summaryrefslogtreecommitdiff
path: root/float.c
diff options
context:
space:
mode:
authorAnas Nashif <anas.nashif@intel.com>2012-05-15 22:27:48 +0100
committerAnas Nashif <anas.nashif@intel.com>2012-05-15 22:27:48 +0100
commitb9fad1ab2ad3bd87bff05c4688c978d582ada438 (patch)
tree4a373f8dd867d20e67510de7cfe447a4b58c1a70 /float.c
parent65c26d26fb72cec0d43d199c72ed27513d17f4c9 (diff)
downloadnasm-b9fad1ab2ad3bd87bff05c4688c978d582ada438.tar.gz
nasm-b9fad1ab2ad3bd87bff05c4688c978d582ada438.tar.bz2
nasm-b9fad1ab2ad3bd87bff05c4688c978d582ada438.zip
Upstream version 2.08rc7
Diffstat (limited to 'float.c')
-rw-r--r--float.c956
1 files changed, 956 insertions, 0 deletions
diff --git a/float.c b/float.c
new file mode 100644
index 0000000..7a4f8cb
--- /dev/null
+++ b/float.c
@@ -0,0 +1,956 @@
+/* ----------------------------------------------------------------------- *
+ *
+ * Copyright 1996-2009 The NASM Authors - All Rights Reserved
+ * See the file AUTHORS included with the NASM distribution for
+ * the specific copyright holders.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following
+ * conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials provided
+ * with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
+ * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
+ * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+ * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * ----------------------------------------------------------------------- */
+
+/*
+ * float.c floating-point constant support for the Netwide Assembler
+ */
+
+#include "compiler.h"
+
+#include <ctype.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <inttypes.h>
+
+#include "nasm.h"
+#include "float.h"
+
+/*
+ * -----------------
+ * local variables
+ * -----------------
+ */
+static efunc error;
+static bool daz = false; /* denormals as zero */
+static enum float_round rc = FLOAT_RC_NEAR; /* rounding control */
+
+/*
+ * -----------
+ * constants
+ * -----------
+ */
+
+/* "A limb is like a digit but bigger */
+typedef uint32_t fp_limb;
+typedef uint64_t fp_2limb;
+
+#define LIMB_BITS 32
+#define LIMB_BYTES (LIMB_BITS/8)
+#define LIMB_TOP_BIT ((fp_limb)1 << (LIMB_BITS-1))
+#define LIMB_MASK ((fp_limb)(~0))
+#define LIMB_ALL_BYTES ((fp_limb)0x01010101)
+#define LIMB_BYTE(x) ((x)*LIMB_ALL_BYTES)
+
+/* 112 bits + 64 bits for accuracy + 16 bits for rounding */
+#define MANT_LIMBS 6
+
+/* 52 digits fit in 176 bits because 10^53 > 2^176 > 10^52 */
+#define MANT_DIGITS 52
+
+/* the format and the argument list depend on MANT_LIMBS */
+#define MANT_FMT "%08x_%08x_%08x_%08x_%08x_%08x"
+#define MANT_ARG SOME_ARG(mant, 0)
+
+#define SOME_ARG(a,i) (a)[(i)+0], (a)[(i)+1], (a)[(i)+2], \
+ (a)[(i)+3], (a)[(i)+4], (a)[(i)+5]
+
+/*
+ * ---------------------------------------------------------------------------
+ * emit a printf()-like debug message... but only if DEBUG_FLOAT was defined
+ * ---------------------------------------------------------------------------
+ */
+
+#ifdef DEBUG_FLOAT
+#define dprintf(x) printf x
+#else
+#define dprintf(x) do { } while (0)
+#endif
+
+/*
+ * ---------------------------------------------------------------------------
+ * multiply
+ * ---------------------------------------------------------------------------
+ */
+static int float_multiply(fp_limb *to, fp_limb *from)
+{
+ fp_2limb temp[MANT_LIMBS * 2];
+ int i, j;
+
+ /*
+ * guaranteed that top bit of 'from' is set -- so we only have
+ * to worry about _one_ bit shift to the left
+ */
+ dprintf(("%s=" MANT_FMT "\n", "mul1", SOME_ARG(to, 0)));
+ dprintf(("%s=" MANT_FMT "\n", "mul2", SOME_ARG(from, 0)));
+
+ memset(temp, 0, sizeof temp);
+
+ for (i = 0; i < MANT_LIMBS; i++) {
+ for (j = 0; j < MANT_LIMBS; j++) {
+ fp_2limb n;
+ n = (fp_2limb) to[i] * (fp_2limb) from[j];
+ temp[i + j] += n >> LIMB_BITS;
+ temp[i + j + 1] += (fp_limb)n;
+ }
+ }
+
+ for (i = MANT_LIMBS * 2; --i;) {
+ temp[i - 1] += temp[i] >> LIMB_BITS;
+ temp[i] &= LIMB_MASK;
+ }
+
+ dprintf(("%s=" MANT_FMT "_" MANT_FMT "\n", "temp", SOME_ARG(temp, 0),
+ SOME_ARG(temp, MANT_LIMBS)));
+
+ if (temp[0] & LIMB_TOP_BIT) {
+ for (i = 0; i < MANT_LIMBS; i++) {
+ to[i] = temp[i] & LIMB_MASK;
+ }
+ dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), 0));
+ return 0;
+ } else {
+ for (i = 0; i < MANT_LIMBS; i++) {
+ to[i] = (temp[i] << 1) + !!(temp[i + 1] & LIMB_TOP_BIT);
+ }
+ dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), -1));
+ return -1;
+ }
+}
+
+/*
+ * ---------------------------------------------------------------------------
+ * read an exponent; returns INT32_MAX on error
+ * ---------------------------------------------------------------------------
+ */
+static int32_t read_exponent(const char *string, int32_t max)
+{
+ int32_t i = 0;
+ bool neg = false;
+
+ if (*string == '+') {
+ string++;
+ } else if (*string == '-') {
+ neg = true;
+ string++;
+ }
+ while (*string) {
+ if (*string >= '0' && *string <= '9') {
+ i = (i * 10) + (*string - '0');
+
+ /*
+ * To ensure that underflows and overflows are
+ * handled properly we must avoid wraparounds of
+ * the signed integer value that is used to hold
+ * the exponent. Therefore we cap the exponent at
+ * +/-5000, which is slightly more/less than
+ * what's required for normal and denormal numbers
+ * in single, double, and extended precision, but
+ * sufficient to avoid signed integer wraparound.
+ */
+ if (i > max)
+ i = max;
+ } else if (*string == '_') {
+ /* do nothing */
+ } else {
+ error(ERR_NONFATAL|ERR_PASS1,
+ "invalid character in floating-point constant %s: '%c'",
+ "exponent", *string);
+ return INT32_MAX;
+ }
+ string++;
+ }
+
+ return neg ? -i : i;
+}
+
+/*
+ * ---------------------------------------------------------------------------
+ * convert
+ * ---------------------------------------------------------------------------
+ */
+static bool ieee_flconvert(const char *string, fp_limb *mant,
+ int32_t * exponent)
+{
+ char digits[MANT_DIGITS];
+ char *p, *q, *r;
+ fp_limb mult[MANT_LIMBS], bit;
+ fp_limb *m;
+ int32_t tenpwr, twopwr;
+ int32_t extratwos;
+ bool started, seendot, warned;
+
+ warned = false;
+ p = digits;
+ tenpwr = 0;
+ started = seendot = false;
+
+ while (*string && *string != 'E' && *string != 'e') {
+ if (*string == '.') {
+ if (!seendot) {
+ seendot = true;
+ } else {
+ error(ERR_NONFATAL|ERR_PASS1,
+ "too many periods in floating-point constant");
+ return false;
+ }
+ } else if (*string >= '0' && *string <= '9') {
+ if (*string == '0' && !started) {
+ if (seendot) {
+ tenpwr--;
+ }
+ } else {
+ started = true;
+ if (p < digits + sizeof(digits)) {
+ *p++ = *string - '0';
+ } else {
+ if (!warned) {
+ error(ERR_WARNING|ERR_WARN_FL_TOOLONG|ERR_PASS1,
+ "floating-point constant significand contains "
+ "more than %i digits", MANT_DIGITS);
+ warned = true;
+ }
+ }
+ if (!seendot) {
+ tenpwr++;
+ }
+ }
+ } else if (*string == '_') {
+ /* do nothing */
+ } else {
+ error(ERR_NONFATAL|ERR_PASS1,
+ "invalid character in floating-point constant %s: '%c'",
+ "significand", *string);
+ return false;
+ }
+ string++;
+ }
+
+ if (*string) {
+ int32_t e;
+
+ string++; /* eat the E */
+ e = read_exponent(string, 5000);
+ if (e == INT32_MAX)
+ return false;
+ tenpwr += e;
+ }
+
+ /*
+ * At this point, the memory interval [digits,p) contains a
+ * series of decimal digits zzzzzzz, such that our number X
+ * satisfies X = 0.zzzzzzz * 10^tenpwr.
+ */
+ q = digits;
+ dprintf(("X = 0."));
+ while (q < p) {
+ dprintf(("%c", *q + '0'));
+ q++;
+ }
+ dprintf((" * 10^%i\n", tenpwr));
+
+ /*
+ * Now convert [digits,p) to our internal representation.
+ */
+ bit = LIMB_TOP_BIT;
+ for (m = mant; m < mant + MANT_LIMBS; m++) {
+ *m = 0;
+ }
+ m = mant;
+ q = digits;
+ started = false;
+ twopwr = 0;
+ while (m < mant + MANT_LIMBS) {
+ fp_limb carry = 0;
+ while (p > q && !p[-1]) {
+ p--;
+ }
+ if (p <= q) {
+ break;
+ }
+ for (r = p; r-- > q;) {
+ int32_t i;
+ i = 2 * *r + carry;
+ if (i >= 10) {
+ carry = 1;
+ i -= 10;
+ } else {
+ carry = 0;
+ }
+ *r = i;
+ }
+ if (carry) {
+ *m |= bit;
+ started = true;
+ }
+ if (started) {
+ if (bit == 1) {
+ bit = LIMB_TOP_BIT;
+ m++;
+ } else {
+ bit >>= 1;
+ }
+ } else {
+ twopwr--;
+ }
+ }
+ twopwr += tenpwr;
+
+ /*
+ * At this point, the 'mant' array contains the first frac-
+ * tional places of a base-2^16 real number which when mul-
+ * tiplied by 2^twopwr and 5^tenpwr gives X.
+ */
+ dprintf(("X = " MANT_FMT " * 2^%i * 5^%i\n", MANT_ARG, twopwr,
+ tenpwr));
+
+ /*
+ * Now multiply 'mant' by 5^tenpwr.
+ */
+ if (tenpwr < 0) { /* mult = 5^-1 = 0.2 */
+ for (m = mult; m < mult + MANT_LIMBS - 1; m++) {
+ *m = LIMB_BYTE(0xcc);
+ }
+ mult[MANT_LIMBS - 1] = LIMB_BYTE(0xcc)+1;
+ extratwos = -2;
+ tenpwr = -tenpwr;
+
+ /*
+ * If tenpwr was 1000...000b, then it becomes 1000...000b. See
+ * the "ANSI C" comment below for more details on that case.
+ *
+ * Because we already truncated tenpwr to +5000...-5000 inside
+ * the exponent parsing code, this shouldn't happen though.
+ */
+ } else if (tenpwr > 0) { /* mult = 5^+1 = 5.0 */
+ mult[0] = (fp_limb)5 << (LIMB_BITS-3); /* 0xA000... */
+ for (m = mult + 1; m < mult + MANT_LIMBS; m++) {
+ *m = 0;
+ }
+ extratwos = 3;
+ } else {
+ extratwos = 0;
+ }
+ while (tenpwr) {
+ dprintf(("loop=" MANT_FMT " * 2^%i * 5^%i (%i)\n", MANT_ARG,
+ twopwr, tenpwr, extratwos));
+ if (tenpwr & 1) {
+ dprintf(("mant*mult\n"));
+ twopwr += extratwos + float_multiply(mant, mult);
+ }
+ dprintf(("mult*mult\n"));
+ extratwos = extratwos * 2 + float_multiply(mult, mult);
+ tenpwr >>= 1;
+
+ /*
+ * In ANSI C, the result of right-shifting a signed integer is
+ * considered implementation-specific. To ensure that the loop
+ * terminates even if tenpwr was 1000...000b to begin with, we
+ * manually clear the MSB, in case a 1 was shifted in.
+ *
+ * Because we already truncated tenpwr to +5000...-5000 inside
+ * the exponent parsing code, this shouldn't matter; neverthe-
+ * less it is the right thing to do here.
+ */
+ tenpwr &= (uint32_t) - 1 >> 1;
+ }
+
+ /*
+ * At this point, the 'mant' array contains the first frac-
+ * tional places of a base-2^16 real number in [0.5,1) that
+ * when multiplied by 2^twopwr gives X. Or it contains zero
+ * of course. We are done.
+ */
+ *exponent = twopwr;
+ return true;
+}
+
+/*
+ * ---------------------------------------------------------------------------
+ * operations of specific bits
+ * ---------------------------------------------------------------------------
+ */
+
+/* Set a bit, using *bigendian* bit numbering (0 = MSB) */
+static void set_bit(fp_limb *mant, int bit)
+{
+ mant[bit/LIMB_BITS] |= LIMB_TOP_BIT >> (bit & (LIMB_BITS-1));
+}
+
+/* Test a single bit */
+static int test_bit(const fp_limb *mant, int bit)
+{
+ return (mant[bit/LIMB_BITS] >> (~bit & (LIMB_BITS-1))) & 1;
+}
+
+/* Report if the mantissa value is all zero */
+static bool is_zero(const fp_limb *mant)
+{
+ int i;
+
+ for (i = 0; i < MANT_LIMBS; i++)
+ if (mant[i])
+ return false;
+
+ return true;
+}
+
+/*
+ * ---------------------------------------------------------------------------
+ * round a mantissa off after i words
+ * ---------------------------------------------------------------------------
+ */
+
+#define ROUND_COLLECT_BITS \
+ do { \
+ m = mant[i] & (2*bit-1); \
+ for (j = i+1; j < MANT_LIMBS; j++) \
+ m = m | mant[j]; \
+ } while (0)
+
+#define ROUND_ABS_DOWN \
+ do { \
+ mant[i] &= ~(bit-1); \
+ for (j = i+1; j < MANT_LIMBS; j++) \
+ mant[j] = 0; \
+ return false; \
+ } while (0)
+
+#define ROUND_ABS_UP \
+ do { \
+ mant[i] = (mant[i] & ~(bit-1)) + bit; \
+ for (j = i+1; j < MANT_LIMBS; j++) \
+ mant[j] = 0; \
+ while (i > 0 && !mant[i]) \
+ ++mant[--i]; \
+ return !mant[0]; \
+ } while (0)
+
+static bool ieee_round(bool minus, fp_limb *mant, int bits)
+{
+ fp_limb m = 0;
+ int32_t j;
+ int i = bits / LIMB_BITS;
+ int p = bits % LIMB_BITS;
+ fp_limb bit = LIMB_TOP_BIT >> p;
+
+ if (rc == FLOAT_RC_NEAR) {
+ if (mant[i] & bit) {
+ mant[i] &= ~bit;
+ ROUND_COLLECT_BITS;
+ mant[i] |= bit;
+ if (m) {
+ ROUND_ABS_UP;
+ } else {
+ if (test_bit(mant, bits-1)) {
+ ROUND_ABS_UP;
+ } else {
+ ROUND_ABS_DOWN;
+ }
+ }
+ } else {
+ ROUND_ABS_DOWN;
+ }
+ } else if (rc == FLOAT_RC_ZERO ||
+ rc == (minus ? FLOAT_RC_UP : FLOAT_RC_DOWN)) {
+ ROUND_ABS_DOWN;
+ } else {
+ /* rc == (minus ? FLOAT_RC_DOWN : FLOAT_RC_UP) */
+ /* Round toward +/- infinity */
+ ROUND_COLLECT_BITS;
+ if (m) {
+ ROUND_ABS_UP;
+ } else {
+ ROUND_ABS_DOWN;
+ }
+ }
+ return false;
+}
+
+/* Returns a value >= 16 if not a valid hex digit */
+static unsigned int hexval(char c)
+{
+ unsigned int v = (unsigned char) c;
+
+ if (v >= '0' && v <= '9')
+ return v - '0';
+ else
+ return (v|0x20) - 'a' + 10;
+}
+
+/* Handle floating-point numbers with radix 2^bits and binary exponent */
+static bool ieee_flconvert_bin(const char *string, int bits,
+ fp_limb *mant, int32_t *exponent)
+{
+ static const int log2tbl[16] =
+ { -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 };
+ fp_limb mult[MANT_LIMBS + 1], *mp;
+ int ms;
+ int32_t twopwr;
+ bool seendot, seendigit;
+ unsigned char c;
+ const int radix = 1 << bits;
+ fp_limb v;
+
+ twopwr = 0;
+ seendot = seendigit = false;
+ ms = 0;
+ mp = NULL;
+
+ memset(mult, 0, sizeof mult);
+
+ while ((c = *string++) != '\0') {
+ if (c == '.') {
+ if (!seendot)
+ seendot = true;
+ else {
+ error(ERR_NONFATAL|ERR_PASS1,
+ "too many periods in floating-point constant");
+ return false;
+ }
+ } else if ((v = hexval(c)) < (unsigned int)radix) {
+ if (!seendigit && v) {
+ int l = log2tbl[v];
+
+ seendigit = true;
+ mp = mult;
+ ms = (LIMB_BITS-1)-l;
+
+ twopwr = seendot ? twopwr-bits+l : l+1-bits;
+ }
+
+ if (seendigit) {
+ if (ms <= 0) {
+ *mp |= v >> -ms;
+ mp++;
+ if (mp > &mult[MANT_LIMBS])
+ mp = &mult[MANT_LIMBS]; /* Guard slot */
+ ms += LIMB_BITS;
+ }
+ *mp |= v << ms;
+ ms -= bits;
+
+ if (!seendot)
+ twopwr += bits;
+ } else {
+ if (seendot)
+ twopwr -= bits;
+ }
+ } else if (c == 'p' || c == 'P') {
+ int32_t e;
+ e = read_exponent(string, 20000);
+ if (e == INT32_MAX)
+ return false;
+ twopwr += e;
+ break;
+ } else if (c == '_') {
+ /* ignore */
+ } else {
+ error(ERR_NONFATAL|ERR_PASS1,
+ "floating-point constant: `%c' is invalid character", c);
+ return false;
+ }
+ }
+
+ if (!seendigit) {
+ memset(mant, 0, MANT_LIMBS*sizeof(fp_limb)); /* Zero */
+ *exponent = 0;
+ } else {
+ memcpy(mant, mult, MANT_LIMBS*sizeof(fp_limb));
+ *exponent = twopwr;
+ }
+
+ return true;
+}
+
+/*
+ * Shift a mantissa to the right by i bits.
+ */
+static void ieee_shr(fp_limb *mant, int i)
+{
+ fp_limb n, m;
+ int j = 0;
+ int sr, sl, offs;
+
+ sr = i % LIMB_BITS; sl = LIMB_BITS-sr;
+ offs = i/LIMB_BITS;
+
+ if (sr == 0) {
+ if (offs)
+ for (j = MANT_LIMBS-1; j >= offs; j--)
+ mant[j] = mant[j-offs];
+ } else {
+ n = mant[MANT_LIMBS-1-offs] >> sr;
+ for (j = MANT_LIMBS-1; j > offs; j--) {
+ m = mant[j-offs-1];
+ mant[j] = (m << sl) | n;
+ n = m >> sr;
+ }
+ mant[j--] = n;
+ }
+ while (j >= 0)
+ mant[j--] = 0;
+}
+
+/* Produce standard IEEE formats, with implicit or explicit integer
+ bit; this makes the following assumptions:
+
+ - the sign bit is the MSB, followed by the exponent,
+ followed by the integer bit if present.
+ - the sign bit plus exponent fit in 16 bits.
+ - the exponent bias is 2^(n-1)-1 for an n-bit exponent */
+
+struct ieee_format {
+ int bytes;
+ int mantissa; /* Fractional bits in the mantissa */
+ int explicit; /* Explicit integer */
+ int exponent; /* Bits in the exponent */
+};
+
+/*
+ * The 16- and 128-bit formats are expected to be in IEEE 754r.
+ * AMD SSE5 uses the 16-bit format.
+ *
+ * The 32- and 64-bit formats are the original IEEE 754 formats.
+ *
+ * The 80-bit format is x87-specific, but widely used.
+ *
+ * The 8-bit format appears to be the consensus 8-bit floating-point
+ * format. It is apparently used in graphics applications.
+ */
+static const struct ieee_format ieee_8 = { 1, 3, 0, 4 };
+static const struct ieee_format ieee_16 = { 2, 10, 0, 5 };
+static const struct ieee_format ieee_32 = { 4, 23, 0, 8 };
+static const struct ieee_format ieee_64 = { 8, 52, 0, 11 };
+static const struct ieee_format ieee_80 = { 10, 63, 1, 15 };
+static const struct ieee_format ieee_128 = { 16, 112, 0, 15 };
+
+/* Types of values we can generate */
+enum floats {
+ FL_ZERO,
+ FL_DENORMAL,
+ FL_NORMAL,
+ FL_INFINITY,
+ FL_QNAN,
+ FL_SNAN
+};
+
+static int to_packed_bcd(const char *str, const char *p,
+ int s, uint8_t *result,
+ const struct ieee_format *fmt)
+{
+ int n = 0;
+ char c;
+ int tv = -1;
+
+ if (fmt != &ieee_80) {
+ error(ERR_NONFATAL|ERR_PASS1,
+ "packed BCD requires an 80-bit format");
+ return 0;
+ }
+
+ while (p >= str) {
+ c = *p--;
+ if (c >= '0' && c <= '9') {
+ if (tv < 0) {
+ if (n == 9) {
+ error(ERR_WARNING|ERR_PASS1,
+ "packed BCD truncated to 18 digits");
+ }
+ tv = c-'0';
+ } else {
+ if (n < 9)
+ *result++ = tv + ((c-'0') << 4);
+ n++;
+ tv = -1;
+ }
+ } else if (c == '_') {
+ /* do nothing */
+ } else {
+ error(ERR_NONFATAL|ERR_PASS1,
+ "invalid character `%c' in packed BCD constant", c);
+ return 0;
+ }
+ }
+ if (tv >= 0) {
+ if (n < 9)
+ *result++ = tv;
+ n++;
+ }
+ while (n < 9) {
+ *result++ = 0;
+ n++;
+ }
+ *result = (s < 0) ? 0x80 : 0;
+
+ return 1; /* success */
+}
+
+static int to_float(const char *str, int s, uint8_t *result,
+ const struct ieee_format *fmt)
+{
+ fp_limb mant[MANT_LIMBS];
+ int32_t exponent = 0;
+ const int32_t expmax = 1 << (fmt->exponent - 1);
+ fp_limb one_mask = LIMB_TOP_BIT >>
+ ((fmt->exponent+fmt->explicit) % LIMB_BITS);
+ const int one_pos = (fmt->exponent+fmt->explicit)/LIMB_BITS;
+ int i;
+ int shift;
+ enum floats type;
+ bool ok;
+ const bool minus = s < 0;
+ const int bits = fmt->bytes * 8;
+ const char *strend;
+
+ if (!str[0]) {
+ error(ERR_PANIC,
+ "internal errror: empty string passed to float_const");
+ return 0;
+ }
+
+ strend = strchr(str, '\0');
+ if (strend[-1] == 'P' || strend[-1] == 'p')
+ return to_packed_bcd(str, strend-2, s, result, fmt);
+
+ if (str[0] == '_') {
+ /* Special tokens */
+
+ switch (str[2]) {
+ case 'n': /* __nan__ */
+ case 'N':
+ case 'q': /* __qnan__ */
+ case 'Q':
+ type = FL_QNAN;
+ break;
+ case 's': /* __snan__ */
+ case 'S':
+ type = FL_SNAN;
+ break;
+ case 'i': /* __infinity__ */
+ case 'I':
+ type = FL_INFINITY;
+ break;
+ default:
+ error(ERR_NONFATAL|ERR_PASS1,
+ "internal error: unknown FP constant token `%s'\n", str);
+ type = FL_QNAN;
+ break;
+ }
+ } else {
+ if (str[0] == '0') {
+ switch (str[1]) {
+ case 'x': case 'X':
+ case 'h': case 'H':
+ ok = ieee_flconvert_bin(str+2, 4, mant, &exponent);
+ break;
+ case 'o': case 'O':
+ case 'q': case 'Q':
+ ok = ieee_flconvert_bin(str+2, 3, mant, &exponent);
+ break;
+ case 'b': case 'B':
+ case 'y': case 'Y':
+ ok = ieee_flconvert_bin(str+2, 1, mant, &exponent);
+ break;
+ case 'd': case 'D':
+ case 't': case 'T':
+ ok = ieee_flconvert(str+2, mant, &exponent);
+ break;
+ case 'p': case 'P':
+ return to_packed_bcd(str+2, strend-1, s, result, fmt);
+ default:
+ /* Leading zero was just a zero? */
+ ok = ieee_flconvert(str, mant, &exponent);
+ break;
+ }
+ } else if (str[0] == '$') {
+ ok = ieee_flconvert_bin(str+1, 4, mant, &exponent);
+ } else {
+ ok = ieee_flconvert(str, mant, &exponent);
+ }
+
+ if (!ok) {
+ type = FL_QNAN;
+ } else if (mant[0] & LIMB_TOP_BIT) {
+ /*
+ * Non-zero.
+ */
+ exponent--;
+ if (exponent >= 2 - expmax && exponent <= expmax) {
+ type = FL_NORMAL;
+ } else if (exponent > 0) {
+ if (pass0 == 1)
+ error(ERR_WARNING|ERR_WARN_FL_OVERFLOW|ERR_PASS1,
+ "overflow in floating-point constant");
+ type = FL_INFINITY;
+ } else {
+ /* underflow or denormal; the denormal code handles
+ actual underflow. */
+ type = FL_DENORMAL;
+ }
+ } else {
+ /* Zero */
+ type = FL_ZERO;
+ }
+ }
+
+ switch (type) {
+ case FL_ZERO:
+ zero:
+ memset(mant, 0, sizeof mant);
+ break;
+
+ case FL_DENORMAL:
+ {
+ shift = -(exponent + expmax - 2 - fmt->exponent)
+ + fmt->explicit;
+ ieee_shr(mant, shift);
+ ieee_round(minus, mant, bits);
+ if (mant[one_pos] & one_mask) {
+ /* One's position is set, we rounded up into normal range */
+ exponent = 1;
+ if (!fmt->explicit)
+ mant[one_pos] &= ~one_mask; /* remove explicit one */
+ mant[0] |= exponent << (LIMB_BITS-1 - fmt->exponent);
+ } else {
+ if (daz || is_zero(mant)) {
+ /* Flush denormals to zero */
+ error(ERR_WARNING|ERR_WARN_FL_UNDERFLOW|ERR_PASS1,
+ "underflow in floating-point constant");
+ goto zero;
+ } else {
+ error(ERR_WARNING|ERR_WARN_FL_DENORM|ERR_PASS1,
+ "denormal floating-point constant");
+ }
+ }
+ break;
+ }
+
+ case FL_NORMAL:
+ exponent += expmax - 1;
+ ieee_shr(mant, fmt->exponent+fmt->explicit);
+ ieee_round(minus, mant, bits);
+ /* did we scale up by one? */
+ if (test_bit(mant, fmt->exponent+fmt->explicit-1)) {
+ ieee_shr(mant, 1);
+ exponent++;
+ if (exponent >= (expmax << 1)-1) {
+ error(ERR_WARNING|ERR_WARN_FL_OVERFLOW|ERR_PASS1,
+ "overflow in floating-point constant");
+ type = FL_INFINITY;
+ goto overflow;
+ }
+ }
+
+ if (!fmt->explicit)
+ mant[one_pos] &= ~one_mask; /* remove explicit one */
+ mant[0] |= exponent << (LIMB_BITS-1 - fmt->exponent);
+ break;
+
+ case FL_INFINITY:
+ case FL_QNAN:
+ case FL_SNAN:
+ overflow:
+ memset(mant, 0, sizeof mant);
+ mant[0] = (((fp_limb)1 << fmt->exponent)-1)
+ << (LIMB_BITS-1 - fmt->exponent);
+ if (fmt->explicit)
+ mant[one_pos] |= one_mask;
+ if (type == FL_QNAN)
+ set_bit(mant, fmt->exponent+fmt->explicit+1);
+ else if (type == FL_SNAN)
+ set_bit(mant, fmt->exponent+fmt->explicit+fmt->mantissa);
+ break;
+ }
+
+ mant[0] |= minus ? LIMB_TOP_BIT : 0;
+
+ for (i = fmt->bytes - 1; i >= 0; i--)
+ *result++ = mant[i/LIMB_BYTES] >> (((LIMB_BYTES-1)-(i%LIMB_BYTES))*8);
+
+ return 1; /* success */
+}
+
+int float_const(const char *number, int sign, uint8_t *result,
+ int bytes, efunc err)
+{
+ error = err;
+
+ switch (bytes) {
+ case 1:
+ return to_float(number, sign, result, &ieee_8);
+ case 2:
+ return to_float(number, sign, result, &ieee_16);
+ case 4:
+ return to_float(number, sign, result, &ieee_32);
+ case 8:
+ return to_float(number, sign, result, &ieee_64);
+ case 10:
+ return to_float(number, sign, result, &ieee_80);
+ case 16:
+ return to_float(number, sign, result, &ieee_128);
+ default:
+ error(ERR_PANIC, "strange value %d passed to float_const", bytes);
+ return 0;
+ }
+}
+
+/* Set floating-point options */
+int float_option(const char *option)
+{
+ if (!nasm_stricmp(option, "daz")) {
+ daz = true;
+ return 0;
+ } else if (!nasm_stricmp(option, "nodaz")) {
+ daz = false;
+ return 0;
+ } else if (!nasm_stricmp(option, "near")) {
+ rc = FLOAT_RC_NEAR;
+ return 0;
+ } else if (!nasm_stricmp(option, "down")) {
+ rc = FLOAT_RC_DOWN;
+ return 0;
+ } else if (!nasm_stricmp(option, "up")) {
+ rc = FLOAT_RC_UP;
+ return 0;
+ } else if (!nasm_stricmp(option, "zero")) {
+ rc = FLOAT_RC_ZERO;
+ return 0;
+ } else if (!nasm_stricmp(option, "default")) {
+ rc = FLOAT_RC_NEAR;
+ daz = false;
+ return 0;
+ } else {
+ return -1; /* Unknown option */
+ }
+}