1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
|
/** \ingroup signature
* \file rpmio/digest.c
*/
#include "system.h"
#include "rpmio_internal.h"
#include "debug.h"
typedef unsigned int uint32;
typedef unsigned char byte;
/**
* MD5/SHA1 digest private data.
*/
struct DIGEST_CTX_s {
rpmDigestFlags flags; /*!< Bit(s) to control digest operation. */
uint32 digestlen; /*!< No. bytes of digest. */
uint32 datalen; /*!< No. bytes in block of plaintext data. */
void (*transform) (DIGEST_CTX); /*!< Digest transform. */
int doByteReverse; /*!< Swap bytes in uint32? */
uint32 bits[2]; /*!< No. bits of plain text. */
uint32 digest[8]; /*!< Message digest. */
byte in[64]; /*!< Next block of plain text. */
};
/*
* This code implements SHA-1 as defined in FIPS publication 180-1.
* Based on SHA code originally posted to sci.crypt by Peter Gutmann
* in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
* Modified to test for endianness on creation of SHA objects by AMK.
* Also, the original specification of SHA was found to have a weakness
* by NSA/NIST. This code implements the fixed version of SHA.
*
* Here's the first paragraph of Peter Gutmann's original posting:
* - The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
* SHA, thanks to Jim Gillogly and an anonymous contributor for the information
* on what's changed in the new version. The fix is a simple change which
* involves adding a single rotate in the initial expansion function. It is
* unknown whether this is an optimal solution to the problem which was
* discovered in the SHA or whether it's simply a bandaid which fixes the
* problem with a minimum of effort (for example the reengineering of a great
* many Capstone chips).
*
* Copyright (C) 1995, A.M. Kuchling
*
* Distribute and use freely; there are no restrictions on further
* dissemination and usage except those imposed by the laws of your
* country of residence.
*
* Adapted to pike and some cleanup by Niels Möller.
* Adapted for rpm use from mhash-0.8.3.
*/
/**
* The SHA f()-functions. The f1 and f3 functions can be optimized to
* save one boolean operation each - thanks to Rich Schroeppel,
* rcs@cs.arizona.edu for discovering this.
*/
/*#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) // Rounds 0-19 */
#define f1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) /* Rounds 0-19 */
#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
/*#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) // Rounds 40-59 */
#define f3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) /* Rounds 40-59 */
#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
/**
* The SHA Mysterious Constants.
*/
#define K1 0x5A827999L /* Rounds 0-19 */
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
#define K4 0xCA62C1D6L /* Rounds 60-79 */
/**
* 32-bit rotate left - kludged with shifts.
*/
#define ROTL(n,X) ( ( (X) << (n) ) | ( (X) >> ( 32 - (n) ) ) )
/**
* The initial expanding function. The hash function is defined over an
* 80-word expanded input array W, where the first 16 are copies of the input
* data, and the remaining 64 are defined by
*
* \verbatim
* W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
* \endverbatim
*
* This implementation generates these values on the fly in a circular
* buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
* optimization.
*
* The updated SHA changes the expanding function by adding a rotate of 1
* bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
* for this information
*/
#define expand(W,i) ( W[ i & 15 ] = \
ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )
/**
* The prototype SHA sub-round.
* The fundamental sub-round is:
*
* \verbatim
* a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
* b' = a;
* c' = ROTL( 30, b );
* d' = c;
* e' = d;
* \endverbatim
*
* but this is implemented by unrolling the loop 5 times and renaming the
* variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
* This code is then replicated 20 times for each of the 4 functions, using
* the next 20 values from the W[] array each time.
*/
#define subRound(a, b, c, d, e, f, k, data) \
( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
/**
* Perform the SHA transformation. Note that this code, like MD5, seems to
* break some optimizing compilers due to the complexity of the expressions
* and the size of the basic block. It may be necessary to split it into
* sections, e.g. based on the four subrounds
*
* Note that this function destroys the data area.
*/
/**
* The core of the SHA algorithm.
* This alters an existing SHA hash to reflect the addition of 16 longwords
* of new data.
* @param private SHA private data
*/
static void
SHA1Transform(DIGEST_CTX ctx)
{
uint32 * in = (uint32 *) ctx->in;
uint32 A, B, C, D, E; /* Local vars */
/* Set up first buffer and local data buffer */
A = ctx->digest[0];
B = ctx->digest[1];
C = ctx->digest[2];
D = ctx->digest[3];
E = ctx->digest[4];
/* Heavy mangling, in 4 sub-rounds of 20 interations each. */
subRound( A, B, C, D, E, f1, K1, in[ 0] );
subRound( E, A, B, C, D, f1, K1, in[ 1] );
subRound( D, E, A, B, C, f1, K1, in[ 2] );
subRound( C, D, E, A, B, f1, K1, in[ 3] );
subRound( B, C, D, E, A, f1, K1, in[ 4] );
subRound( A, B, C, D, E, f1, K1, in[ 5] );
subRound( E, A, B, C, D, f1, K1, in[ 6] );
subRound( D, E, A, B, C, f1, K1, in[ 7] );
subRound( C, D, E, A, B, f1, K1, in[ 8] );
subRound( B, C, D, E, A, f1, K1, in[ 9] );
subRound( A, B, C, D, E, f1, K1, in[10] );
subRound( E, A, B, C, D, f1, K1, in[11] );
subRound( D, E, A, B, C, f1, K1, in[12] );
subRound( C, D, E, A, B, f1, K1, in[13] );
subRound( B, C, D, E, A, f1, K1, in[14] );
subRound( A, B, C, D, E, f1, K1, in[15] );
subRound( E, A, B, C, D, f1, K1, expand( in, 16 ) );
subRound( D, E, A, B, C, f1, K1, expand( in, 17 ) );
subRound( C, D, E, A, B, f1, K1, expand( in, 18 ) );
subRound( B, C, D, E, A, f1, K1, expand( in, 19 ) );
subRound( A, B, C, D, E, f2, K2, expand( in, 20 ) );
subRound( E, A, B, C, D, f2, K2, expand( in, 21 ) );
subRound( D, E, A, B, C, f2, K2, expand( in, 22 ) );
subRound( C, D, E, A, B, f2, K2, expand( in, 23 ) );
subRound( B, C, D, E, A, f2, K2, expand( in, 24 ) );
subRound( A, B, C, D, E, f2, K2, expand( in, 25 ) );
subRound( E, A, B, C, D, f2, K2, expand( in, 26 ) );
subRound( D, E, A, B, C, f2, K2, expand( in, 27 ) );
subRound( C, D, E, A, B, f2, K2, expand( in, 28 ) );
subRound( B, C, D, E, A, f2, K2, expand( in, 29 ) );
subRound( A, B, C, D, E, f2, K2, expand( in, 30 ) );
subRound( E, A, B, C, D, f2, K2, expand( in, 31 ) );
subRound( D, E, A, B, C, f2, K2, expand( in, 32 ) );
subRound( C, D, E, A, B, f2, K2, expand( in, 33 ) );
subRound( B, C, D, E, A, f2, K2, expand( in, 34 ) );
subRound( A, B, C, D, E, f2, K2, expand( in, 35 ) );
subRound( E, A, B, C, D, f2, K2, expand( in, 36 ) );
subRound( D, E, A, B, C, f2, K2, expand( in, 37 ) );
subRound( C, D, E, A, B, f2, K2, expand( in, 38 ) );
subRound( B, C, D, E, A, f2, K2, expand( in, 39 ) );
subRound( A, B, C, D, E, f3, K3, expand( in, 40 ) );
subRound( E, A, B, C, D, f3, K3, expand( in, 41 ) );
subRound( D, E, A, B, C, f3, K3, expand( in, 42 ) );
subRound( C, D, E, A, B, f3, K3, expand( in, 43 ) );
subRound( B, C, D, E, A, f3, K3, expand( in, 44 ) );
subRound( A, B, C, D, E, f3, K3, expand( in, 45 ) );
subRound( E, A, B, C, D, f3, K3, expand( in, 46 ) );
subRound( D, E, A, B, C, f3, K3, expand( in, 47 ) );
subRound( C, D, E, A, B, f3, K3, expand( in, 48 ) );
subRound( B, C, D, E, A, f3, K3, expand( in, 49 ) );
subRound( A, B, C, D, E, f3, K3, expand( in, 50 ) );
subRound( E, A, B, C, D, f3, K3, expand( in, 51 ) );
subRound( D, E, A, B, C, f3, K3, expand( in, 52 ) );
subRound( C, D, E, A, B, f3, K3, expand( in, 53 ) );
subRound( B, C, D, E, A, f3, K3, expand( in, 54 ) );
subRound( A, B, C, D, E, f3, K3, expand( in, 55 ) );
subRound( E, A, B, C, D, f3, K3, expand( in, 56 ) );
subRound( D, E, A, B, C, f3, K3, expand( in, 57 ) );
subRound( C, D, E, A, B, f3, K3, expand( in, 58 ) );
subRound( B, C, D, E, A, f3, K3, expand( in, 59 ) );
subRound( A, B, C, D, E, f4, K4, expand( in, 60 ) );
subRound( E, A, B, C, D, f4, K4, expand( in, 61 ) );
subRound( D, E, A, B, C, f4, K4, expand( in, 62 ) );
subRound( C, D, E, A, B, f4, K4, expand( in, 63 ) );
subRound( B, C, D, E, A, f4, K4, expand( in, 64 ) );
subRound( A, B, C, D, E, f4, K4, expand( in, 65 ) );
subRound( E, A, B, C, D, f4, K4, expand( in, 66 ) );
subRound( D, E, A, B, C, f4, K4, expand( in, 67 ) );
subRound( C, D, E, A, B, f4, K4, expand( in, 68 ) );
subRound( B, C, D, E, A, f4, K4, expand( in, 69 ) );
subRound( A, B, C, D, E, f4, K4, expand( in, 70 ) );
subRound( E, A, B, C, D, f4, K4, expand( in, 71 ) );
subRound( D, E, A, B, C, f4, K4, expand( in, 72 ) );
subRound( C, D, E, A, B, f4, K4, expand( in, 73 ) );
subRound( B, C, D, E, A, f4, K4, expand( in, 74 ) );
subRound( A, B, C, D, E, f4, K4, expand( in, 75 ) );
subRound( E, A, B, C, D, f4, K4, expand( in, 76 ) );
subRound( D, E, A, B, C, f4, K4, expand( in, 77 ) );
subRound( C, D, E, A, B, f4, K4, expand( in, 78 ) );
subRound( B, C, D, E, A, f4, K4, expand( in, 79 ) );
/* Build message digest */
ctx->digest[0] += A;
ctx->digest[1] += B;
ctx->digest[2] += C;
ctx->digest[3] += D;
ctx->digest[4] += E;
}
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to MD5Init, call MD5Update as
* needed on buffers full of bytes, and then call MD5Final, which
* will fill a supplied 16-byte array with the digest.
*/
/** The four core functions used in MD5 - F1 is optimized somewhat. */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/** The central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/**
* The core of the MD5 algorithm.
* Update MD5 context with next 64 bytes of plain text.
* @param private MD5 private data
*/
static void
MD5Transform(DIGEST_CTX ctx)
{
register uint32 * in = (uint32 *)ctx->in;
register uint32 a = ctx->digest[0];
register uint32 b = ctx->digest[1];
register uint32 c = ctx->digest[2];
register uint32 d = ctx->digest[3];
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
ctx->digest[0] += a;
ctx->digest[1] += b;
ctx->digest[2] += c;
ctx->digest[3] += d;
}
static int _ie = 0x44332211;
static union _mendian { int i; char b[4]; } *_endian = (union _mendian *)&_ie;
#define IS_BIG_ENDIAN() (_endian->b[0] == '\x44')
#define IS_LITTLE_ENDIAN() (_endian->b[0] == '\x11')
/*
* Reverse bytes for each integer in buffer.
* @param buf data buffer (uint32 aligned address)
* @param nbytes no. bytes of data (multiple of sizeof(uint32))
*/
static void
byteReverse(byte *buf, unsigned nbytes)
{
unsigned nlongs = nbytes / sizeof(uint32);
uint32 t;
do {
t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
((unsigned) buf[1] << 8 | buf[0]);
*(uint32 *) buf = t;
buf += 4;
} while (--nlongs);
}
DIGEST_CTX
rpmDigestInit(rpmDigestFlags flags)
{
DIGEST_CTX ctx = xcalloc(1, sizeof(*ctx));
ctx->flags = flags;
if (flags & RPMDIGEST_MD5) {
ctx->digestlen = 16;
ctx->datalen = 64;
ctx->transform = MD5Transform;
ctx->digest[0] = 0x67452301;
ctx->digest[1] = 0xefcdab89;
ctx->digest[2] = 0x98badcfe;
ctx->digest[3] = 0x10325476;
}
if (flags & RPMDIGEST_SHA1) {
ctx->digestlen = 20;
ctx->datalen = 64;
ctx->transform = SHA1Transform;
ctx->digest[ 0 ] = 0x67452301;
ctx->digest[ 1 ] = 0xefcdab89;
ctx->digest[ 2 ] = 0x98badcfe;
ctx->digest[ 3 ] = 0x10325476;
ctx->digest[ 4 ] = 0xc3d2e1f0;
}
/* md5 sums are little endian (no swap) so big endian needs the swap. */
ctx->doByteReverse = (IS_BIG_ENDIAN()) ? 1 : 0;
if (flags & RPMDIGEST_NATIVE)
ctx->doByteReverse = 0;
ctx->bits[0] = 0;
ctx->bits[1] = 0;
return ctx;
}
void
rpmDigestUpdate(DIGEST_CTX ctx, const void * data, size_t len)
{
const byte * buf = data;
uint32 t;
/* Update bitcount */
t = ctx->bits[0];
if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
ctx->bits[1]++; /* Carry from low to high */
ctx->bits[1] += len >> 29;
t = (t >> 3) % ctx->datalen; /* Bytes already in ctx->in */
/* Handle any leading odd-sized chunks */
if (t) {
byte *p = (byte *) ctx->in + t;
t = ctx->datalen - t; /* Bytes left in ctx->in */
if (len < t) {
memcpy(p, buf, len);
return;
}
memcpy(p, buf, t);
if (ctx->doByteReverse)
byteReverse(ctx->in, ctx->datalen);
ctx->transform(ctx);
buf += t;
len -= t;
}
/* Process data in ctx->datalen chunks */
for (; len >= ctx->datalen; buf += ctx->datalen, len -= ctx->datalen) {
memcpy(ctx->in, buf, ctx->datalen);
if (ctx->doByteReverse)
byteReverse(ctx->in, ctx->datalen);
ctx->transform(ctx);
}
/* Handle any remaining bytes of data. */
memcpy(ctx->in, buf, len);
}
void
rpmDigestFinal(/*@only@*/ DIGEST_CTX ctx, /*@out@*/ void ** datap,
/*@out@*/ size_t *lenp, int asAscii)
{
unsigned count = (ctx->bits[0] >> 3) % ctx->datalen;
byte * p = ctx->in + count;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
*p++ = 0x80;
/* No. bytes of padding needed to fill buffer. */
count = ctx->datalen - 1 - count;
/* Insure that next block has room for no. of plaintext bits. */
if (count < sizeof(ctx->bits)) {
memset(p, 0, count);
if (ctx->doByteReverse)
byteReverse(ctx->in, ctx->datalen);
ctx->transform(ctx);
p = ctx->in;
count = ctx->datalen;
}
/* Pad next block with zeroes, add no. of plaintext bits. */
memset(p, 0, count - sizeof(ctx->bits));
if (ctx->doByteReverse)
byteReverse(ctx->in, ctx->datalen - sizeof(ctx->bits));
((uint32 *) ctx->in)[14] = ctx->bits[0];
((uint32 *) ctx->in)[15] = ctx->bits[1];
ctx->transform(ctx);
/* Return final digest. */
if (ctx->doByteReverse)
byteReverse((byte *) ctx->digest, ctx->digestlen);
if (!asAscii) {
if (lenp) *lenp = ctx->digestlen;
if (datap) {
*datap = xmalloc(ctx->digestlen);
memcpy(*datap, ctx->digest, ctx->digestlen);
}
} else {
if (lenp) *lenp = (2*ctx->digestlen) + 1;
if (datap) {
const byte * s = (const byte *) ctx->digest;
static const char hex[] = "0123456789abcdef";
char * t;
int i;
*datap = t = xmalloc((2*ctx->digestlen) + 1);
for (i = 0 ; i < ctx->digestlen; i++) {
*t++ = hex[ (unsigned)((*s >> 4) & 0x0f) ];
*t++ = hex[ (unsigned)((*s++ ) & 0x0f) ];
}
*t = '\0';
}
}
memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
free(ctx);
}
|