t *ptr;
+ MemoryRegion *mr;
+ hwaddr l = 2;
+ hwaddr addr1;
+
+ mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
+ true);
+ if (l < 2 || !memory_access_is_direct(mr, true)) {
+#if defined(TARGET_WORDS_BIGENDIAN)
+ if (endian == DEVICE_LITTLE_ENDIAN) {
+ val = bswap16(val);
+ }
+#else
+ if (endian == DEVICE_BIG_ENDIAN) {
+ val = bswap16(val);
+ }
+#endif
+ io_mem_write(mr, addr1, val, 2);
+ } else {
+ /* RAM case */
+ addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
+ ptr = qemu_get_ram_ptr(addr1);
+ switch (endian) {
+ case DEVICE_LITTLE_ENDIAN:
+ stw_le_p(ptr, val);
+ break;
+ case DEVICE_BIG_ENDIAN:
+ stw_be_p(ptr, val);
+ break;
+ default:
+ stw_p(ptr, val);
+ break;
+ }
+ invalidate_and_set_dirty(addr1, 2);
+ }
+}
+
+void stw_phys(hwaddr addr, uint32_t val)
+{
+ stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
+}
+
+void stw_le_phys(hwaddr addr, uint32_t val)
+{
+ stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
+}
+
+void stw_be_phys(hwaddr addr, uint32_t val)
+{
+ stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
+}
+
+/* XXX: optimize */
+void stq_phys(hwaddr addr, uint64_t val)
+{
+ val = tswap64(val);
+ cpu_physical_memory_write(addr, &val, 8);
+}
+
+void stq_le_phys(hwaddr addr, uint64_t val)
+{
+ val = cpu_to_le64(val);
+ cpu_physical_memory_write(addr, &val, 8);
+}
+
+void stq_be_phys(hwaddr addr, uint64_t val)
+{
+ val = cpu_to_be64(val);
+ cpu_physical_memory_write(addr, &val, 8);
+}
+
+/* virtual memory access for debug (includes writing to ROM) */
+int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
+ uint8_t *buf, int len, int is_write)
+{
+ int l;
+ hwaddr phys_addr;
+ target_ulong page;
+
+ while (len > 0) {
+ page = addr & TARGET_PAGE_MASK;
+ phys_addr = cpu_get_phys_page_debug(cpu, page);
+ /* if no physical page mapped, return an error */
+ if (phys_addr == -1)
+ return -1;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ phys_addr += (addr & ~TARGET_PAGE_MASK);
+ if (is_write)
+ cpu_physical_memory_write_rom(phys_addr, buf, l);
+ else
+ cpu_physical_memory_rw(phys_addr, buf, l, is_write);
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+ return 0;
+}
+#endif
+
+#if !defined(CONFIG_USER_ONLY)
+
+/*
+ * A helper function for the _utterly broken_ virtio device model to find out if
+ * it's running on a big endian machine. Don't do this at home kids!
+ */
+bool virtio_is_big_endian(void);
+bool virtio_is_big_endian(void)
+{
+#if defined(TARGET_WORDS_BIGENDIAN)
+ return true;
+#else
+ return false;
+#endif
+}
+
+#endif
+
+#ifndef CONFIG_USER_ONLY
+bool cpu_physical_memory_is_io(hwaddr phys_addr)
+{
+ MemoryRegion*mr;
+ hwaddr l = 1;
+
+ mr = address_space_translate(&address_space_memory,
+ phys_addr, &phys_addr, &l, false);
+
+ return !(memory_region_is_ram(mr) ||
+ memory_region_is_romd(mr));
+}
+
+void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
+{
+ RAMBlock *block;
+
+ QTAILQ_FOREACH(block, &ram_list.blocks, next) {
+ func(block->host, block->offset, block->length, opaque);
+ }
+}
+#endif