diff options
author | Gui Chen <gui.chen@intel.com> | 2014-08-01 02:25:56 -0400 |
---|---|---|
committer | Gui Chen <gui.chen@intel.com> | 2014-08-01 02:25:56 -0400 |
commit | 6bedc38620a0358406b933725234f6615eed96be (patch) | |
tree | ac3085313c069ba8d035984fa5754675d46c718c /exec.c | |
download | qemu-arm-static-6bedc38620a0358406b933725234f6615eed96be.tar.gz qemu-arm-static-6bedc38620a0358406b933725234f6615eed96be.tar.bz2 qemu-arm-static-6bedc38620a0358406b933725234f6615eed96be.zip |
initial commitupstream/1.6.0rc3upstream/1.5.93
Signed-off-by: Gui Chen <gui.chen@intel.com>
Diffstat (limited to 'exec.c')
-rw-r--r-- | exec.c | 2683 |
1 files changed, 2683 insertions, 0 deletions
@@ -0,0 +1,2683 @@ +/* + * Virtual page mapping + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ +#include "config.h" +#ifdef _WIN32 +#include <windows.h> +#else +#include <sys/types.h> +#include <sys/mman.h> +#endif + +#include "qemu-common.h" +#include "cpu.h" +#include "tcg.h" +#include "hw/hw.h" +#include "hw/qdev.h" +#include "qemu/osdep.h" +#include "sysemu/kvm.h" +#include "sysemu/sysemu.h" +#include "hw/xen/xen.h" +#include "qemu/timer.h" +#include "qemu/config-file.h" +#include "exec/memory.h" +#include "sysemu/dma.h" +#include "exec/address-spaces.h" +#if defined(CONFIG_USER_ONLY) +#include <qemu.h> +#else /* !CONFIG_USER_ONLY */ +#include "sysemu/xen-mapcache.h" +#include "trace.h" +#endif +#include "exec/cpu-all.h" + +#include "exec/cputlb.h" +#include "translate-all.h" + +#include "exec/memory-internal.h" + +//#define DEBUG_SUBPAGE + +#if !defined(CONFIG_USER_ONLY) +static int in_migration; + +RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) }; + +static MemoryRegion *system_memory; +static MemoryRegion *system_io; + +AddressSpace address_space_io; +AddressSpace address_space_memory; + +MemoryRegion io_mem_rom, io_mem_notdirty; +static MemoryRegion io_mem_unassigned; + +#endif + +CPUState *first_cpu; +/* current CPU in the current thread. It is only valid inside + cpu_exec() */ +DEFINE_TLS(CPUState *, current_cpu); +/* 0 = Do not count executed instructions. + 1 = Precise instruction counting. + 2 = Adaptive rate instruction counting. */ +int use_icount; + +#if !defined(CONFIG_USER_ONLY) + +typedef struct PhysPageEntry PhysPageEntry; + +struct PhysPageEntry { + uint16_t is_leaf : 1; + /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */ + uint16_t ptr : 15; +}; + +typedef PhysPageEntry Node[L2_SIZE]; + +struct AddressSpaceDispatch { + /* This is a multi-level map on the physical address space. + * The bottom level has pointers to MemoryRegionSections. + */ + PhysPageEntry phys_map; + Node *nodes; + MemoryRegionSection *sections; + AddressSpace *as; +}; + +#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) +typedef struct subpage_t { + MemoryRegion iomem; + AddressSpace *as; + hwaddr base; + uint16_t sub_section[TARGET_PAGE_SIZE]; +} subpage_t; + +#define PHYS_SECTION_UNASSIGNED 0 +#define PHYS_SECTION_NOTDIRTY 1 +#define PHYS_SECTION_ROM 2 +#define PHYS_SECTION_WATCH 3 + +typedef struct PhysPageMap { + unsigned sections_nb; + unsigned sections_nb_alloc; + unsigned nodes_nb; + unsigned nodes_nb_alloc; + Node *nodes; + MemoryRegionSection *sections; +} PhysPageMap; + +static PhysPageMap *prev_map; +static PhysPageMap next_map; + +#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1) + +static void io_mem_init(void); +static void memory_map_init(void); +static void *qemu_safe_ram_ptr(ram_addr_t addr); + +static MemoryRegion io_mem_watch; +#endif + +#if !defined(CONFIG_USER_ONLY) + +static void phys_map_node_reserve(unsigned nodes) +{ + if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) { + next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2, + 16); + next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc, + next_map.nodes_nb + nodes); + next_map.nodes = g_renew(Node, next_map.nodes, + next_map.nodes_nb_alloc); + } +} + +static uint16_t phys_map_node_alloc(void) +{ + unsigned i; + uint16_t ret; + + ret = next_map.nodes_nb++; + assert(ret != PHYS_MAP_NODE_NIL); + assert(ret != next_map.nodes_nb_alloc); + for (i = 0; i < L2_SIZE; ++i) { + next_map.nodes[ret][i].is_leaf = 0; + next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL; + } + return ret; +} + +static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index, + hwaddr *nb, uint16_t leaf, + int level) +{ + PhysPageEntry *p; + int i; + hwaddr step = (hwaddr)1 << (level * L2_BITS); + + if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) { + lp->ptr = phys_map_node_alloc(); + p = next_map.nodes[lp->ptr]; + if (level == 0) { + for (i = 0; i < L2_SIZE; i++) { + p[i].is_leaf = 1; + p[i].ptr = PHYS_SECTION_UNASSIGNED; + } + } + } else { + p = next_map.nodes[lp->ptr]; + } + lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)]; + + while (*nb && lp < &p[L2_SIZE]) { + if ((*index & (step - 1)) == 0 && *nb >= step) { + lp->is_leaf = true; + lp->ptr = leaf; + *index += step; + *nb -= step; + } else { + phys_page_set_level(lp, index, nb, leaf, level - 1); + } + ++lp; + } +} + +static void phys_page_set(AddressSpaceDispatch *d, + hwaddr index, hwaddr nb, + uint16_t leaf) +{ + /* Wildly overreserve - it doesn't matter much. */ + phys_map_node_reserve(3 * P_L2_LEVELS); + + phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); +} + +static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index, + Node *nodes, MemoryRegionSection *sections) +{ + PhysPageEntry *p; + int i; + + for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) { + if (lp.ptr == PHYS_MAP_NODE_NIL) { + return §ions[PHYS_SECTION_UNASSIGNED]; + } + p = nodes[lp.ptr]; + lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)]; + } + return §ions[lp.ptr]; +} + +bool memory_region_is_unassigned(MemoryRegion *mr) +{ + return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device + && mr != &io_mem_watch; +} + +static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, + hwaddr addr, + bool resolve_subpage) +{ + MemoryRegionSection *section; + subpage_t *subpage; + + section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS, + d->nodes, d->sections); + if (resolve_subpage && section->mr->subpage) { + subpage = container_of(section->mr, subpage_t, iomem); + section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; + } + return section; +} + +static MemoryRegionSection * +address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, + hwaddr *plen, bool resolve_subpage) +{ + MemoryRegionSection *section; + Int128 diff; + + section = address_space_lookup_region(d, addr, resolve_subpage); + /* Compute offset within MemoryRegionSection */ + addr -= section->offset_within_address_space; + + /* Compute offset within MemoryRegion */ + *xlat = addr + section->offset_within_region; + + diff = int128_sub(section->mr->size, int128_make64(addr)); + *plen = int128_get64(int128_min(diff, int128_make64(*plen))); + return section; +} + +MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, + hwaddr *xlat, hwaddr *plen, + bool is_write) +{ + IOMMUTLBEntry iotlb; + MemoryRegionSection *section; + MemoryRegion *mr; + hwaddr len = *plen; + + for (;;) { + section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true); + mr = section->mr; + + if (!mr->iommu_ops) { + break; + } + + iotlb = mr->iommu_ops->translate(mr, addr); + addr = ((iotlb.translated_addr & ~iotlb.addr_mask) + | (addr & iotlb.addr_mask)); + len = MIN(len, (addr | iotlb.addr_mask) - addr + 1); + if (!(iotlb.perm & (1 << is_write))) { + mr = &io_mem_unassigned; + break; + } + + as = iotlb.target_as; + } + + *plen = len; + *xlat = addr; + return mr; +} + +MemoryRegionSection * +address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat, + hwaddr *plen) +{ + MemoryRegionSection *section; + section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false); + + assert(!section->mr->iommu_ops); + return section; +} +#endif + +void cpu_exec_init_all(void) +{ +#if !defined(CONFIG_USER_ONLY) + qemu_mutex_init(&ram_list.mutex); + memory_map_init(); + io_mem_init(); +#endif +} + +#if !defined(CONFIG_USER_ONLY) + +static int cpu_common_post_load(void *opaque, int version_id) +{ + CPUState *cpu = opaque; + + /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the + version_id is increased. */ + cpu->interrupt_request &= ~0x01; + tlb_flush(cpu->env_ptr, 1); + + return 0; +} + +const VMStateDescription vmstate_cpu_common = { + .name = "cpu_common", + .version_id = 1, + .minimum_version_id = 1, + .minimum_version_id_old = 1, + .post_load = cpu_common_post_load, + .fields = (VMStateField []) { + VMSTATE_UINT32(halted, CPUState), + VMSTATE_UINT32(interrupt_request, CPUState), + VMSTATE_END_OF_LIST() + } +}; + +#endif + +CPUState *qemu_get_cpu(int index) +{ + CPUState *cpu = first_cpu; + + while (cpu) { + if (cpu->cpu_index == index) { + break; + } + cpu = cpu->next_cpu; + } + + return cpu; +} + +void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data) +{ + CPUState *cpu; + + cpu = first_cpu; + while (cpu) { + func(cpu, data); + cpu = cpu->next_cpu; + } +} + +void cpu_exec_init(CPUArchState *env) +{ + CPUState *cpu = ENV_GET_CPU(env); + CPUClass *cc = CPU_GET_CLASS(cpu); + CPUState **pcpu; + int cpu_index; + +#if defined(CONFIG_USER_ONLY) + cpu_list_lock(); +#endif + cpu->next_cpu = NULL; + pcpu = &first_cpu; + cpu_index = 0; + while (*pcpu != NULL) { + pcpu = &(*pcpu)->next_cpu; + cpu_index++; + } + cpu->cpu_index = cpu_index; + cpu->numa_node = 0; + QTAILQ_INIT(&env->breakpoints); + QTAILQ_INIT(&env->watchpoints); +#ifndef CONFIG_USER_ONLY + cpu->thread_id = qemu_get_thread_id(); +#endif + *pcpu = cpu; +#if defined(CONFIG_USER_ONLY) + cpu_list_unlock(); +#endif + if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { + vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu); + } +#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) + register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION, + cpu_save, cpu_load, env); + assert(cc->vmsd == NULL); + assert(qdev_get_vmsd(DEVICE(cpu)) == NULL); +#endif + if (cc->vmsd != NULL) { + vmstate_register(NULL, cpu_index, cc->vmsd, cpu); + } +} + +#if defined(TARGET_HAS_ICE) +#if defined(CONFIG_USER_ONLY) +static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) +{ + tb_invalidate_phys_page_range(pc, pc + 1, 0); +} +#else +static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) +{ + tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) | + (pc & ~TARGET_PAGE_MASK)); +} +#endif +#endif /* TARGET_HAS_ICE */ + +#if defined(CONFIG_USER_ONLY) +void cpu_watchpoint_remove_all(CPUArchState *env, int mask) + +{ +} + +int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len, + int flags, CPUWatchpoint **watchpoint) +{ + return -ENOSYS; +} +#else +/* Add a watchpoint. */ +int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len, + int flags, CPUWatchpoint **watchpoint) +{ + target_ulong len_mask = ~(len - 1); + CPUWatchpoint *wp; + + /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ + if ((len & (len - 1)) || (addr & ~len_mask) || + len == 0 || len > TARGET_PAGE_SIZE) { + fprintf(stderr, "qemu: tried to set invalid watchpoint at " + TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); + return -EINVAL; + } + wp = g_malloc(sizeof(*wp)); + + wp->vaddr = addr; + wp->len_mask = len_mask; + wp->flags = flags; + + /* keep all GDB-injected watchpoints in front */ + if (flags & BP_GDB) + QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); + else + QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); + + tlb_flush_page(env, addr); + + if (watchpoint) + *watchpoint = wp; + return 0; +} + +/* Remove a specific watchpoint. */ +int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len, + int flags) +{ + target_ulong len_mask = ~(len - 1); + CPUWatchpoint *wp; + + QTAILQ_FOREACH(wp, &env->watchpoints, entry) { + if (addr == wp->vaddr && len_mask == wp->len_mask + && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { + cpu_watchpoint_remove_by_ref(env, wp); + return 0; + } + } + return -ENOENT; +} + +/* Remove a specific watchpoint by reference. */ +void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint) +{ + QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry); + + tlb_flush_page(env, watchpoint->vaddr); + + g_free(watchpoint); +} + +/* Remove all matching watchpoints. */ +void cpu_watchpoint_remove_all(CPUArchState *env, int mask) +{ + CPUWatchpoint *wp, *next; + + QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { + if (wp->flags & mask) + cpu_watchpoint_remove_by_ref(env, wp); + } +} +#endif + +/* Add a breakpoint. */ +int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags, + CPUBreakpoint **breakpoint) +{ +#if defined(TARGET_HAS_ICE) + CPUBreakpoint *bp; + + bp = g_malloc(sizeof(*bp)); + + bp->pc = pc; + bp->flags = flags; + + /* keep all GDB-injected breakpoints in front */ + if (flags & BP_GDB) { + QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); + } else { + QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); + } + + breakpoint_invalidate(ENV_GET_CPU(env), pc); + + if (breakpoint) { + *breakpoint = bp; + } + return 0; +#else + return -ENOSYS; +#endif +} + +/* Remove a specific breakpoint. */ +int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags) +{ +#if defined(TARGET_HAS_ICE) + CPUBreakpoint *bp; + + QTAILQ_FOREACH(bp, &env->breakpoints, entry) { + if (bp->pc == pc && bp->flags == flags) { + cpu_breakpoint_remove_by_ref(env, bp); + return 0; + } + } + return -ENOENT; +#else + return -ENOSYS; +#endif +} + +/* Remove a specific breakpoint by reference. */ +void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint) +{ +#if defined(TARGET_HAS_ICE) + QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry); + + breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc); + + g_free(breakpoint); +#endif +} + +/* Remove all matching breakpoints. */ +void cpu_breakpoint_remove_all(CPUArchState *env, int mask) +{ +#if defined(TARGET_HAS_ICE) + CPUBreakpoint *bp, *next; + + QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { + if (bp->flags & mask) + cpu_breakpoint_remove_by_ref(env, bp); + } +#endif +} + +/* enable or disable single step mode. EXCP_DEBUG is returned by the + CPU loop after each instruction */ +void cpu_single_step(CPUState *cpu, int enabled) +{ +#if defined(TARGET_HAS_ICE) + if (cpu->singlestep_enabled != enabled) { + cpu->singlestep_enabled = enabled; + if (kvm_enabled()) { + kvm_update_guest_debug(cpu, 0); + } else { + /* must flush all the translated code to avoid inconsistencies */ + /* XXX: only flush what is necessary */ + CPUArchState *env = cpu->env_ptr; + tb_flush(env); + } + } +#endif +} + +void cpu_abort(CPUArchState *env, const char *fmt, ...) +{ + CPUState *cpu = ENV_GET_CPU(env); + va_list ap; + va_list ap2; + + va_start(ap, fmt); + va_copy(ap2, ap); + fprintf(stderr, "qemu: fatal: "); + vfprintf(stderr, fmt, ap); + fprintf(stderr, "\n"); + cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); + if (qemu_log_enabled()) { + qemu_log("qemu: fatal: "); + qemu_log_vprintf(fmt, ap2); + qemu_log("\n"); + log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); + qemu_log_flush(); + qemu_log_close(); + } + va_end(ap2); + va_end(ap); +#if defined(CONFIG_USER_ONLY) + { + struct sigaction act; + sigfillset(&act.sa_mask); + act.sa_handler = SIG_DFL; + sigaction(SIGABRT, &act, NULL); + } +#endif + abort(); +} + +CPUArchState *cpu_copy(CPUArchState *env) +{ + CPUArchState *new_env = cpu_init(env->cpu_model_str); +#if defined(TARGET_HAS_ICE) + CPUBreakpoint *bp; + CPUWatchpoint *wp; +#endif + + /* Reset non arch specific state */ + cpu_reset(ENV_GET_CPU(new_env)); + + /* Copy arch specific state into the new CPU */ + memcpy(new_env, env, sizeof(CPUArchState)); + + /* Clone all break/watchpoints. + Note: Once we support ptrace with hw-debug register access, make sure + BP_CPU break/watchpoints are handled correctly on clone. */ + QTAILQ_INIT(&env->breakpoints); + QTAILQ_INIT(&env->watchpoints); +#if defined(TARGET_HAS_ICE) + QTAILQ_FOREACH(bp, &env->breakpoints, entry) { + cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL); + } + QTAILQ_FOREACH(wp, &env->watchpoints, entry) { + cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1, + wp->flags, NULL); + } +#endif + + return new_env; +} + +#if !defined(CONFIG_USER_ONLY) +static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end, + uintptr_t length) +{ + uintptr_t start1; + + /* we modify the TLB cache so that the dirty bit will be set again + when accessing the range */ + start1 = (uintptr_t)qemu_safe_ram_ptr(start); + /* Check that we don't span multiple blocks - this breaks the + address comparisons below. */ + if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1 + != (end - 1) - start) { + abort(); + } + cpu_tlb_reset_dirty_all(start1, length); + +} + +/* Note: start and end must be within the same ram block. */ +void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, + int dirty_flags) +{ + uintptr_t length; + + start &= TARGET_PAGE_MASK; + end = TARGET_PAGE_ALIGN(end); + + length = end - start; + if (length == 0) + return; + cpu_physical_memory_mask_dirty_range(start, length, dirty_flags); + + if (tcg_enabled()) { + tlb_reset_dirty_range_all(start, end, length); + } +} + +static int cpu_physical_memory_set_dirty_tracking(int enable) +{ + int ret = 0; + in_migration = enable; + return ret; +} + +hwaddr memory_region_section_get_iotlb(CPUArchState *env, + MemoryRegionSection *section, + target_ulong vaddr, + hwaddr paddr, hwaddr xlat, + int prot, + target_ulong *address) +{ + hwaddr iotlb; + CPUWatchpoint *wp; + + if (memory_region_is_ram(section->mr)) { + /* Normal RAM. */ + iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) + + xlat; + if (!section->readonly) { + iotlb |= PHYS_SECTION_NOTDIRTY; + } else { + iotlb |= PHYS_SECTION_ROM; + } + } else { + iotlb = section - address_space_memory.dispatch->sections; + iotlb += xlat; + } + + /* Make accesses to pages with watchpoints go via the + watchpoint trap routines. */ + QTAILQ_FOREACH(wp, &env->watchpoints, entry) { + if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { + /* Avoid trapping reads of pages with a write breakpoint. */ + if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { + iotlb = PHYS_SECTION_WATCH + paddr; + *address |= TLB_MMIO; + break; + } + } + } + + return iotlb; +} +#endif /* defined(CONFIG_USER_ONLY) */ + +#if !defined(CONFIG_USER_ONLY) + +static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, + uint16_t section); +static subpage_t *subpage_init(AddressSpace *as, hwaddr base); + +static uint16_t phys_section_add(MemoryRegionSection *section) +{ + /* The physical section number is ORed with a page-aligned + * pointer to produce the iotlb entries. Thus it should + * never overflow into the page-aligned value. + */ + assert(next_map.sections_nb < TARGET_PAGE_SIZE); + + if (next_map.sections_nb == next_map.sections_nb_alloc) { + next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2, + 16); + next_map.sections = g_renew(MemoryRegionSection, next_map.sections, + next_map.sections_nb_alloc); + } + next_map.sections[next_map.sections_nb] = *section; + memory_region_ref(section->mr); + return next_map.sections_nb++; +} + +static void phys_section_destroy(MemoryRegion *mr) +{ + memory_region_unref(mr); + + if (mr->subpage) { + subpage_t *subpage = container_of(mr, subpage_t, iomem); + memory_region_destroy(&subpage->iomem); + g_free(subpage); + } +} + +static void phys_sections_free(PhysPageMap *map) +{ + while (map->sections_nb > 0) { + MemoryRegionSection *section = &map->sections[--map->sections_nb]; + phys_section_destroy(section->mr); + } + g_free(map->sections); + g_free(map->nodes); + g_free(map); +} + +static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) +{ + subpage_t *subpage; + hwaddr base = section->offset_within_address_space + & TARGET_PAGE_MASK; + MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS, + next_map.nodes, next_map.sections); + MemoryRegionSection subsection = { + .offset_within_address_space = base, + .size = int128_make64(TARGET_PAGE_SIZE), + }; + hwaddr start, end; + + assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); + + if (!(existing->mr->subpage)) { + subpage = subpage_init(d->as, base); + subsection.mr = &subpage->iomem; + phys_page_set(d, base >> TARGET_PAGE_BITS, 1, + phys_section_add(&subsection)); + } else { + subpage = container_of(existing->mr, subpage_t, iomem); + } + start = section->offset_within_address_space & ~TARGET_PAGE_MASK; + end = start + int128_get64(section->size) - 1; + subpage_register(subpage, start, end, phys_section_add(section)); +} + + +static void register_multipage(AddressSpaceDispatch *d, + MemoryRegionSection *section) +{ + hwaddr start_addr = section->offset_within_address_space; + uint16_t section_index = phys_section_add(section); + uint64_t num_pages = int128_get64(int128_rshift(section->size, + TARGET_PAGE_BITS)); + + assert(num_pages); + phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); +} + +static void mem_add(MemoryListener *listener, MemoryRegionSection *section) +{ + AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); + AddressSpaceDispatch *d = as->next_dispatch; + MemoryRegionSection now = *section, remain = *section; + Int128 page_size = int128_make64(TARGET_PAGE_SIZE); + + if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { + uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) + - now.offset_within_address_space; + + now.size = int128_min(int128_make64(left), now.size); + register_subpage(d, &now); + } else { + now.size = int128_zero(); + } + while (int128_ne(remain.size, now.size)) { + remain.size = int128_sub(remain.size, now.size); + remain.offset_within_address_space += int128_get64(now.size); + remain.offset_within_region += int128_get64(now.size); + now = remain; + if (int128_lt(remain.size, page_size)) { + register_subpage(d, &now); + } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) { + now.size = page_size; + register_subpage(d, &now); + } else { + now.size = int128_and(now.size, int128_neg(page_size)); + register_multipage(d, &now); + } + } +} + +void qemu_flush_coalesced_mmio_buffer(void) +{ + if (kvm_enabled()) + kvm_flush_coalesced_mmio_buffer(); +} + +void qemu_mutex_lock_ramlist(void) +{ + qemu_mutex_lock(&ram_list.mutex); +} + +void qemu_mutex_unlock_ramlist(void) +{ + qemu_mutex_unlock(&ram_list.mutex); +} + +#if defined(__linux__) && !defined(TARGET_S390X) + +#include <sys/vfs.h> + +#define HUGETLBFS_MAGIC 0x958458f6 + +static long gethugepagesize(const char *path) +{ + struct statfs fs; + int ret; + + do { + ret = statfs(path, &fs); + } while (ret != 0 && errno == EINTR); + + if (ret != 0) { + perror(path); + return 0; + } + + if (fs.f_type != HUGETLBFS_MAGIC) + fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path); + + return fs.f_bsize; +} + +static void *file_ram_alloc(RAMBlock *block, + ram_addr_t memory, + const char *path) +{ + char *filename; + char *sanitized_name; + char *c; + void *area; + int fd; +#ifdef MAP_POPULATE + int flags; +#endif + unsigned long hpagesize; + + hpagesize = gethugepagesize(path); + if (!hpagesize) { + return NULL; + } + + if (memory < hpagesize) { + return NULL; + } + + if (kvm_enabled() && !kvm_has_sync_mmu()) { + fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n"); + return NULL; + } + + /* Make name safe to use with mkstemp by replacing '/' with '_'. */ + sanitized_name = g_strdup(block->mr->name); + for (c = sanitized_name; *c != '\0'; c++) { + if (*c == '/') + *c = '_'; + } + + filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, + sanitized_name); + g_free(sanitized_name); + + fd = mkstemp(filename); + if (fd < 0) { + perror("unable to create backing store for hugepages"); + g_free(filename); + return NULL; + } + unlink(filename); + g_free(filename); + + memory = (memory+hpagesize-1) & ~(hpagesize-1); + + /* + * ftruncate is not supported by hugetlbfs in older + * hosts, so don't bother bailing out on errors. + * If anything goes wrong with it under other filesystems, + * mmap will fail. + */ + if (ftruncate(fd, memory)) + perror("ftruncate"); + +#ifdef MAP_POPULATE + /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case + * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED + * to sidestep this quirk. + */ + flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE; + area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0); +#else + area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); +#endif + if (area == MAP_FAILED) { + perror("file_ram_alloc: can't mmap RAM pages"); + close(fd); + return (NULL); + } + block->fd = fd; + return area; +} +#endif + +static ram_addr_t find_ram_offset(ram_addr_t size) +{ + RAMBlock *block, *next_block; + ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; + + assert(size != 0); /* it would hand out same offset multiple times */ + + if (QTAILQ_EMPTY(&ram_list.blocks)) + return 0; + + QTAILQ_FOREACH(block, &ram_list.blocks, next) { + ram_addr_t end, next = RAM_ADDR_MAX; + + end = block->offset + block->length; + + QTAILQ_FOREACH(next_block, &ram_list.blocks, next) { + if (next_block->offset >= end) { + next = MIN(next, next_block->offset); + } + } + if (next - end >= size && next - end < mingap) { + offset = end; + mingap = next - end; + } + } + + if (offset == RAM_ADDR_MAX) { + fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", + (uint64_t)size); + abort(); + } + + return offset; +} + +ram_addr_t last_ram_offset(void) +{ + RAMBlock *block; + ram_addr_t last = 0; + + QTAILQ_FOREACH(block, &ram_list.blocks, next) + last = MAX(last, block->offset + block->length); + + return last; +} + +static void qemu_ram_setup_dump(void *addr, ram_addr_t size) +{ + int ret; + + /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ + if (!qemu_opt_get_bool(qemu_get_machine_opts(), + "dump-guest-core", true)) { + ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); + if (ret) { + perror("qemu_madvise"); + fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " + "but dump_guest_core=off specified\n"); + } + } +} + +void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) +{ + RAMBlock *new_block, *block; + + new_block = NULL; + QTAILQ_FOREACH(block, &ram_list.blocks, next) { + if (block->offset == addr) { + new_block = block; + break; + } + } + assert(new_block); + assert(!new_block->idstr[0]); + + if (dev) { + char *id = qdev_get_dev_path(dev); + if (id) { + snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); + g_free(id); + } + } + pstrcat(new_block->idstr, sizeof(new_block->idstr), name); + + /* This assumes the iothread lock is taken here too. */ + qemu_mutex_lock_ramlist(); + QTAILQ_FOREACH(block, &ram_list.blocks, next) { + if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { + fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", + new_block->idstr); + abort(); + } + } + qemu_mutex_unlock_ramlist(); +} + +static int memory_try_enable_merging(void *addr, size_t len) +{ + if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) { + /* disabled by the user */ + return 0; + } + + return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); +} + +ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, + MemoryRegion *mr) +{ + RAMBlock *block, *new_block; + + size = TARGET_PAGE_ALIGN(size); + new_block = g_malloc0(sizeof(*new_block)); + + /* This assumes the iothread lock is taken here too. */ + qemu_mutex_lock_ramlist(); + new_block->mr = mr; + new_block->offset = find_ram_offset(size); + if (host) { + new_block->host = host; + new_block->flags |= RAM_PREALLOC_MASK; + } else { + if (mem_path) { +#if defined (__linux__) && !defined(TARGET_S390X) + new_block->host = file_ram_alloc(new_block, size, mem_path); + if (!new_block->host) { + new_block->host = qemu_anon_ram_alloc(size); + memory_try_enable_merging(new_block->host, size); + } +#else + fprintf(stderr, "-mem-path option unsupported\n"); + exit(1); +#endif + } else { + if (xen_enabled()) { + xen_ram_alloc(new_block->offset, size, mr); + } else if (kvm_enabled()) { + /* some s390/kvm configurations have special constraints */ + new_block->host = kvm_ram_alloc(size); + } else { + new_block->host = qemu_anon_ram_alloc(size); + } + memory_try_enable_merging(new_block->host, size); + } + } + new_block->length = size; + + /* Keep the list sorted from biggest to smallest block. */ + QTAILQ_FOREACH(block, &ram_list.blocks, next) { + if (block->length < new_block->length) { + break; + } + } + if (block) { + QTAILQ_INSERT_BEFORE(block, new_block, next); + } else { + QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next); + } + ram_list.mru_block = NULL; + + ram_list.version++; + qemu_mutex_unlock_ramlist(); + + ram_list.phys_dirty = g_realloc(ram_list.phys_dirty, + last_ram_offset() >> TARGET_PAGE_BITS); + memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS), + 0, size >> TARGET_PAGE_BITS); + cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff); + + qemu_ram_setup_dump(new_block->host, size); + qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE); + + if (kvm_enabled()) + kvm_setup_guest_memory(new_block->host, size); + + return new_block->offset; +} + +ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr) +{ + return qemu_ram_alloc_from_ptr(size, NULL, mr); +} + +void qemu_ram_free_from_ptr(ram_addr_t addr) +{ + RAMBlock *block; + + /* This assumes the iothread lock is taken here too. */ + qemu_mutex_lock_ramlist(); + QTAILQ_FOREACH(block, &ram_list.blocks, next) { + if (addr == block->offset) { + QTAILQ_REMOVE(&ram_list.blocks, block, next); + ram_list.mru_block = NULL; + ram_list.version++; + g_free(block); + break; + } + } + qemu_mutex_unlock_ramlist(); +} + +void qemu_ram_free(ram_addr_t addr) +{ + RAMBlock *block; + + /* This assumes the iothread lock is taken here too. */ + qemu_mutex_lock_ramlist(); + QTAILQ_FOREACH(block, &ram_list.blocks, next) { + if (addr == block->offset) { + QTAILQ_REMOVE(&ram_list.blocks, block, next); + ram_list.mru_block = NULL; + ram_list.version++; + if (block->flags & RAM_PREALLOC_MASK) { + ; + } else if (mem_path) { +#if defined (__linux__) && !defined(TARGET_S390X) + if (block->fd) { + munmap(block->host, block->length); + close(block->fd); + } else { + qemu_anon_ram_free(block->host, block->length); + } +#else + abort(); +#endif + } else { + if (xen_enabled()) { + xen_invalidate_map_cache_entry(block->host); + } else { + qemu_anon_ram_free(block->host, block->length); + } + } + g_free(block); + break; + } + } + qemu_mutex_unlock_ramlist(); + +} + +#ifndef _WIN32 +void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) +{ + RAMBlock *block; + ram_addr_t offset; + int flags; + void *area, *vaddr; + + QTAILQ_FOREACH(block, &ram_list.blocks, next) { + offset = addr - block->offset; + if (offset < block->length) { + vaddr = block->host + offset; + if (block->flags & RAM_PREALLOC_MASK) { + ; + } else { + flags = MAP_FIXED; + munmap(vaddr, length); + if (mem_path) { +#if defined(__linux__) && !defined(TARGET_S390X) + if (block->fd) { +#ifdef MAP_POPULATE + flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED : + MAP_PRIVATE; +#else + flags |= MAP_PRIVATE; +#endif + area = mmap(vaddr, length, PROT_READ | PROT_WRITE, + flags, block->fd, offset); + } else { + flags |= MAP_PRIVATE | MAP_ANONYMOUS; + area = mmap(vaddr, length, PROT_READ | PROT_WRITE, + flags, -1, 0); + } +#else + abort(); +#endif + } else { +#if defined(TARGET_S390X) && defined(CONFIG_KVM) + flags |= MAP_SHARED | MAP_ANONYMOUS; + area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE, + flags, -1, 0); +#else + flags |= MAP_PRIVATE | MAP_ANONYMOUS; + area = mmap(vaddr, length, PROT_READ | PROT_WRITE, + flags, -1, 0); +#endif + } + if (area != vaddr) { + fprintf(stderr, "Could not remap addr: " + RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", + length, addr); + exit(1); + } + memory_try_enable_merging(vaddr, length); + qemu_ram_setup_dump(vaddr, length); + } + return; + } + } +} +#endif /* !_WIN32 */ + +static RAMBlock *qemu_get_ram_block(ram_addr_t addr) +{ + RAMBlock *block; + + /* The list is protected by the iothread lock here. */ + block = ram_list.mru_block; + if (block && addr - block->offset < block->length) { + goto found; + } + QTAILQ_FOREACH(block, &ram_list.blocks, next) { + if (addr - block->offset < block->length) { + goto found; + } + } + + fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); + abort(); + +found: + ram_list.mru_block = block; + return block; +} + +/* Return a host pointer to ram allocated with qemu_ram_alloc. + With the exception of the softmmu code in this file, this should + only be used for local memory (e.g. video ram) that the device owns, + and knows it isn't going to access beyond the end of the block. + + It should not be used for general purpose DMA. + Use cpu_physical_memory_map/cpu_physical_memory_rw instead. + */ +void *qemu_get_ram_ptr(ram_addr_t addr) +{ + RAMBlock *block = qemu_get_ram_block(addr); + + if (xen_enabled()) { + /* We need to check if the requested address is in the RAM + * because we don't want to map the entire memory in QEMU. + * In that case just map until the end of the page. + */ + if (block->offset == 0) { + return xen_map_cache(addr, 0, 0); + } else if (block->host == NULL) { + block->host = + xen_map_cache(block->offset, block->length, 1); + } + } + return block->host + (addr - block->offset); +} + +/* Return a host pointer to ram allocated with qemu_ram_alloc. Same as + * qemu_get_ram_ptr but do not touch ram_list.mru_block. + * + * ??? Is this still necessary? + */ +static void *qemu_safe_ram_ptr(ram_addr_t addr) +{ + RAMBlock *block; + + /* The list is protected by the iothread lock here. */ + QTAILQ_FOREACH(block, &ram_list.blocks, next) { + if (addr - block->offset < block->length) { + if (xen_enabled()) { + /* We need to check if the requested address is in the RAM + * because we don't want to map the entire memory in QEMU. + * In that case just map until the end of the page. + */ + if (block->offset == 0) { + return xen_map_cache(addr, 0, 0); + } else if (block->host == NULL) { + block->host = + xen_map_cache(block->offset, block->length, 1); + } + } + return block->host + (addr - block->offset); + } + } + + fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); + abort(); + + return NULL; +} + +/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr + * but takes a size argument */ +static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size) +{ + if (*size == 0) { + return NULL; + } + if (xen_enabled()) { + return xen_map_cache(addr, *size, 1); + } else { + RAMBlock *block; + + QTAILQ_FOREACH(block, &ram_list.blocks, next) { + if (addr - block->offset < block->length) { + if (addr - block->offset + *size > block->length) + *size = block->length - addr + block->offset; + return block->host + (addr - block->offset); + } + } + + fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); + abort(); + } +} + +/* Some of the softmmu routines need to translate from a host pointer + (typically a TLB entry) back to a ram offset. */ +MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) +{ + RAMBlock *block; + uint8_t *host = ptr; + + if (xen_enabled()) { + *ram_addr = xen_ram_addr_from_mapcache(ptr); + return qemu_get_ram_block(*ram_addr)->mr; + } + + block = ram_list.mru_block; + if (block && block->host && host - block->host < block->length) { + goto found; + } + + QTAILQ_FOREACH(block, &ram_list.blocks, next) { + /* This case append when the block is not mapped. */ + if (block->host == NULL) { + continue; + } + if (host - block->host < block->length) { + goto found; + } + } + + return NULL; + +found: + *ram_addr = block->offset + (host - block->host); + return block->mr; +} + +static void notdirty_mem_write(void *opaque, hwaddr ram_addr, + uint64_t val, unsigned size) +{ + int dirty_flags; + dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); + if (!(dirty_flags & CODE_DIRTY_FLAG)) { + tb_invalidate_phys_page_fast(ram_addr, size); + dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); + } + switch (size) { + case 1: + stb_p(qemu_get_ram_ptr(ram_addr), val); + break; + case 2: + stw_p(qemu_get_ram_ptr(ram_addr), val); + break; + case 4: + stl_p(qemu_get_ram_ptr(ram_addr), val); + break; + default: + abort(); + } + dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); + cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags); + /* we remove the notdirty callback only if the code has been + flushed */ + if (dirty_flags == 0xff) { + CPUArchState *env = current_cpu->env_ptr; + tlb_set_dirty(env, env->mem_io_vaddr); + } +} + +static bool notdirty_mem_accepts(void *opaque, hwaddr addr, + unsigned size, bool is_write) +{ + return is_write; +} + +static const MemoryRegionOps notdirty_mem_ops = { + .write = notdirty_mem_write, + .valid.accepts = notdirty_mem_accepts, + .endianness = DEVICE_NATIVE_ENDIAN, +}; + +/* Generate a debug exception if a watchpoint has been hit. */ +static void check_watchpoint(int offset, int len_mask, int flags) +{ + CPUArchState *env = current_cpu->env_ptr; + target_ulong pc, cs_base; + target_ulong vaddr; + CPUWatchpoint *wp; + int cpu_flags; + + if (env->watchpoint_hit) { + /* We re-entered the check after replacing the TB. Now raise + * the debug interrupt so that is will trigger after the + * current instruction. */ + cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG); + return; + } + vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; + QTAILQ_FOREACH(wp, &env->watchpoints, entry) { + if ((vaddr == (wp->vaddr & len_mask) || + (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { + wp->flags |= BP_WATCHPOINT_HIT; + if (!env->watchpoint_hit) { + env->watchpoint_hit = wp; + tb_check_watchpoint(env); + if (wp->flags & BP_STOP_BEFORE_ACCESS) { + env->exception_index = EXCP_DEBUG; + cpu_loop_exit(env); + } else { + cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); + tb_gen_code(env, pc, cs_base, cpu_flags, 1); + cpu_resume_from_signal(env, NULL); + } + } + } else { + wp->flags &= ~BP_WATCHPOINT_HIT; + } + } +} + +/* Watchpoint access routines. Watchpoints are inserted using TLB tricks, + so these check for a hit then pass through to the normal out-of-line + phys routines. */ +static uint64_t watch_mem_read(void *opaque, hwaddr addr, + unsigned size) +{ + check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ); + switch (size) { + case 1: return ldub_phys(addr); + case 2: return lduw_phys(addr); + case 4: return ldl_phys(addr); + default: abort(); + } +} + +static void watch_mem_write(void *opaque, hwaddr addr, + uint64_t val, unsigned size) +{ + check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE); + switch (size) { + case 1: + stb_phys(addr, val); + break; + case 2: + stw_phys(addr, val); + break; + case 4: + stl_phys(addr, val); + break; + default: abort(); + } +} + +static const MemoryRegionOps watch_mem_ops = { + .read = watch_mem_read, + .write = watch_mem_write, + .endianness = DEVICE_NATIVE_ENDIAN, +}; + +static uint64_t subpage_read(void *opaque, hwaddr addr, + unsigned len) +{ + subpage_t *subpage = opaque; + uint8_t buf[4]; + +#if defined(DEBUG_SUBPAGE) + printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__, + subpage, len, addr); +#endif + address_space_read(subpage->as, addr + subpage->base, buf, len); + switch (len) { + case 1: + return ldub_p(buf); + case 2: + return lduw_p(buf); + case 4: + return ldl_p(buf); + default: + abort(); + } +} + +static void subpage_write(void *opaque, hwaddr addr, + uint64_t value, unsigned len) +{ + subpage_t *subpage = opaque; + uint8_t buf[4]; + +#if defined(DEBUG_SUBPAGE) + printf("%s: subpage %p len %d addr " TARGET_FMT_plx + " value %"PRIx64"\n", + __func__, subpage, len, addr, value); +#endif + switch (len) { + case 1: + stb_p(buf, value); + break; + case 2: + stw_p(buf, value); + break; + case 4: + stl_p(buf, value); + break; + default: + abort(); + } + address_space_write(subpage->as, addr + subpage->base, buf, len); +} + +static bool subpage_accepts(void *opaque, hwaddr addr, + unsigned size, bool is_write) +{ + subpage_t *subpage = opaque; +#if defined(DEBUG_SUBPAGE) + printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n", + __func__, subpage, is_write ? 'w' : 'r', len, addr); +#endif + + return address_space_access_valid(subpage->as, addr + subpage->base, + size, is_write); +} + +static const MemoryRegionOps subpage_ops = { + .read = subpage_read, + .write = subpage_write, + .valid.accepts = subpage_accepts, + .endianness = DEVICE_NATIVE_ENDIAN, +}; + +static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, + uint16_t section) +{ + int idx, eidx; + + if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) + return -1; + idx = SUBPAGE_IDX(start); + eidx = SUBPAGE_IDX(end); +#if defined(DEBUG_SUBPAGE) + printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__, + mmio, start, end, idx, eidx, memory); +#endif + for (; idx <= eidx; idx++) { + mmio->sub_section[idx] = section; + } + + return 0; +} + +static subpage_t *subpage_init(AddressSpace *as, hwaddr base) +{ + subpage_t *mmio; + + mmio = g_malloc0(sizeof(subpage_t)); + + mmio->as = as; + mmio->base = base; + memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, + "subpage", TARGET_PAGE_SIZE); + mmio->iomem.subpage = true; +#if defined(DEBUG_SUBPAGE) + printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, + mmio, base, TARGET_PAGE_SIZE, subpage_memory); +#endif + subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); + + return mmio; +} + +static uint16_t dummy_section(MemoryRegion *mr) +{ + MemoryRegionSection section = { + .mr = mr, + .offset_within_address_space = 0, + .offset_within_region = 0, + .size = int128_2_64(), + }; + + return phys_section_add(§ion); +} + +MemoryRegion *iotlb_to_region(hwaddr index) +{ + return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr; +} + +static void io_mem_init(void) +{ + memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX); + memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, + "unassigned", UINT64_MAX); + memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, + "notdirty", UINT64_MAX); + memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, + "watch", UINT64_MAX); +} + +static void mem_begin(MemoryListener *listener) +{ + AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); + AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1); + + d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 }; + d->as = as; + as->next_dispatch = d; +} + +static void mem_commit(MemoryListener *listener) +{ + AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); + AddressSpaceDispatch *cur = as->dispatch; + AddressSpaceDispatch *next = as->next_dispatch; + + next->nodes = next_map.nodes; + next->sections = next_map.sections; + + as->dispatch = next; + g_free(cur); +} + +static void core_begin(MemoryListener *listener) +{ + uint16_t n; + + prev_map = g_new(PhysPageMap, 1); + *prev_map = next_map; + + memset(&next_map, 0, sizeof(next_map)); + n = dummy_section(&io_mem_unassigned); + assert(n == PHYS_SECTION_UNASSIGNED); + n = dummy_section(&io_mem_notdirty); + assert(n == PHYS_SECTION_NOTDIRTY); + n = dummy_section(&io_mem_rom); + assert(n == PHYS_SECTION_ROM); + n = dummy_section(&io_mem_watch); + assert(n == PHYS_SECTION_WATCH); +} + +/* This listener's commit run after the other AddressSpaceDispatch listeners'. + * All AddressSpaceDispatch instances have switched to the next map. + */ +static void core_commit(MemoryListener *listener) +{ + phys_sections_free(prev_map); +} + +static void tcg_commit(MemoryListener *listener) +{ + CPUState *cpu; + + /* since each CPU stores ram addresses in its TLB cache, we must + reset the modified entries */ + /* XXX: slow ! */ + for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) { + CPUArchState *env = cpu->env_ptr; + + tlb_flush(env, 1); + } +} + +static void core_log_global_start(MemoryListener *listener) +{ + cpu_physical_memory_set_dirty_tracking(1); +} + +static void core_log_global_stop(MemoryListener *listener) +{ + cpu_physical_memory_set_dirty_tracking(0); +} + +static MemoryListener core_memory_listener = { + .begin = core_begin, + .commit = core_commit, + .log_global_start = core_log_global_start, + .log_global_stop = core_log_global_stop, + .priority = 1, +}; + +static MemoryListener tcg_memory_listener = { + .commit = tcg_commit, +}; + +void address_space_init_dispatch(AddressSpace *as) +{ + as->dispatch = NULL; + as->dispatch_listener = (MemoryListener) { + .begin = mem_begin, + .commit = mem_commit, + .region_add = mem_add, + .region_nop = mem_add, + .priority = 0, + }; + memory_listener_register(&as->dispatch_listener, as); +} + +void address_space_destroy_dispatch(AddressSpace *as) +{ + AddressSpaceDispatch *d = as->dispatch; + + memory_listener_unregister(&as->dispatch_listener); + g_free(d); + as->dispatch = NULL; +} + +static void memory_map_init(void) +{ + system_memory = g_malloc(sizeof(*system_memory)); + memory_region_init(system_memory, NULL, "system", INT64_MAX); + address_space_init(&address_space_memory, system_memory, "memory"); + + system_io = g_malloc(sizeof(*system_io)); + memory_region_init(system_io, NULL, "io", 65536); + address_space_init(&address_space_io, system_io, "I/O"); + + memory_listener_register(&core_memory_listener, &address_space_memory); + memory_listener_register(&tcg_memory_listener, &address_space_memory); +} + +MemoryRegion *get_system_memory(void) +{ + return system_memory; +} + +MemoryRegion *get_system_io(void) +{ + return system_io; +} + +#endif /* !defined(CONFIG_USER_ONLY) */ + +/* physical memory access (slow version, mainly for debug) */ +#if defined(CONFIG_USER_ONLY) +int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, + uint8_t *buf, int len, int is_write) +{ + int l, flags; + target_ulong page; + void * p; + + while (len > 0) { + page = addr & TARGET_PAGE_MASK; + l = (page + TARGET_PAGE_SIZE) - addr; + if (l > len) + l = len; + flags = page_get_flags(page); + if (!(flags & PAGE_VALID)) + return -1; + if (is_write) { + if (!(flags & PAGE_WRITE)) + return -1; + /* XXX: this code should not depend on lock_user */ + if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) + return -1; + memcpy(p, buf, l); + unlock_user(p, addr, l); + } else { + if (!(flags & PAGE_READ)) + return -1; + /* XXX: this code should not depend on lock_user */ + if (!(p = lock_user(VERIFY_READ, addr, l, 1))) + return -1; + memcpy(buf, p, l); + unlock_user(p, addr, 0); + } + len -= l; + buf += l; + addr += l; + } + return 0; +} + +#else + +static void invalidate_and_set_dirty(hwaddr addr, + hwaddr length) +{ + if (!cpu_physical_memory_is_dirty(addr)) { + /* invalidate code */ + tb_invalidate_phys_page_range(addr, addr + length, 0); + /* set dirty bit */ + cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG)); + } + xen_modified_memory(addr, length); +} + +static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) +{ + if (memory_region_is_ram(mr)) { + return !(is_write && mr->readonly); + } + if (memory_region_is_romd(mr)) { + return !is_write; + } + + return false; +} + +static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) +{ + unsigned access_size_max = mr->ops->valid.max_access_size; + + /* Regions are assumed to support 1-4 byte accesses unless + otherwise specified. */ + if (access_size_max == 0) { + access_size_max = 4; + } + + /* Bound the maximum access by the alignment of the address. */ + if (!mr->ops->impl.unaligned) { + unsigned align_size_max = addr & -addr; + if (align_size_max != 0 && align_size_max < access_size_max) { + access_size_max = align_size_max; + } + } + + /* Don't attempt accesses larger than the maximum. */ + if (l > access_size_max) { + l = access_size_max; + } + + return l; +} + +bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf, + int len, bool is_write) +{ + hwaddr l; + uint8_t *ptr; + uint64_t val; + hwaddr addr1; + MemoryRegion *mr; + bool error = false; + + while (len > 0) { + l = len; + mr = address_space_translate(as, addr, &addr1, &l, is_write); + + if (is_write) { + if (!memory_access_is_direct(mr, is_write)) { + l = memory_access_size(mr, l, addr1); + /* XXX: could force current_cpu to NULL to avoid + potential bugs */ + switch (l) { + case 8: + /* 64 bit write access */ + val = ldq_p(buf); + error |= io_mem_write(mr, addr1, val, 8); + break; + case 4: + /* 32 bit write access */ + val = ldl_p(buf); + error |= io_mem_write(mr, addr1, val, 4); + break; + case 2: + /* 16 bit write access */ + val = lduw_p(buf); + error |= io_mem_write(mr, addr1, val, 2); + break; + case 1: + /* 8 bit write access */ + val = ldub_p(buf); + error |= io_mem_write(mr, addr1, val, 1); + break; + default: + abort(); + } + } else { + addr1 += memory_region_get_ram_addr(mr); + /* RAM case */ + ptr = qemu_get_ram_ptr(addr1); + memcpy(ptr, buf, l); + invalidate_and_set_dirty(addr1, l); + } + } else { + if (!memory_access_is_direct(mr, is_write)) { + /* I/O case */ + l = memory_access_size(mr, l, addr1); + switch (l) { + case 8: + /* 64 bit read access */ + error |= io_mem_read(mr, addr1, &val, 8); + stq_p(buf, val); + break; + case 4: + /* 32 bit read access */ + error |= io_mem_read(mr, addr1, &val, 4); + stl_p(buf, val); + break; + case 2: + /* 16 bit read access */ + error |= io_mem_read(mr, addr1, &val, 2); + stw_p(buf, val); + break; + case 1: + /* 8 bit read access */ + error |= io_mem_read(mr, addr1, &val, 1); + stb_p(buf, val); + break; + default: + abort(); + } + } else { + /* RAM case */ + ptr = qemu_get_ram_ptr(mr->ram_addr + addr1); + memcpy(buf, ptr, l); + } + } + len -= l; + buf += l; + addr += l; + } + + return error; +} + +bool address_space_write(AddressSpace *as, hwaddr addr, + const uint8_t *buf, int len) +{ + return address_space_rw(as, addr, (uint8_t *)buf, len, true); +} + +bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len) +{ + return address_space_rw(as, addr, buf, len, false); +} + + +void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, + int len, int is_write) +{ + address_space_rw(&address_space_memory, addr, buf, len, is_write); +} + +/* used for ROM loading : can write in RAM and ROM */ +void cpu_physical_memory_write_rom(hwaddr addr, + const uint8_t *buf, int len) +{ + hwaddr l; + uint8_t *ptr; + hwaddr addr1; + MemoryRegion *mr; + + while (len > 0) { + l = len; + mr = address_space_translate(&address_space_memory, + addr, &addr1, &l, true); + + if (!(memory_region_is_ram(mr) || + memory_region_is_romd(mr))) { + /* do nothing */ + } else { + addr1 += memory_region_get_ram_addr(mr); + /* ROM/RAM case */ + ptr = qemu_get_ram_ptr(addr1); + memcpy(ptr, buf, l); + invalidate_and_set_dirty(addr1, l); + } + len -= l; + buf += l; + addr += l; + } +} + +typedef struct { + MemoryRegion *mr; + void *buffer; + hwaddr addr; + hwaddr len; +} BounceBuffer; + +static BounceBuffer bounce; + +typedef struct MapClient { + void *opaque; + void (*callback)(void *opaque); + QLIST_ENTRY(MapClient) link; +} MapClient; + +static QLIST_HEAD(map_client_list, MapClient) map_client_list + = QLIST_HEAD_INITIALIZER(map_client_list); + +void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) +{ + MapClient *client = g_malloc(sizeof(*client)); + + client->opaque = opaque; + client->callback = callback; + QLIST_INSERT_HEAD(&map_client_list, client, link); + return client; +} + +static void cpu_unregister_map_client(void *_client) +{ + MapClient *client = (MapClient *)_client; + + QLIST_REMOVE(client, link); + g_free(client); +} + +static void cpu_notify_map_clients(void) +{ + MapClient *client; + + while (!QLIST_EMPTY(&map_client_list)) { + client = QLIST_FIRST(&map_client_list); + client->callback(client->opaque); + cpu_unregister_map_client(client); + } +} + +bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) +{ + MemoryRegion *mr; + hwaddr l, xlat; + + while (len > 0) { + l = len; + mr = address_space_translate(as, addr, &xlat, &l, is_write); + if (!memory_access_is_direct(mr, is_write)) { + l = memory_access_size(mr, l, addr); + if (!memory_region_access_valid(mr, xlat, l, is_write)) { + return false; + } + } + + len -= l; + addr += l; + } + return true; +} + +/* Map a physical memory region into a host virtual address. + * May map a subset of the requested range, given by and returned in *plen. + * May return NULL if resources needed to perform the mapping are exhausted. + * Use only for reads OR writes - not for read-modify-write operations. + * Use cpu_register_map_client() to know when retrying the map operation is + * likely to succeed. + */ +void *address_space_map(AddressSpace *as, + hwaddr addr, + hwaddr *plen, + bool is_write) +{ + hwaddr len = *plen; + hwaddr done = 0; + hwaddr l, xlat, base; + MemoryRegion *mr, *this_mr; + ram_addr_t raddr; + + if (len == 0) { + return NULL; + } + + l = len; + mr = address_space_translate(as, addr, &xlat, &l, is_write); + if (!memory_access_is_direct(mr, is_write)) { + if (bounce.buffer) { + return NULL; + } + bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); + bounce.addr = addr; + bounce.len = l; + + memory_region_ref(mr); + bounce.mr = mr; + if (!is_write) { + address_space_read(as, addr, bounce.buffer, l); + } + + *plen = l; + return bounce.buffer; + } + + base = xlat; + raddr = memory_region_get_ram_addr(mr); + + for (;;) { + len -= l; + addr += l; + done += l; + if (len == 0) { + break; + } + + l = len; + this_mr = address_space_translate(as, addr, &xlat, &l, is_write); + if (this_mr != mr || xlat != base + done) { + break; + } + } + + memory_region_ref(mr); + *plen = done; + return qemu_ram_ptr_length(raddr + base, plen); +} + +/* Unmaps a memory region previously mapped by address_space_map(). + * Will also mark the memory as dirty if is_write == 1. access_len gives + * the amount of memory that was actually read or written by the caller. + */ +void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, + int is_write, hwaddr access_len) +{ + if (buffer != bounce.buffer) { + MemoryRegion *mr; + ram_addr_t addr1; + + mr = qemu_ram_addr_from_host(buffer, &addr1); + assert(mr != NULL); + if (is_write) { + while (access_len) { + unsigned l; + l = TARGET_PAGE_SIZE; + if (l > access_len) + l = access_len; + invalidate_and_set_dirty(addr1, l); + addr1 += l; + access_len -= l; + } + } + if (xen_enabled()) { + xen_invalidate_map_cache_entry(buffer); + } + memory_region_unref(mr); + return; + } + if (is_write) { + address_space_write(as, bounce.addr, bounce.buffer, access_len); + } + qemu_vfree(bounce.buffer); + bounce.buffer = NULL; + memory_region_unref(bounce.mr); + cpu_notify_map_clients(); +} + +void *cpu_physical_memory_map(hwaddr addr, + hwaddr *plen, + int is_write) +{ + return address_space_map(&address_space_memory, addr, plen, is_write); +} + +void cpu_physical_memory_unmap(void *buffer, hwaddr len, + int is_write, hwaddr access_len) +{ + return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); +} + +/* warning: addr must be aligned */ +static inline uint32_t ldl_phys_internal(hwaddr addr, + enum device_endian endian) +{ + uint8_t *ptr; + uint64_t val; + MemoryRegion *mr; + hwaddr l = 4; + hwaddr addr1; + + mr = address_space_translate(&address_space_memory, addr, &addr1, &l, + false); + if (l < 4 || !memory_access_is_direct(mr, false)) { + /* I/O case */ + io_mem_read(mr, addr1, &val, 4); +#if defined(TARGET_WORDS_BIGENDIAN) + if (endian == DEVICE_LITTLE_ENDIAN) { + val = bswap32(val); + } +#else + if (endian == DEVICE_BIG_ENDIAN) { + val = bswap32(val); + } +#endif + } else { + /* RAM case */ + ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) + & TARGET_PAGE_MASK) + + addr1); + switch (endian) { + case DEVICE_LITTLE_ENDIAN: + val = ldl_le_p(ptr); + break; + case DEVICE_BIG_ENDIAN: + val = ldl_be_p(ptr); + break; + default: + val = ldl_p(ptr); + break; + } + } + return val; +} + +uint32_t ldl_phys(hwaddr addr) +{ + return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN); +} + +uint32_t ldl_le_phys(hwaddr addr) +{ + return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN); +} + +uint32_t ldl_be_phys(hwaddr addr) +{ + return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN); +} + +/* warning: addr must be aligned */ +static inline uint64_t ldq_phys_internal(hwaddr addr, + enum device_endian endian) +{ + uint8_t *ptr; + uint64_t val; + MemoryRegion *mr; + hwaddr l = 8; + hwaddr addr1; + + mr = address_space_translate(&address_space_memory, addr, &addr1, &l, + false); + if (l < 8 || !memory_access_is_direct(mr, false)) { + /* I/O case */ + io_mem_read(mr, addr1, &val, 8); +#if defined(TARGET_WORDS_BIGENDIAN) + if (endian == DEVICE_LITTLE_ENDIAN) { + val = bswap64(val); + } +#else + if (endian == DEVICE_BIG_ENDIAN) { + val = bswap64(val); + } +#endif + } else { + /* RAM case */ + ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) + & TARGET_PAGE_MASK) + + addr1); + switch (endian) { + case DEVICE_LITTLE_ENDIAN: + val = ldq_le_p(ptr); + break; + case DEVICE_BIG_ENDIAN: + val = ldq_be_p(ptr); + break; + default: + val = ldq_p(ptr); + break; + } + } + return val; +} + +uint64_t ldq_phys(hwaddr addr) +{ + return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN); +} + +uint64_t ldq_le_phys(hwaddr addr) +{ + return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN); +} + +uint64_t ldq_be_phys(hwaddr addr) +{ + return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN); +} + +/* XXX: optimize */ +uint32_t ldub_phys(hwaddr addr) +{ + uint8_t val; + cpu_physical_memory_read(addr, &val, 1); + return val; +} + +/* warning: addr must be aligned */ +static inline uint32_t lduw_phys_internal(hwaddr addr, + enum device_endian endian) +{ + uint8_t *ptr; + uint64_t val; + MemoryRegion *mr; + hwaddr l = 2; + hwaddr addr1; + + mr = address_space_translate(&address_space_memory, addr, &addr1, &l, + false); + if (l < 2 || !memory_access_is_direct(mr, false)) { + /* I/O case */ + io_mem_read(mr, addr1, &val, 2); +#if defined(TARGET_WORDS_BIGENDIAN) + if (endian == DEVICE_LITTLE_ENDIAN) { + val = bswap16(val); + } +#else + if (endian == DEVICE_BIG_ENDIAN) { + val = bswap16(val); + } +#endif + } else { + /* RAM case */ + ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) + & TARGET_PAGE_MASK) + + addr1); + switch (endian) { + case DEVICE_LITTLE_ENDIAN: + val = lduw_le_p(ptr); + break; + case DEVICE_BIG_ENDIAN: + val = lduw_be_p(ptr); + break; + default: + val = lduw_p(ptr); + break; + } + } + return val; +} + +uint32_t lduw_phys(hwaddr addr) +{ + return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN); +} + +uint32_t lduw_le_phys(hwaddr addr) +{ + return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN); +} + +uint32_t lduw_be_phys(hwaddr addr) +{ + return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN); +} + +/* warning: addr must be aligned. The ram page is not masked as dirty + and the code inside is not invalidated. It is useful if the dirty + bits are used to track modified PTEs */ +void stl_phys_notdirty(hwaddr addr, uint32_t val) +{ + uint8_t *ptr; + MemoryRegion *mr; + hwaddr l = 4; + hwaddr addr1; + + mr = address_space_translate(&address_space_memory, addr, &addr1, &l, + true); + if (l < 4 || !memory_access_is_direct(mr, true)) { + io_mem_write(mr, addr1, val, 4); + } else { + addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; + ptr = qemu_get_ram_ptr(addr1); + stl_p(ptr, val); + + if (unlikely(in_migration)) { + if (!cpu_physical_memory_is_dirty(addr1)) { + /* invalidate code */ + tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); + /* set dirty bit */ + cpu_physical_memory_set_dirty_flags( + addr1, (0xff & ~CODE_DIRTY_FLAG)); + } + } + } +} + +/* warning: addr must be aligned */ +static inline void stl_phys_internal(hwaddr addr, uint32_t val, + enum device_endian endian) +{ + uint8_t *ptr; + MemoryRegion *mr; + hwaddr l = 4; + hwaddr addr1; + + mr = address_space_translate(&address_space_memory, addr, &addr1, &l, + true); + if (l < 4 || !memory_access_is_direct(mr, true)) { +#if defined(TARGET_WORDS_BIGENDIAN) + if (endian == DEVICE_LITTLE_ENDIAN) { + val = bswap32(val); + } +#else + if (endian == DEVICE_BIG_ENDIAN) { + val = bswap32(val); + } +#endif + io_mem_write(mr, addr1, val, 4); + } else { + /* RAM case */ + addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; + ptr = qemu_get_ram_ptr(addr1); + switch (endian) { + case DEVICE_LITTLE_ENDIAN: + stl_le_p(ptr, val); + break; + case DEVICE_BIG_ENDIAN: + stl_be_p(ptr, val); + break; + default: + stl_p(ptr, val); + break; + } + invalidate_and_set_dirty(addr1, 4); + } +} + +void stl_phys(hwaddr addr, uint32_t val) +{ + stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN); +} + +void stl_le_phys(hwaddr addr, uint32_t val) +{ + stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN); +} + +void stl_be_phys(hwaddr addr, uint32_t val) +{ + stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN); +} + +/* XXX: optimize */ +void stb_phys(hwaddr addr, uint32_t val) +{ + uint8_t v = val; + cpu_physical_memory_write(addr, &v, 1); +} + +/* warning: addr must be aligned */ +static inline void stw_phys_internal(hwaddr addr, uint32_t val, + enum device_endian endian) +{ + uint8_t *ptr; + MemoryRegion *mr; + hwaddr l = 2; + hwaddr addr1; + + mr = address_space_translate(&address_space_memory, addr, &addr1, &l, + true); + if (l < 2 || !memory_access_is_direct(mr, true)) { +#if defined(TARGET_WORDS_BIGENDIAN) + if (endian == DEVICE_LITTLE_ENDIAN) { + val = bswap16(val); + } +#else + if (endian == DEVICE_BIG_ENDIAN) { + val = bswap16(val); + } +#endif + io_mem_write(mr, addr1, val, 2); + } else { + /* RAM case */ + addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; + ptr = qemu_get_ram_ptr(addr1); + switch (endian) { + case DEVICE_LITTLE_ENDIAN: + stw_le_p(ptr, val); + break; + case DEVICE_BIG_ENDIAN: + stw_be_p(ptr, val); + break; + default: + stw_p(ptr, val); + break; + } + invalidate_and_set_dirty(addr1, 2); + } +} + +void stw_phys(hwaddr addr, uint32_t val) +{ + stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN); +} + +void stw_le_phys(hwaddr addr, uint32_t val) +{ + stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN); +} + +void stw_be_phys(hwaddr addr, uint32_t val) +{ + stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN); +} + +/* XXX: optimize */ +void stq_phys(hwaddr addr, uint64_t val) +{ + val = tswap64(val); + cpu_physical_memory_write(addr, &val, 8); +} + +void stq_le_phys(hwaddr addr, uint64_t val) +{ + val = cpu_to_le64(val); + cpu_physical_memory_write(addr, &val, 8); +} + +void stq_be_phys(hwaddr addr, uint64_t val) +{ + val = cpu_to_be64(val); + cpu_physical_memory_write(addr, &val, 8); +} + +/* virtual memory access for debug (includes writing to ROM) */ +int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, + uint8_t *buf, int len, int is_write) +{ + int l; + hwaddr phys_addr; + target_ulong page; + + while (len > 0) { + page = addr & TARGET_PAGE_MASK; + phys_addr = cpu_get_phys_page_debug(cpu, page); + /* if no physical page mapped, return an error */ + if (phys_addr == -1) + return -1; + l = (page + TARGET_PAGE_SIZE) - addr; + if (l > len) + l = len; + phys_addr += (addr & ~TARGET_PAGE_MASK); + if (is_write) + cpu_physical_memory_write_rom(phys_addr, buf, l); + else + cpu_physical_memory_rw(phys_addr, buf, l, is_write); + len -= l; + buf += l; + addr += l; + } + return 0; +} +#endif + +#if !defined(CONFIG_USER_ONLY) + +/* + * A helper function for the _utterly broken_ virtio device model to find out if + * it's running on a big endian machine. Don't do this at home kids! + */ +bool virtio_is_big_endian(void); +bool virtio_is_big_endian(void) +{ +#if defined(TARGET_WORDS_BIGENDIAN) + return true; +#else + return false; +#endif +} + +#endif + +#ifndef CONFIG_USER_ONLY +bool cpu_physical_memory_is_io(hwaddr phys_addr) +{ + MemoryRegion*mr; + hwaddr l = 1; + + mr = address_space_translate(&address_space_memory, + phys_addr, &phys_addr, &l, false); + + return !(memory_region_is_ram(mr) || + memory_region_is_romd(mr)); +} + +void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) +{ + RAMBlock *block; + + QTAILQ_FOREACH(block, &ram_list.blocks, next) { + func(block->host, block->offset, block->length, opaque); + } +} +#endif |