diff options
author | Anas Nashif <anas.nashif@intel.com> | 2012-05-15 22:27:48 +0100 |
---|---|---|
committer | Anas Nashif <anas.nashif@intel.com> | 2012-05-15 22:27:48 +0100 |
commit | b9fad1ab2ad3bd87bff05c4688c978d582ada438 (patch) | |
tree | 4a373f8dd867d20e67510de7cfe447a4b58c1a70 /float.c | |
parent | 65c26d26fb72cec0d43d199c72ed27513d17f4c9 (diff) | |
download | nasm-b9fad1ab2ad3bd87bff05c4688c978d582ada438.tar.gz nasm-b9fad1ab2ad3bd87bff05c4688c978d582ada438.tar.bz2 nasm-b9fad1ab2ad3bd87bff05c4688c978d582ada438.zip |
Upstream version 2.08rc7
Diffstat (limited to 'float.c')
-rw-r--r-- | float.c | 956 |
1 files changed, 956 insertions, 0 deletions
@@ -0,0 +1,956 @@ +/* ----------------------------------------------------------------------- * + * + * Copyright 1996-2009 The NASM Authors - All Rights Reserved + * See the file AUTHORS included with the NASM distribution for + * the specific copyright holders. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following + * conditions are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND + * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, + * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR + * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, + * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * ----------------------------------------------------------------------- */ + +/* + * float.c floating-point constant support for the Netwide Assembler + */ + +#include "compiler.h" + +#include <ctype.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <inttypes.h> + +#include "nasm.h" +#include "float.h" + +/* + * ----------------- + * local variables + * ----------------- + */ +static efunc error; +static bool daz = false; /* denormals as zero */ +static enum float_round rc = FLOAT_RC_NEAR; /* rounding control */ + +/* + * ----------- + * constants + * ----------- + */ + +/* "A limb is like a digit but bigger */ +typedef uint32_t fp_limb; +typedef uint64_t fp_2limb; + +#define LIMB_BITS 32 +#define LIMB_BYTES (LIMB_BITS/8) +#define LIMB_TOP_BIT ((fp_limb)1 << (LIMB_BITS-1)) +#define LIMB_MASK ((fp_limb)(~0)) +#define LIMB_ALL_BYTES ((fp_limb)0x01010101) +#define LIMB_BYTE(x) ((x)*LIMB_ALL_BYTES) + +/* 112 bits + 64 bits for accuracy + 16 bits for rounding */ +#define MANT_LIMBS 6 + +/* 52 digits fit in 176 bits because 10^53 > 2^176 > 10^52 */ +#define MANT_DIGITS 52 + +/* the format and the argument list depend on MANT_LIMBS */ +#define MANT_FMT "%08x_%08x_%08x_%08x_%08x_%08x" +#define MANT_ARG SOME_ARG(mant, 0) + +#define SOME_ARG(a,i) (a)[(i)+0], (a)[(i)+1], (a)[(i)+2], \ + (a)[(i)+3], (a)[(i)+4], (a)[(i)+5] + +/* + * --------------------------------------------------------------------------- + * emit a printf()-like debug message... but only if DEBUG_FLOAT was defined + * --------------------------------------------------------------------------- + */ + +#ifdef DEBUG_FLOAT +#define dprintf(x) printf x +#else +#define dprintf(x) do { } while (0) +#endif + +/* + * --------------------------------------------------------------------------- + * multiply + * --------------------------------------------------------------------------- + */ +static int float_multiply(fp_limb *to, fp_limb *from) +{ + fp_2limb temp[MANT_LIMBS * 2]; + int i, j; + + /* + * guaranteed that top bit of 'from' is set -- so we only have + * to worry about _one_ bit shift to the left + */ + dprintf(("%s=" MANT_FMT "\n", "mul1", SOME_ARG(to, 0))); + dprintf(("%s=" MANT_FMT "\n", "mul2", SOME_ARG(from, 0))); + + memset(temp, 0, sizeof temp); + + for (i = 0; i < MANT_LIMBS; i++) { + for (j = 0; j < MANT_LIMBS; j++) { + fp_2limb n; + n = (fp_2limb) to[i] * (fp_2limb) from[j]; + temp[i + j] += n >> LIMB_BITS; + temp[i + j + 1] += (fp_limb)n; + } + } + + for (i = MANT_LIMBS * 2; --i;) { + temp[i - 1] += temp[i] >> LIMB_BITS; + temp[i] &= LIMB_MASK; + } + + dprintf(("%s=" MANT_FMT "_" MANT_FMT "\n", "temp", SOME_ARG(temp, 0), + SOME_ARG(temp, MANT_LIMBS))); + + if (temp[0] & LIMB_TOP_BIT) { + for (i = 0; i < MANT_LIMBS; i++) { + to[i] = temp[i] & LIMB_MASK; + } + dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), 0)); + return 0; + } else { + for (i = 0; i < MANT_LIMBS; i++) { + to[i] = (temp[i] << 1) + !!(temp[i + 1] & LIMB_TOP_BIT); + } + dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), -1)); + return -1; + } +} + +/* + * --------------------------------------------------------------------------- + * read an exponent; returns INT32_MAX on error + * --------------------------------------------------------------------------- + */ +static int32_t read_exponent(const char *string, int32_t max) +{ + int32_t i = 0; + bool neg = false; + + if (*string == '+') { + string++; + } else if (*string == '-') { + neg = true; + string++; + } + while (*string) { + if (*string >= '0' && *string <= '9') { + i = (i * 10) + (*string - '0'); + + /* + * To ensure that underflows and overflows are + * handled properly we must avoid wraparounds of + * the signed integer value that is used to hold + * the exponent. Therefore we cap the exponent at + * +/-5000, which is slightly more/less than + * what's required for normal and denormal numbers + * in single, double, and extended precision, but + * sufficient to avoid signed integer wraparound. + */ + if (i > max) + i = max; + } else if (*string == '_') { + /* do nothing */ + } else { + error(ERR_NONFATAL|ERR_PASS1, + "invalid character in floating-point constant %s: '%c'", + "exponent", *string); + return INT32_MAX; + } + string++; + } + + return neg ? -i : i; +} + +/* + * --------------------------------------------------------------------------- + * convert + * --------------------------------------------------------------------------- + */ +static bool ieee_flconvert(const char *string, fp_limb *mant, + int32_t * exponent) +{ + char digits[MANT_DIGITS]; + char *p, *q, *r; + fp_limb mult[MANT_LIMBS], bit; + fp_limb *m; + int32_t tenpwr, twopwr; + int32_t extratwos; + bool started, seendot, warned; + + warned = false; + p = digits; + tenpwr = 0; + started = seendot = false; + + while (*string && *string != 'E' && *string != 'e') { + if (*string == '.') { + if (!seendot) { + seendot = true; + } else { + error(ERR_NONFATAL|ERR_PASS1, + "too many periods in floating-point constant"); + return false; + } + } else if (*string >= '0' && *string <= '9') { + if (*string == '0' && !started) { + if (seendot) { + tenpwr--; + } + } else { + started = true; + if (p < digits + sizeof(digits)) { + *p++ = *string - '0'; + } else { + if (!warned) { + error(ERR_WARNING|ERR_WARN_FL_TOOLONG|ERR_PASS1, + "floating-point constant significand contains " + "more than %i digits", MANT_DIGITS); + warned = true; + } + } + if (!seendot) { + tenpwr++; + } + } + } else if (*string == '_') { + /* do nothing */ + } else { + error(ERR_NONFATAL|ERR_PASS1, + "invalid character in floating-point constant %s: '%c'", + "significand", *string); + return false; + } + string++; + } + + if (*string) { + int32_t e; + + string++; /* eat the E */ + e = read_exponent(string, 5000); + if (e == INT32_MAX) + return false; + tenpwr += e; + } + + /* + * At this point, the memory interval [digits,p) contains a + * series of decimal digits zzzzzzz, such that our number X + * satisfies X = 0.zzzzzzz * 10^tenpwr. + */ + q = digits; + dprintf(("X = 0.")); + while (q < p) { + dprintf(("%c", *q + '0')); + q++; + } + dprintf((" * 10^%i\n", tenpwr)); + + /* + * Now convert [digits,p) to our internal representation. + */ + bit = LIMB_TOP_BIT; + for (m = mant; m < mant + MANT_LIMBS; m++) { + *m = 0; + } + m = mant; + q = digits; + started = false; + twopwr = 0; + while (m < mant + MANT_LIMBS) { + fp_limb carry = 0; + while (p > q && !p[-1]) { + p--; + } + if (p <= q) { + break; + } + for (r = p; r-- > q;) { + int32_t i; + i = 2 * *r + carry; + if (i >= 10) { + carry = 1; + i -= 10; + } else { + carry = 0; + } + *r = i; + } + if (carry) { + *m |= bit; + started = true; + } + if (started) { + if (bit == 1) { + bit = LIMB_TOP_BIT; + m++; + } else { + bit >>= 1; + } + } else { + twopwr--; + } + } + twopwr += tenpwr; + + /* + * At this point, the 'mant' array contains the first frac- + * tional places of a base-2^16 real number which when mul- + * tiplied by 2^twopwr and 5^tenpwr gives X. + */ + dprintf(("X = " MANT_FMT " * 2^%i * 5^%i\n", MANT_ARG, twopwr, + tenpwr)); + + /* + * Now multiply 'mant' by 5^tenpwr. + */ + if (tenpwr < 0) { /* mult = 5^-1 = 0.2 */ + for (m = mult; m < mult + MANT_LIMBS - 1; m++) { + *m = LIMB_BYTE(0xcc); + } + mult[MANT_LIMBS - 1] = LIMB_BYTE(0xcc)+1; + extratwos = -2; + tenpwr = -tenpwr; + + /* + * If tenpwr was 1000...000b, then it becomes 1000...000b. See + * the "ANSI C" comment below for more details on that case. + * + * Because we already truncated tenpwr to +5000...-5000 inside + * the exponent parsing code, this shouldn't happen though. + */ + } else if (tenpwr > 0) { /* mult = 5^+1 = 5.0 */ + mult[0] = (fp_limb)5 << (LIMB_BITS-3); /* 0xA000... */ + for (m = mult + 1; m < mult + MANT_LIMBS; m++) { + *m = 0; + } + extratwos = 3; + } else { + extratwos = 0; + } + while (tenpwr) { + dprintf(("loop=" MANT_FMT " * 2^%i * 5^%i (%i)\n", MANT_ARG, + twopwr, tenpwr, extratwos)); + if (tenpwr & 1) { + dprintf(("mant*mult\n")); + twopwr += extratwos + float_multiply(mant, mult); + } + dprintf(("mult*mult\n")); + extratwos = extratwos * 2 + float_multiply(mult, mult); + tenpwr >>= 1; + + /* + * In ANSI C, the result of right-shifting a signed integer is + * considered implementation-specific. To ensure that the loop + * terminates even if tenpwr was 1000...000b to begin with, we + * manually clear the MSB, in case a 1 was shifted in. + * + * Because we already truncated tenpwr to +5000...-5000 inside + * the exponent parsing code, this shouldn't matter; neverthe- + * less it is the right thing to do here. + */ + tenpwr &= (uint32_t) - 1 >> 1; + } + + /* + * At this point, the 'mant' array contains the first frac- + * tional places of a base-2^16 real number in [0.5,1) that + * when multiplied by 2^twopwr gives X. Or it contains zero + * of course. We are done. + */ + *exponent = twopwr; + return true; +} + +/* + * --------------------------------------------------------------------------- + * operations of specific bits + * --------------------------------------------------------------------------- + */ + +/* Set a bit, using *bigendian* bit numbering (0 = MSB) */ +static void set_bit(fp_limb *mant, int bit) +{ + mant[bit/LIMB_BITS] |= LIMB_TOP_BIT >> (bit & (LIMB_BITS-1)); +} + +/* Test a single bit */ +static int test_bit(const fp_limb *mant, int bit) +{ + return (mant[bit/LIMB_BITS] >> (~bit & (LIMB_BITS-1))) & 1; +} + +/* Report if the mantissa value is all zero */ +static bool is_zero(const fp_limb *mant) +{ + int i; + + for (i = 0; i < MANT_LIMBS; i++) + if (mant[i]) + return false; + + return true; +} + +/* + * --------------------------------------------------------------------------- + * round a mantissa off after i words + * --------------------------------------------------------------------------- + */ + +#define ROUND_COLLECT_BITS \ + do { \ + m = mant[i] & (2*bit-1); \ + for (j = i+1; j < MANT_LIMBS; j++) \ + m = m | mant[j]; \ + } while (0) + +#define ROUND_ABS_DOWN \ + do { \ + mant[i] &= ~(bit-1); \ + for (j = i+1; j < MANT_LIMBS; j++) \ + mant[j] = 0; \ + return false; \ + } while (0) + +#define ROUND_ABS_UP \ + do { \ + mant[i] = (mant[i] & ~(bit-1)) + bit; \ + for (j = i+1; j < MANT_LIMBS; j++) \ + mant[j] = 0; \ + while (i > 0 && !mant[i]) \ + ++mant[--i]; \ + return !mant[0]; \ + } while (0) + +static bool ieee_round(bool minus, fp_limb *mant, int bits) +{ + fp_limb m = 0; + int32_t j; + int i = bits / LIMB_BITS; + int p = bits % LIMB_BITS; + fp_limb bit = LIMB_TOP_BIT >> p; + + if (rc == FLOAT_RC_NEAR) { + if (mant[i] & bit) { + mant[i] &= ~bit; + ROUND_COLLECT_BITS; + mant[i] |= bit; + if (m) { + ROUND_ABS_UP; + } else { + if (test_bit(mant, bits-1)) { + ROUND_ABS_UP; + } else { + ROUND_ABS_DOWN; + } + } + } else { + ROUND_ABS_DOWN; + } + } else if (rc == FLOAT_RC_ZERO || + rc == (minus ? FLOAT_RC_UP : FLOAT_RC_DOWN)) { + ROUND_ABS_DOWN; + } else { + /* rc == (minus ? FLOAT_RC_DOWN : FLOAT_RC_UP) */ + /* Round toward +/- infinity */ + ROUND_COLLECT_BITS; + if (m) { + ROUND_ABS_UP; + } else { + ROUND_ABS_DOWN; + } + } + return false; +} + +/* Returns a value >= 16 if not a valid hex digit */ +static unsigned int hexval(char c) +{ + unsigned int v = (unsigned char) c; + + if (v >= '0' && v <= '9') + return v - '0'; + else + return (v|0x20) - 'a' + 10; +} + +/* Handle floating-point numbers with radix 2^bits and binary exponent */ +static bool ieee_flconvert_bin(const char *string, int bits, + fp_limb *mant, int32_t *exponent) +{ + static const int log2tbl[16] = + { -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 }; + fp_limb mult[MANT_LIMBS + 1], *mp; + int ms; + int32_t twopwr; + bool seendot, seendigit; + unsigned char c; + const int radix = 1 << bits; + fp_limb v; + + twopwr = 0; + seendot = seendigit = false; + ms = 0; + mp = NULL; + + memset(mult, 0, sizeof mult); + + while ((c = *string++) != '\0') { + if (c == '.') { + if (!seendot) + seendot = true; + else { + error(ERR_NONFATAL|ERR_PASS1, + "too many periods in floating-point constant"); + return false; + } + } else if ((v = hexval(c)) < (unsigned int)radix) { + if (!seendigit && v) { + int l = log2tbl[v]; + + seendigit = true; + mp = mult; + ms = (LIMB_BITS-1)-l; + + twopwr = seendot ? twopwr-bits+l : l+1-bits; + } + + if (seendigit) { + if (ms <= 0) { + *mp |= v >> -ms; + mp++; + if (mp > &mult[MANT_LIMBS]) + mp = &mult[MANT_LIMBS]; /* Guard slot */ + ms += LIMB_BITS; + } + *mp |= v << ms; + ms -= bits; + + if (!seendot) + twopwr += bits; + } else { + if (seendot) + twopwr -= bits; + } + } else if (c == 'p' || c == 'P') { + int32_t e; + e = read_exponent(string, 20000); + if (e == INT32_MAX) + return false; + twopwr += e; + break; + } else if (c == '_') { + /* ignore */ + } else { + error(ERR_NONFATAL|ERR_PASS1, + "floating-point constant: `%c' is invalid character", c); + return false; + } + } + + if (!seendigit) { + memset(mant, 0, MANT_LIMBS*sizeof(fp_limb)); /* Zero */ + *exponent = 0; + } else { + memcpy(mant, mult, MANT_LIMBS*sizeof(fp_limb)); + *exponent = twopwr; + } + + return true; +} + +/* + * Shift a mantissa to the right by i bits. + */ +static void ieee_shr(fp_limb *mant, int i) +{ + fp_limb n, m; + int j = 0; + int sr, sl, offs; + + sr = i % LIMB_BITS; sl = LIMB_BITS-sr; + offs = i/LIMB_BITS; + + if (sr == 0) { + if (offs) + for (j = MANT_LIMBS-1; j >= offs; j--) + mant[j] = mant[j-offs]; + } else { + n = mant[MANT_LIMBS-1-offs] >> sr; + for (j = MANT_LIMBS-1; j > offs; j--) { + m = mant[j-offs-1]; + mant[j] = (m << sl) | n; + n = m >> sr; + } + mant[j--] = n; + } + while (j >= 0) + mant[j--] = 0; +} + +/* Produce standard IEEE formats, with implicit or explicit integer + bit; this makes the following assumptions: + + - the sign bit is the MSB, followed by the exponent, + followed by the integer bit if present. + - the sign bit plus exponent fit in 16 bits. + - the exponent bias is 2^(n-1)-1 for an n-bit exponent */ + +struct ieee_format { + int bytes; + int mantissa; /* Fractional bits in the mantissa */ + int explicit; /* Explicit integer */ + int exponent; /* Bits in the exponent */ +}; + +/* + * The 16- and 128-bit formats are expected to be in IEEE 754r. + * AMD SSE5 uses the 16-bit format. + * + * The 32- and 64-bit formats are the original IEEE 754 formats. + * + * The 80-bit format is x87-specific, but widely used. + * + * The 8-bit format appears to be the consensus 8-bit floating-point + * format. It is apparently used in graphics applications. + */ +static const struct ieee_format ieee_8 = { 1, 3, 0, 4 }; +static const struct ieee_format ieee_16 = { 2, 10, 0, 5 }; +static const struct ieee_format ieee_32 = { 4, 23, 0, 8 }; +static const struct ieee_format ieee_64 = { 8, 52, 0, 11 }; +static const struct ieee_format ieee_80 = { 10, 63, 1, 15 }; +static const struct ieee_format ieee_128 = { 16, 112, 0, 15 }; + +/* Types of values we can generate */ +enum floats { + FL_ZERO, + FL_DENORMAL, + FL_NORMAL, + FL_INFINITY, + FL_QNAN, + FL_SNAN +}; + +static int to_packed_bcd(const char *str, const char *p, + int s, uint8_t *result, + const struct ieee_format *fmt) +{ + int n = 0; + char c; + int tv = -1; + + if (fmt != &ieee_80) { + error(ERR_NONFATAL|ERR_PASS1, + "packed BCD requires an 80-bit format"); + return 0; + } + + while (p >= str) { + c = *p--; + if (c >= '0' && c <= '9') { + if (tv < 0) { + if (n == 9) { + error(ERR_WARNING|ERR_PASS1, + "packed BCD truncated to 18 digits"); + } + tv = c-'0'; + } else { + if (n < 9) + *result++ = tv + ((c-'0') << 4); + n++; + tv = -1; + } + } else if (c == '_') { + /* do nothing */ + } else { + error(ERR_NONFATAL|ERR_PASS1, + "invalid character `%c' in packed BCD constant", c); + return 0; + } + } + if (tv >= 0) { + if (n < 9) + *result++ = tv; + n++; + } + while (n < 9) { + *result++ = 0; + n++; + } + *result = (s < 0) ? 0x80 : 0; + + return 1; /* success */ +} + +static int to_float(const char *str, int s, uint8_t *result, + const struct ieee_format *fmt) +{ + fp_limb mant[MANT_LIMBS]; + int32_t exponent = 0; + const int32_t expmax = 1 << (fmt->exponent - 1); + fp_limb one_mask = LIMB_TOP_BIT >> + ((fmt->exponent+fmt->explicit) % LIMB_BITS); + const int one_pos = (fmt->exponent+fmt->explicit)/LIMB_BITS; + int i; + int shift; + enum floats type; + bool ok; + const bool minus = s < 0; + const int bits = fmt->bytes * 8; + const char *strend; + + if (!str[0]) { + error(ERR_PANIC, + "internal errror: empty string passed to float_const"); + return 0; + } + + strend = strchr(str, '\0'); + if (strend[-1] == 'P' || strend[-1] == 'p') + return to_packed_bcd(str, strend-2, s, result, fmt); + + if (str[0] == '_') { + /* Special tokens */ + + switch (str[2]) { + case 'n': /* __nan__ */ + case 'N': + case 'q': /* __qnan__ */ + case 'Q': + type = FL_QNAN; + break; + case 's': /* __snan__ */ + case 'S': + type = FL_SNAN; + break; + case 'i': /* __infinity__ */ + case 'I': + type = FL_INFINITY; + break; + default: + error(ERR_NONFATAL|ERR_PASS1, + "internal error: unknown FP constant token `%s'\n", str); + type = FL_QNAN; + break; + } + } else { + if (str[0] == '0') { + switch (str[1]) { + case 'x': case 'X': + case 'h': case 'H': + ok = ieee_flconvert_bin(str+2, 4, mant, &exponent); + break; + case 'o': case 'O': + case 'q': case 'Q': + ok = ieee_flconvert_bin(str+2, 3, mant, &exponent); + break; + case 'b': case 'B': + case 'y': case 'Y': + ok = ieee_flconvert_bin(str+2, 1, mant, &exponent); + break; + case 'd': case 'D': + case 't': case 'T': + ok = ieee_flconvert(str+2, mant, &exponent); + break; + case 'p': case 'P': + return to_packed_bcd(str+2, strend-1, s, result, fmt); + default: + /* Leading zero was just a zero? */ + ok = ieee_flconvert(str, mant, &exponent); + break; + } + } else if (str[0] == '$') { + ok = ieee_flconvert_bin(str+1, 4, mant, &exponent); + } else { + ok = ieee_flconvert(str, mant, &exponent); + } + + if (!ok) { + type = FL_QNAN; + } else if (mant[0] & LIMB_TOP_BIT) { + /* + * Non-zero. + */ + exponent--; + if (exponent >= 2 - expmax && exponent <= expmax) { + type = FL_NORMAL; + } else if (exponent > 0) { + if (pass0 == 1) + error(ERR_WARNING|ERR_WARN_FL_OVERFLOW|ERR_PASS1, + "overflow in floating-point constant"); + type = FL_INFINITY; + } else { + /* underflow or denormal; the denormal code handles + actual underflow. */ + type = FL_DENORMAL; + } + } else { + /* Zero */ + type = FL_ZERO; + } + } + + switch (type) { + case FL_ZERO: + zero: + memset(mant, 0, sizeof mant); + break; + + case FL_DENORMAL: + { + shift = -(exponent + expmax - 2 - fmt->exponent) + + fmt->explicit; + ieee_shr(mant, shift); + ieee_round(minus, mant, bits); + if (mant[one_pos] & one_mask) { + /* One's position is set, we rounded up into normal range */ + exponent = 1; + if (!fmt->explicit) + mant[one_pos] &= ~one_mask; /* remove explicit one */ + mant[0] |= exponent << (LIMB_BITS-1 - fmt->exponent); + } else { + if (daz || is_zero(mant)) { + /* Flush denormals to zero */ + error(ERR_WARNING|ERR_WARN_FL_UNDERFLOW|ERR_PASS1, + "underflow in floating-point constant"); + goto zero; + } else { + error(ERR_WARNING|ERR_WARN_FL_DENORM|ERR_PASS1, + "denormal floating-point constant"); + } + } + break; + } + + case FL_NORMAL: + exponent += expmax - 1; + ieee_shr(mant, fmt->exponent+fmt->explicit); + ieee_round(minus, mant, bits); + /* did we scale up by one? */ + if (test_bit(mant, fmt->exponent+fmt->explicit-1)) { + ieee_shr(mant, 1); + exponent++; + if (exponent >= (expmax << 1)-1) { + error(ERR_WARNING|ERR_WARN_FL_OVERFLOW|ERR_PASS1, + "overflow in floating-point constant"); + type = FL_INFINITY; + goto overflow; + } + } + + if (!fmt->explicit) + mant[one_pos] &= ~one_mask; /* remove explicit one */ + mant[0] |= exponent << (LIMB_BITS-1 - fmt->exponent); + break; + + case FL_INFINITY: + case FL_QNAN: + case FL_SNAN: + overflow: + memset(mant, 0, sizeof mant); + mant[0] = (((fp_limb)1 << fmt->exponent)-1) + << (LIMB_BITS-1 - fmt->exponent); + if (fmt->explicit) + mant[one_pos] |= one_mask; + if (type == FL_QNAN) + set_bit(mant, fmt->exponent+fmt->explicit+1); + else if (type == FL_SNAN) + set_bit(mant, fmt->exponent+fmt->explicit+fmt->mantissa); + break; + } + + mant[0] |= minus ? LIMB_TOP_BIT : 0; + + for (i = fmt->bytes - 1; i >= 0; i--) + *result++ = mant[i/LIMB_BYTES] >> (((LIMB_BYTES-1)-(i%LIMB_BYTES))*8); + + return 1; /* success */ +} + +int float_const(const char *number, int sign, uint8_t *result, + int bytes, efunc err) +{ + error = err; + + switch (bytes) { + case 1: + return to_float(number, sign, result, &ieee_8); + case 2: + return to_float(number, sign, result, &ieee_16); + case 4: + return to_float(number, sign, result, &ieee_32); + case 8: + return to_float(number, sign, result, &ieee_64); + case 10: + return to_float(number, sign, result, &ieee_80); + case 16: + return to_float(number, sign, result, &ieee_128); + default: + error(ERR_PANIC, "strange value %d passed to float_const", bytes); + return 0; + } +} + +/* Set floating-point options */ +int float_option(const char *option) +{ + if (!nasm_stricmp(option, "daz")) { + daz = true; + return 0; + } else if (!nasm_stricmp(option, "nodaz")) { + daz = false; + return 0; + } else if (!nasm_stricmp(option, "near")) { + rc = FLOAT_RC_NEAR; + return 0; + } else if (!nasm_stricmp(option, "down")) { + rc = FLOAT_RC_DOWN; + return 0; + } else if (!nasm_stricmp(option, "up")) { + rc = FLOAT_RC_UP; + return 0; + } else if (!nasm_stricmp(option, "zero")) { + rc = FLOAT_RC_ZERO; + return 0; + } else if (!nasm_stricmp(option, "default")) { + rc = FLOAT_RC_NEAR; + daz = false; + return 0; + } else { + return -1; /* Unknown option */ + } +} |