summaryrefslogtreecommitdiff
path: root/testsuite/uniq.good
blob: 2941bec0bf43a0ee6a71478da6438875e7c53617 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

#define DPRINTF(p)		/*nothing */
#define DPRINTF(p) printf p
#define GETCHAR(c, eptr) c = *eptr;
#define GETCHARINC(c, eptr) c = *eptr++;
#define class pcre_class
#define match_condassert   0x01	/* Called to check a condition assertion */
#define match_isgroup      0x02	/* Set if start of bracketed group */
#else
#endif
#ifdef DEBUG			/* Sigh. Some compilers never learn. */
#ifdef DEBUG
#ifdef __cplusplus
#include "internal.h"
&& length - re->max_match_size > start_offset)
((*ecode++ == OP_BEG_WORD) ? prev_is_word : cur_is_word))
((md->ctypes[*eptr] & ctype_word) != 0);
((md->ctypes[eptr[-1]] & ctype_word) != 0);
(eptr == md->end_subject - 1 && *eptr != '\n'))
(i.e. keep it out of the loop). Also we can test that there are at least
(md->ctypes[*eptr++] & ctype_digit) != 0)
(md->ctypes[*eptr++] & ctype_digit) == 0)
(md->ctypes[*eptr++] & ctype_space) != 0)
(md->ctypes[*eptr++] & ctype_space) == 0)
(md->ctypes[*eptr++] & ctype_word) != 0)
(md->ctypes[*eptr++] & ctype_word) == 0)
(offsetcount - 2) * sizeof (int));
(offsets == NULL && offsetcount > 0))
(pcre_free) (match_block.offset_vector);
(pcre_free) (save);
(re->tables + fcc_offset)[req_char] : req_char;
*          Match a back-reference                *
*         Execute a Regular Expression           *
*         Match from current position            *
*        Debugging function to print chars       *
*      Perl-Compatible Regular Expressions       *
*    Macros and tables for character handling    *
*************************************************/
*/
*iptr = -1;
*iptr++ = -1;
*prev == OP_ASSERTBACK || *prev == OP_ASSERTBACK_NOT ||
*prev == OP_ONCE)
-----------------------------------------------------------------------------
-1 => failed to match
/*
/* "Once" brackets are like assertion brackets except that after a match,
/* ... else fall through */
/* Advance to a possible match for an initial string after study */
/* Allow compilation as C++ source code, should anybody want to do that. */
/* Always fail if not enough characters left */
/* An alternation is the end of a branch; scan along to find the end of the
/* Assert before internal newline if multiline, or before a terminating
/* Assertion brackets. Check the alternative branches in turn - the
/* At the start of a bracketed group, add the current subject pointer to the
/* BRAZERO and BRAMINZERO occur just before a bracket group, indicating
/* Caseful comparisons */
/* Change option settings */
/* Common code for all repeated single character type matches */
/* Common code for all repeated single-character matches. We can give
/* Compute the minimum number of offsets that we need to reset each time. Doing
/* Conditional group: compilation checked that there are no more than
/* Continue as from after the assertion, updating the offsets high water
/* Continue from after the assertion, updating the offsets high water
/* Control never gets here */
/* Control never reaches here */
/* Copy the offset information from temporary store if necessary */
/* Do a single test if no case difference is set up */
/* Do not stick any code in here without much thought; it is assumed
/* End of a group, repeated or non-repeating. If we are at the end of
/* End of subject assertion (\z) */
/* End of subject or ending \n assertion (\Z) */
/* End of the pattern. If PCRE_NOTEMPTY is set, fail if we have matched
/* First, ensure the minimum number of matches are present. */
/* First, ensure the minimum number of matches are present. Use inline
/* First, ensure the minimum number of matches are present. We get back
/* Flag bits for the match() function */
/* For a non-repeating ket, just continue at this level. This also
/* For anchored or unanchored matches, there may be a "last known required
/* For extended extraction brackets (large number), we have to fish out
/* For extended extraction brackets (large number), we have to fish out the
/* For matches anchored to the end of the pattern, we can often avoid
/* If a back reference hasn't been set, the length that is passed is greater
/* If checking an assertion for a condition, return TRUE. */
/* If hit the end of the group (which could be repeated), fail */
/* If max == min we can continue with the main loop without the
/* If maximizing it is worth using inline code for speed, doing the type
/* If maximizing, find the longest possible run, then work backwards. */
/* If maximizing, find the longest string and work backwards */
/* If min = max, continue at the same level without recursing */
/* If min = max, continue at the same level without recursion.
/* If minimizing, keep testing the rest of the expression and advancing
/* If minimizing, keep trying and advancing the pointer */
/* If minimizing, we have to test the rest of the pattern before each
/* If req_char is set, we know that that character must appear in the subject
/* If the expression has got more back references than the offsets supplied can
/* If the length of the reference is zero, just continue with the
/* If the reference is unset, set the length to be longer than the amount
/* If we can't find the required character, break the matching loop */
/* If we have found the required character, save the point where we
/* In all other cases except a conditional group we have to check the
/* In case the recursion has set more capturing values, save the final
/* Include the internals header, which itself includes Standard C headers plus
/* Insufficient room for saving captured contents */
/* Loop for handling unanchored repeated matching attempts; for anchored regexs
/* Match a back reference, possibly repeatedly. Look past the end of the
/* Match a character class, possibly repeatedly. Look past the end of the
/* Match a negated single character */
/* Match a negated single character repeatedly. This is almost a repeat of
/* Match a run of characters */
/* Match a single character repeatedly; different opcodes share code. */
/* Match a single character type repeatedly; several different opcodes
/* Match a single character type; inline for speed */
/* Min and max values for the common repeats; for the maxima, 0 => infinity */
/* Move the subject pointer back. This occurs only at the start of
/* Negative assertion: all branches must fail to match */
/* Now start processing the operations. */
/* OP_KETRMAX */
/* On entry ecode points to the first opcode, and eptr to the first character
/* Opening capturing bracket. If there is space in the offset vector, save
/* Or to a non-unique first char after study */
/* Or to a unique first char if possible */
/* Or to just after \n for a multiline match if possible */
/* Other types of node can be handled by a switch */
/* Otherwise test for either case */
/* Print a sequence of chars in printable format, stopping at the end of the
/* Recursion matches the current regex, nested. If there are any capturing
/* Reset the maximum number of extractions we might see. */
/* Reset the value of the ims flags, in case they got changed during
/* Reset the working variable associated with each extraction. These should
/* Separate the caselesss case for speed */
/* Set up for repetition, or handle the non-repeated case */
/* Set up the first character to match, if available. The first_char value is
/* Skip over conditional reference data or large extraction number data if
/* Start of subject assertion */
/* Start of subject unless notbol, or after internal newline if multiline */
/* Structure for building a chain of data that actually lives on the
/* The code is duplicated for the caseless and caseful cases, for speed,
/* The condition is an assertion. Call match() to evaluate it - setting
/* The ims options can vary during the matching as a result of the presence
/* The repeating kets try the rest of the pattern or restart from the
/* There's been some horrible disaster. */
/* This "while" is the end of the "do" above */
/* This function applies a compiled re to a subject string and picks out
/* Use a macro for debugging printing, 'cause that limits the use of #ifdef
/* We don't need to repeat the search if we haven't yet reached the
/* When a match occurs, substrings will be set for all internal extractions;
/* Word boundary assertions */
/*************************************************
1. This software is distributed in the hope that it will be useful,
2. The origin of this software must not be misrepresented, either by
3. Altered versions must be plainly marked as such, and must not be
4. If PCRE is embedded in any software that is released under the GNU
5.005. If there is an options reset, it will get obeyed in the normal
6 : 3 + (ecode[1] << 8) + ecode[2]),
< -1 => some kind of unexpected problem
= 0 => success, but offsets is not big enough
Arguments:
BOOL anchored;
BOOL cur_is_word = (eptr < md->end_subject) &&
BOOL is_subject;
BOOL minimize = FALSE;
BOOL prev_is_word = (eptr != md->start_subject) &&
BOOL rc;
BOOL startline;
BOOL using_temporary_offsets = FALSE;
Copyright (c) 1997-2000 University of Cambridge
DPRINTF ((">>>> returning %d\n", match_block.errorcode));
DPRINTF ((">>>> returning %d\n", rc));
DPRINTF (("Copied offsets from temporary memory\n"));
DPRINTF (("Freeing temporary memory\n"));
DPRINTF (("Got memory to hold back references\n"));
DPRINTF (("Unknown opcode %d\n", *ecode));
DPRINTF (("bracket %d failed\n", number));
DPRINTF (("bracket 0 failed\n"));
DPRINTF (("ims reset to %02lx\n", ims));
DPRINTF (("ims set to %02lx at group repeat\n", ims));
DPRINTF (("ims set to %02lx\n", ims));
DPRINTF (("matching %c{%d,%d} against subject %.*s\n", c, min, max,
DPRINTF (("negative matching %c{%d,%d} against subject %.*s\n", c, min, max,
DPRINTF (("saving %d %d %d\n", save_offset1, save_offset2, save_offset3));
DPRINTF (("start bracket 0\n"));
GETCHAR (c, eptr)	/* Get character */
GETCHARINC (c, eptr)	/* Get character; increment eptr */
General Purpose Licence (GPL), then the terms of that licence shall
However, if the referenced string is the empty string, always treat
If the bracket fails to match, we need to restore this value and also the
If there isn't enough space in the offset vector, treat this as if it were a
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Otherwise, we can use the vector supplied, rounding down its size to a multiple
Permission is granted to anyone to use this software for any purpose on any
REPEATCHAR:
REPEATNOTCHAR:
REPEATTYPE:
Returns:          > 0 => success; value is the number of elements filled in
Returns:       TRUE if matched
Returns:      TRUE if matched
Returns:     nothing
They are not both allowed to be zero. */
This is a library of functions to support regular expressions whose syntax
This is the forcible breaking of infinite loops as implemented in Perl
Writing separate code makes it go faster, as does using an autoincrement and
Written by: Philip Hazel <ph10@cam.ac.uk>
a move back into the brackets. Check the alternative branches in turn - the
address of eptr, so that eptr can be a register variable. */
an assertion "group", stop matching and return TRUE, but record the
an empty string - recursion will then try other alternatives, if any. */
an error. Save the top 15 values on the stack, and accept that the rest
an unanchored pattern, of course. If there's no first char and the pattern was
analyzing most of the pattern.  length > re->max_match_size is
anchored = ((re->options | options) & PCRE_ANCHORED) != 0;
and advance one byte in the pattern code. */
and reinstate them after the recursion. However, we don't know how many
and semantics are as close as possible to those of the Perl 5 language. See
and the required character in fact is caseful. */
at run time, so we have to test for anchoring. The first char may be unset for
avoid duplicate testing (which takes significant time). This covers the vast
backing off on a match. */
bmtable = extra->data.bmtable;
both cases of the character. Otherwise set the two values the same, which will
bracketed group and go to there. */
brackets - for testing for empty matches
brackets started but not finished, we have to save their starting points
break;
but WITHOUT ANY WARRANTY; without even the implied warranty of
c != md->lcc[*eptr++])
c = *ecode++ - OP_CRSTAR;
c = *ecode++ - OP_NOTSTAR;
c = *ecode++ - OP_STAR;
c = *ecode++ - OP_TYPESTAR;
c = *ecode++;
c = *eptr++;
c = 15;
c = max - min;
c = md->end_subject - eptr;
c = md->lcc[c];
c = md->offset_max;
c == md->lcc[*eptr++])
can't just fail here, because of the possibility of quantifiers with zero
case OP_ALT:
case OP_ANY:
case OP_ASSERT:
case OP_ASSERTBACK:
case OP_ASSERTBACK_NOT:
case OP_ASSERT_NOT:
case OP_BEG_WORD:
case OP_BRA:		/* Non-capturing bracket: optimized */
case OP_BRAMINZERO:
case OP_BRANUMBER:
case OP_BRAZERO:
case OP_CHARS:
case OP_CIRC:
case OP_CLASS:
case OP_COND:
case OP_CREF:
case OP_CRMINPLUS:
case OP_CRMINQUERY:
case OP_CRMINRANGE:
case OP_CRMINSTAR:
case OP_CRPLUS:
case OP_CRQUERY:
case OP_CRRANGE:
case OP_CRSTAR:
case OP_DIGIT:
case OP_DOLL:
case OP_END:
case OP_END_WORD:
case OP_EOD:
case OP_EODN:
case OP_EXACT:
case OP_KET:
case OP_KETRMAX:
case OP_KETRMIN:
case OP_MINPLUS:
case OP_MINQUERY:
case OP_MINSTAR:
case OP_MINUPTO:
case OP_NOT:
case OP_NOTEXACT:
case OP_NOTMINPLUS:
case OP_NOTMINQUERY:
case OP_NOTMINSTAR:
case OP_NOTMINUPTO:
case OP_NOTPLUS:
case OP_NOTQUERY:
case OP_NOTSTAR:
case OP_NOTUPTO:
case OP_NOT_DIGIT:
case OP_NOT_WHITESPACE:
case OP_NOT_WORDCHAR:
case OP_NOT_WORD_BOUNDARY:
case OP_ONCE:
case OP_OPT:
case OP_PLUS:
case OP_QUERY:
case OP_RECURSE:
case OP_REF:
case OP_REVERSE:
case OP_SOD:
case OP_STAR:
case OP_TYPEEXACT:
case OP_TYPEMINPLUS:
case OP_TYPEMINQUERY:
case OP_TYPEMINSTAR:
case OP_TYPEMINUPTO:
case OP_TYPEPLUS:
case OP_TYPEQUERY:
case OP_TYPESTAR:
case OP_TYPEUPTO:
case OP_UPTO:
case OP_WHITESPACE:
case OP_WORDCHAR:
case OP_WORD_BOUNDARY:
case matching may be when this character is hit, so test for it in both its
caselessly, or if there are any changes of this flag within the regex, set up
cases if necessary. However, the different cased versions will not be set up
character" set. If the PCRE_CASELESS is set, implying that the match starts
characters and work backwards. */
code for maximizing the speed, and do the type test once at the start
code to character type repeats - written out again for speed. */
commoning these up that doesn't require a test of the positive/negative
computer system, and to redistribute it freely, subject to the following
const char *subject;
const pcre *re;
const pcre_extra *extra;
const uschar *bmtable = NULL;
const uschar *data = ecode + 1;	/* Save for matching */
const uschar *end_subject;
const uschar *next = ecode + 1;
const uschar *p = md->start_subject + md->offset_vector[offset];
const uschar *p;
const uschar *pp = eptr;
const uschar *prev = ecode - (ecode[1] << 8) - ecode[2];
const uschar *prev = ecode;
const uschar *req_char_ptr = start_match - 1;
const uschar *saved_eptr = eptr;
const uschar *saved_eptr = eptrb->saved_eptr;
const uschar *saved_eptr;
const uschar *start_bits = NULL;
const uschar *start_match = (const uschar *) subject + start_offset;
continue;	/* With the main loop */
continue;
course of events. */
ctype = *ecode++;	/* Code for the character type */
cur_is_word == prev_is_word : cur_is_word != prev_is_word)
current high water mark for use by positive assertions. Do this also
default:		/* No repeat follows */
default:
do
each branch of a lookbehind assertion. If we are too close to the start to
each substring: the offsets to the start and end of the substring.
ecode       position in code
ecode + ((offset < offset_top && md->offset_vector[offset] >= 0) ?
ecode += (ecode[1] << 8) + ecode[2];
ecode += 2;
ecode += 3 + (ecode[4] << 8) + ecode[5];
ecode += 33;	/* Advance past the item */
ecode += 3;		/* Advance past the item */
ecode += 3;
ecode += 5;
ecode = next + 3;
ecode++;
else
else if ((extra->options & PCRE_STUDY_BM) != 0)
else if (first_char >= 0)
else if (start_bits != NULL)
else if (startline)
encountered */
end_subject = match_block.end_subject;
eptr        pointer in subject
eptr        points into the subject
eptr += c;
eptr += length;
eptr += min;
eptr -= (ecode[1] << 8) + ecode[2];
eptr -= length;
eptr = md->end_match_ptr;
eptr++;
eptrb       pointer to chain of blocks containing eptr at start of
eptrb = &newptrb;
eptrb = eptrb->prev;	/* Back up the stack of bracket start pointers */
eptrblock *eptrb;
eptrblock newptrb;
eptrblock;
exactly what going to the ket would do. */
explicit claim or by omission.
external_extra  points to "hints" from pcre_study() or is NULL
external_re     points to the compiled expression
extraction by setting the offsets and bumping the high water mark. */
first_char = match_block.lcc[first_char];
first_char = re->first_char;
flags       can contain
for (;;)
for (i = 1; i <= c; i++)
for (i = 1; i <= min; i++)
for (i = min; i < max; i++)
for (i = min;; i++)
for the "once" (not-backup up) groups. */
for the match to succeed. If the first character is set, req_char must be
found it, so that we don't search again next time round the loop if
from a previous iteration of this group, and be referred to by a reference
goto REPEATCHAR;
goto REPEATNOTCHAR;
goto REPEATTYPE;
group number back at the start and if necessary complete handling an
happens for a repeating ket if no characters were matched in the group.
here; that is handled in the code for KET. */
hold, we get a temporary bit of working store to use during the matching.
i.e. it could be ()* or ()? in the pattern. Brackets with fixed upper
if (!anchored)
if (!match (start_match, re->code, 2, &match_block, ims, NULL, match_isgroup))
if (!match_ref (offset, eptr, length, md, ims))
if (!md->endonly)
if (!rc)
if (!startline && extra != NULL)
if ((*ecode++ == OP_WORD_BOUNDARY) ?
if ((data[c / 8] & (1 << (c & 7))) != 0)
if ((data[c / 8] & (1 << (c & 7))) == 0)
if ((extra->options & PCRE_STUDY_MAPPED) != 0)
if ((flags & match_condassert) != 0)
if ((flags & match_isgroup) != 0)
if ((ims & PCRE_CASELESS) != 0)
if ((ims & PCRE_DOTALL) == 0 && c == '\n')
if ((ims & PCRE_DOTALL) == 0 && eptr < md->end_subject && *eptr == '\n')
if ((ims & PCRE_DOTALL) == 0)
if ((ims & PCRE_MULTILINE) != 0)
if ((md->ctypes[*eptr++] & ctype_digit) != 0)
if ((md->ctypes[*eptr++] & ctype_digit) == 0)
if ((md->ctypes[*eptr++] & ctype_space) != 0)
if ((md->ctypes[*eptr++] & ctype_space) == 0)
if ((md->ctypes[*eptr++] & ctype_word) != 0)
if ((md->ctypes[*eptr++] & ctype_word) == 0)
if ((md->ctypes[c] & ctype_digit) != 0)
if ((md->ctypes[c] & ctype_digit) == 0)
if ((md->ctypes[c] & ctype_space) != 0)
if ((md->ctypes[c] & ctype_space) == 0)
if ((md->ctypes[c] & ctype_word) != 0)
if ((md->ctypes[c] & ctype_word) == 0)
if ((options & ~PUBLIC_EXEC_OPTIONS) != 0)
if ((re->options & PCRE_FIRSTSET) != 0)
if ((re->options & PCRE_REQCHSET) != 0)
if ((start_bits[c / 8] & (1 << (c & 7))) == 0)
if (*ecode != OP_ONCE && *ecode != OP_ALT)
if (*ecode == OP_KET || eptr == saved_eptr)
if (*ecode == OP_KET)
if (*ecode == OP_KETRMIN)
if (*ecode++ != *eptr++)
if (*ecode++ == *eptr++)
if (*eptr != '\n')
if (*eptr++ == '\n')
if (*p++ != *eptr++)
if (*p++ == req_char)
if (*prev != OP_COND)
if (*prev == OP_ASSERT || *prev == OP_ASSERT_NOT ||
if (bmtable != NULL)
if (bmtable[*start_match])
if (c != *eptr++)
if (c != md->lcc[*eptr++])
if (c < 16)
if (c == *eptr++)
if (c == md->lcc[*eptr++])
if (c > md->end_subject - eptr)
if (cur_is_word == prev_is_word ||
if (ecode[3] == OP_CREF)	/* Condition is extraction test */
if (ecode[3] == OP_OPT)
if (eptr != md->start_subject && eptr[-1] != '\n')
if (eptr != md->start_subject)
if (eptr < md->end_subject - 1 ||
if (eptr < md->end_subject)
if (eptr < md->start_subject)
if (eptr >= md->end_subject ||
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_digit) != 0)
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_digit) == 0)
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_space) != 0)
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_space) == 0)
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_word) != 0)
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_word) == 0)
if (eptr >= md->end_subject || *eptr == '\n')
if (eptr >= md->end_subject || c != *eptr)
if (eptr >= md->end_subject || c != md->lcc[*eptr])
if (eptr >= md->end_subject || c == *eptr)
if (eptr >= md->end_subject || c == md->lcc[*eptr])
if (eptr >= md->end_subject)
if (eptr++ >= md->end_subject)
if (i >= max || !match_ref (offset, eptr, length, md, ims))
if (i >= max || eptr >= md->end_subject ||
if (i >= max || eptr >= md->end_subject || c != *eptr++)
if (i >= max || eptr >= md->end_subject || c == *eptr++)
if (i >= max || eptr >= md->end_subject)
if (is_subject && length > md->end_subject - p)
if (isprint (c = *(p++)))
if (length == 0)
if (length > md->end_subject - eptr)
if (match (eptr, ecode + 3, offset_top, md, ims, NULL,
if (match (eptr, ecode + 3, offset_top, md, ims, NULL, match_isgroup))
if (match (eptr, ecode + 3, offset_top, md, ims, eptrb, 0) ||
if (match (eptr, ecode + 3, offset_top, md, ims, eptrb, match_isgroup))
if (match (eptr, ecode, offset_top, md, ims, eptrb, 0))
if (match (eptr, next + 3, offset_top, md, ims, eptrb, match_isgroup))
if (match (eptr, next, offset_top, md, ims, eptrb, match_isgroup))
if (match (eptr, prev, offset_top, md, ims, eptrb, match_isgroup) ||
if (match (eptr--, ecode, offset_top, md, ims, eptrb, 0))
if (match_block.end_offset_top > offsetcount)
if (match_block.offset_vector != NULL)
if (match_block.offset_vector == NULL)
if (max == 0)
if (md->lcc[*ecode++] != md->lcc[*eptr++])
if (md->lcc[*ecode++] == md->lcc[*eptr++])
if (md->lcc[*p++] != md->lcc[*eptr++])
if (md->notbol && eptr == md->start_subject)
if (md->notempty && eptr == md->start_match)
if (md->noteol)
if (min == max)
if (min > 0)
if (min > md->end_subject - eptr)
if (minimize)
if (number > 0)
if (number > EXTRACT_BASIC_MAX) 
if (offset < md->offset_max)
if (offset >= md->offset_max)
if (offset_top <= offset)
if (offsetcount < 2)
if (offsetcount >= 4)
if (op > OP_BRA)
if (p > req_char_ptr)
if (p >= end_subject)
if (pp == req_char || pp == req_char2)
if (re == NULL || subject == NULL ||
if (re->magic_number != MAGIC_NUMBER)
if (re->max_match_size >= 0
if (re->top_backref > 0 && re->top_backref >= ocount / 3)
if (req_char == req_char2)
if (req_char >= 0)
if (resetcount > offsetcount)
if (save != stacksave)
if (save == NULL)
if (skipped_chars)
if (start_match + bmtable[256] > end_subject)
if (start_match > match_block.start_subject + start_offset)
if (using_temporary_offsets)
if certain parts of the pattern were not used. */
if the malloc fails ... there is no way of returning to the top level with
implied in the second condition, because start_offset > 0. */
ims         current /i, /m, and /s options
ims         the ims flags
ims = (ims & ~PCRE_IMS) | ecode[4];
ims = ecode[1];
ims = original_ims;
ims = re->options & (PCRE_CASELESS | PCRE_MULTILINE | PCRE_DOTALL);
in the pattern. */
in the subject string, while eptrb holds the value of eptr at the start of the
initialize them to avoid reading uninitialized locations. */
inline, and there are *still* stupid compilers about that don't like indented
inside the group.
int
int *offsets;
int *save;
int c;
int first_char = -1;
int flags;
int length;
int min, max, ctype;
int number = *prev - OP_BRA;
int number = op - OP_BRA;
int offset = (ecode[1] << 9) | (ecode[2] << 1);		/* Doubled reference number */
int offset = (ecode[4] << 9) | (ecode[5] << 1);	/* Doubled reference number */
int offset;
int offset_top;
int offsetcount;
int op = (int) *ecode;
int options;
int rc;
int req_char = -1;
int req_char2 = -1;
int resetcount, ocount;
int save_offset1 = md->offset_vector[offset];
int save_offset2 = md->offset_vector[offset + 1];
int save_offset3 = md->offset_vector[md->offset_end - number];
int skipped_chars = 0;
int stacksave[15];
int start_offset;
is a bit large to put on the stack, but using malloc for small numbers
is_subject  TRUE if printing from within md->start_subject
it as matched, any number of times (otherwise there could be infinite
item to see if there is repeat information following. The code is similar
item to see if there is repeat information following. Then obey similar
last bracketed group - used for breaking infinite loops matching zero-length
later in the subject; otherwise the test starts at the match point. This
length          length of subject string (may contain binary zeros)
length      length to be matched
length      number to print
length = (offset >= offset_top || md->offset_vector[offset] < 0) ?
length = md->end_subject - p;
level without recursing. Otherwise, if minimizing, keep trying the rest of
loop. */
loops). */
main loop. */
majority of cases. It will be suboptimal when the case flag changes in a regex
mark, since extracts may have been taken during the assertion. */
mark, since extracts may have been taken. */
match (eptr, ecode + 3, offset_top, md, ims, eptrb, 0))
match (eptr, ecode, offset_top, md, ims, eptrb, flags)
match (eptr, prev, offset_top, md, ims, eptrb, match_isgroup))
match_block.ctypes = re->tables + ctypes_offset;
match_block.end_subject = match_block.start_subject + length;
match_block.endonly = (re->options & PCRE_DOLLAR_ENDONLY) != 0;
match_block.errorcode = PCRE_ERROR_NOMATCH;	/* Default error */
match_block.errorcode == PCRE_ERROR_NOMATCH &&
match_block.lcc = re->tables + lcc_offset;
match_block.lcc[*start_match] != first_char)
match_block.notbol = (options & PCRE_NOTBOL) != 0;
match_block.notempty = (options & PCRE_NOTEMPTY) != 0;
match_block.noteol = (options & PCRE_NOTEOL) != 0;
match_block.offset_end = ocount;
match_block.offset_max = (2 * ocount) / 3;
match_block.offset_overflow = FALSE;
match_block.offset_overflow = TRUE;
match_block.offset_vector = (int *) (pcre_malloc) (ocount * sizeof (int));
match_block.offset_vector = offsets;
match_block.start_match = start_match;
match_block.start_pattern = re->code;
match_block.start_subject = (const uschar *) subject;
match_condassert - this is an assertion condition
match_condassert | match_isgroup))
match_data *md;
match_data match_block;
match_isgroup - this is the start of a bracketed group
match_isgroup);
match_ref (offset, eptr, length, md, ims)
matches, we carry on as at the end of a normal bracket, leaving the subject
matching won't pass the KET for an assertion. If any one branch matches,
matching won't pass the KET for this kind of subpattern. If any one branch
max = (ecode[1] << 8) + ecode[2];
max = (ecode[3] << 8) + ecode[4];
max = INT_MAX;
max = rep_max[c];	/* zero for max => infinity */
max, eptr));
maximum. Alternatively, if maximizing, find the maximum number of
may be wrong. */
md          pointer to "static" info for the match
md          pointer to matching data block, if is_subject is TRUE
md          points to match data block
md->end_match_ptr = eptr;	/* For ONCE */
md->end_match_ptr = eptr;	/* Record where we ended */
md->end_offset_top = offset_top;	/* and how many extracts were taken */
md->end_offset_top = offset_top;
md->end_subject - eptr + 1 :
md->errorcode = PCRE_ERROR_UNKNOWN_NODE;
md->offset_overflow = TRUE;
md->offset_vector[md->offset_end - i] = save[i];
md->offset_vector[md->offset_end - number] = eptr - md->start_subject;
md->offset_vector[md->offset_end - number] = save_offset3;
md->offset_vector[md->offset_end - number];
md->offset_vector[offset + 1] - md->offset_vector[offset];
md->offset_vector[offset + 1] = eptr - md->start_subject;
md->offset_vector[offset + 1] = save_offset2;
md->offset_vector[offset] =
md->offset_vector[offset] = save_offset1;
memcpy (offsets + 2, match_block.offset_vector + 2,
min = (ecode[1] << 8) + ecode[2];
min = 0;
min = max = (ecode[1] << 8) + ecode[2];
min = max = 1;
min = rep_min[c];	/* Pick up values from tables; */
minima. */
minimize = (*ecode == OP_CRMINRANGE);
minimize = (c & 1) != 0;
minimize = *ecode == OP_MINUPTO;
minimize = *ecode == OP_NOTMINUPTO;
minimize = *ecode == OP_TYPEMINUPTO;
minimize = TRUE;
minimum number of matches are present. If min = max, continue at the same
misrepresented as being the original software.
move back, this match function fails. */
mustn't change the current values of the data slot, because they may be set
need to recurse. */
never be used unless previously set, but they get saved and restored, and so we
never set for an anchored regular expression, but the anchoring may be forced
newline unless endonly is set, else end of subject unless noteol is set. */
newptrb.prev = eptrb;
newptrb.saved_eptr = eptr;
next += (next[1] << 8) + next[2];
non-capturing bracket. Don't worry about setting the flag for the error case
number = (ecode[4] << 8) | ecode[5];
number = (prev[4] << 8) | prev[5];
number from a dummy opcode at the start. */
number, then move along the subject till after the recursive match,
ocount = offsetcount - (offsetcount % 3);
ocount = re->top_backref * 3 + 3;
of (?ims) items in the pattern. They are kept in a local variable so that
of 3. */
of subject left; this ensures that every attempt at a match fails. We
offset      index into the offset vector
offset = number << 1;
offset_top  current top pointer
offset_top = md->end_offset_top;
offset_top = offset + 2;
offset_top, md, ims, eptrb, match_isgroup);
offsetcount     the number of elements in the vector
offsets         points to a vector of ints to be filled in with offsets
offsets[0] = start_match - match_block.start_subject;
offsets[1] = match_block.end_match_ptr - match_block.start_subject;
op = OP_BRA;
opcode. */
optimization can save a huge amount of backtracking in patterns with nested
option for each character match. Maybe that wouldn't add very much to the
options         option bits
p           points to characters
p--;
past the end if there is only one branch, but that's OK because that is
pchars (ecode, length, FALSE, md);
pchars (eptr, 16, TRUE, md);
pchars (eptr, length, TRUE, md);
pchars (p, length, FALSE, md);
pchars (p, length, is_subject, md)
pchars (start_match, end_subject - start_match, TRUE, &match_block);
pcre_exec (re, extra, subject, length, start_offset, options, offsets, offsetcount)
place we found it at last time. */
pointer. */
portions of the string if it matches. Two elements in the vector are set for
pre-processor statements. I suppose it's only been 10 years... */
preceded by BRAZERO or BRAMINZERO. */
preceding bracket, in the appropriate order. */
preceding bracket, in the appropriate order. We need to reset any options
printf (" against backref ");
printf (" against pattern ");
printf ("%c", c);
printf (">>>> Match against: ");
printf (">>>>> Skipped %d chars to reach first character\n",
printf ("\\x%02x", c);
printf ("\n");
printf ("end bracket %d", number);
printf ("matching subject ");
printf ("matching subject <null> against pattern ");
printf ("matching subject <null>");
printf ("start bracket %d subject=", number);
rc = 0;
rc = match (eptr, md->start_pattern, offset_top, md, ims, eptrb,
rc = match_block.offset_overflow ? 0 : match_block.end_offset_top / 2;
register const uschar *ecode;
register const uschar *eptr;
register const uschar *p = start_match + ((first_char >= 0) ? 1 : 0);
register int *iend = iptr + resetcount;
register int *iend = iptr - resetcount / 2 + 1;
register int *iptr = match_block.offset_vector + ocount;
register int *iptr = match_block.offset_vector;
register int c = *start_match;
register int c;
register int i;
register int length = ecode[1];
register int pp = *p++;
repeat it in the interests of efficiency. */
repeat limits are compiled as a number of copies, with the optional ones
req_char = re->req_char;
req_char2 = ((re->options & (PCRE_CASELESS | PCRE_ICHANGED)) != 0) ?
req_char_ptr = p;
resetcount = 2 + re->top_bracket * 2;
resetcount = ocount;
restoring at the exit of a group is easy. */
restrictions:
return FALSE;
return PCRE_ERROR_BADMAGIC;
return PCRE_ERROR_BADOPTION;
return PCRE_ERROR_NOMATCH;
return PCRE_ERROR_NOMEMORY;
return PCRE_ERROR_NULL;
return TRUE;
return match (eptr,
return match (eptr, ecode + 3, offset_top, md, ims, eptrb, match_isgroup);
return match_block.errorcode;
return rc;
save = (int *) (pcre_malloc) ((c + 1) * sizeof (int));
save = stacksave;
save[i] = md->offset_vector[md->offset_end - i];
seems expensive. As a compromise, the stack is used when there are fewer
share code. This is very similar to the code for single characters, but we
similar code to character type repeats - written out again for speed.
since matching characters is likely to be quite common. First, ensure the
skipped_chars += bmtable[*start_match],
skipped_chars += bmtable[256] - 1;
skipped_chars -= bmtable[256] - 1;
skipped_chars);
skipped_chars++,
stack of such pointers, to be re-instated at the end of the group when we hit
stack, for holding the values of the subject pointer at the start of each
start of each branch to move the current point backwards, so the code at
start_bits = extra->data.start_bits;
start_match += bmtable[*start_match];
start_match += bmtable[256] - 1;
start_match -= bmtable[256] - 1;
start_match = (const uschar *) subject + length - re->max_match_size;
start_match++ < end_subject);
start_match++;
start_offset    where to start in the subject string
startline = (re->options & PCRE_STARTLINE) != 0;
static BOOL
static const char rep_max[] =
static const char rep_min[] =
static void
strings.
struct eptrblock *prev;
studied, there may be a bitmap of possible first characters. */
subject         points to the subject string
subject if the requested.
subpattern - to break infinite loops. */
subpattern, so as to detect when an empty string has been matched by a
subsequent match. */
such there are (offset_top records the completed total) so we just have
supersede any condition above with which it is incompatible.
switch (*ecode)
switch (ctype)
switch (op)
test once at the start (i.e. keep it out of the loop). */
than 16 values to store; otherwise malloc is used. A problem is what to do
than the number of characters left in the string, so the match fails.
that "continue" in the code above comes out to here to repeat the main
that changed within the bracket before re-running it, so check the next
that it may occur zero times. It may repeat infinitely, or not at all -
the assertion is true. Lookbehind assertions have an OP_REVERSE item at the
the closing ket. When match() is called in other circumstances, we don't add to
the code for a repeated single character, but I haven't found a nice way of
the current subject position in the working slot at the top of the vector. We
the expression and advancing one matching character if failing, up to the
the external pcre header. */
the file Tech.Notes for some information on the internals.
the final argument TRUE causes it to stop at the end of an assertion. */
the group. */
the length of the reference string explicitly rather than passing the
the loop runs just once. */
the minimum number of bytes before we start. */
the number from a dummy opcode at the start. */
the point in the subject string is not moved back. Thus there can never be
the pointer while it matches the class. */
the same bracket.
the stack. */
the start hasn't passed this character yet. */
the subject. */
there were too many extractions, set the return code to zero. In the case
this level is identical to the lookahead case. */
this makes a huge difference to execution time when there aren't many brackets
those back references that we can. In this case there need not be overflow
time taken, but character matching *is* what this is all about... */
to save all the potential data. There may be up to 99 such values, which
to that for character classes, but repeated for efficiency. Then obey
two branches. If the condition is false, skipping the first branch takes us
typedef struct eptrblock
unless PCRE_CASELESS was given or the casing state changes within the regex.
unlimited repeats that aren't going to match. We don't know what the state of
unsigned long int ims = 0;
unsigned long int ims;
unsigned long int original_ims = ims;		/* Save for resetting on ')' */
up quickly if there are fewer than the minimum number of characters left in
using_temporary_offsets = TRUE;
values of the final offsets, in case they were set by a previous iteration of
we just need to set up the whole thing as substring 0 before returning. If
where we had to get some local store to hold offsets for backreferences, copy
while (!anchored &&
while (*ecode == OP_ALT)
while (*ecode == OP_ALT);
while (*next == OP_ALT);
while (--iptr >= iend)
while (eptr >= pp)
while (iptr < iend)
while (length-- > 0)
while (p < end_subject)
while (start_match < end_subject &&
while (start_match < end_subject && *start_match != first_char)
while (start_match < end_subject && start_match[-1] != '\n')
while (start_match < end_subject)
{
{0, 0, 0, 0, 1, 1};
{0, 0, 1, 1, 0, 0};
}				/* End of main loop */
}