1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
/*
* QEMU S390x KVM implementation
*
* Copyright (c) 2009 Alexander Graf <agraf@suse.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <linux/kvm.h>
#include <asm/ptrace.h>
#include "qemu-common.h"
#include "qemu-timer.h"
#include "sysemu.h"
#include "kvm.h"
#include "cpu.h"
#include "device_tree.h"
/* #define DEBUG_KVM */
#ifdef DEBUG_KVM
#define dprintf(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define dprintf(fmt, ...) \
do { } while (0)
#endif
#define IPA0_DIAG 0x8300
#define IPA0_SIGP 0xae00
#define IPA0_PRIV 0xb200
#define PRIV_SCLP_CALL 0x20
#define DIAG_KVM_HYPERCALL 0x500
#define DIAG_KVM_BREAKPOINT 0x501
#define SCP_LENGTH 0x00
#define SCP_FUNCTION_CODE 0x02
#define SCP_CONTROL_MASK 0x03
#define SCP_RESPONSE_CODE 0x06
#define SCP_MEM_CODE 0x08
#define SCP_INCREMENT 0x0a
#define ICPT_INSTRUCTION 0x04
#define ICPT_WAITPSW 0x1c
#define ICPT_SOFT_INTERCEPT 0x24
#define ICPT_CPU_STOP 0x28
#define ICPT_IO 0x40
#define SIGP_RESTART 0x06
#define SIGP_INITIAL_CPU_RESET 0x0b
#define SIGP_STORE_STATUS_ADDR 0x0e
#define SIGP_SET_ARCH 0x12
#define SCLP_CMDW_READ_SCP_INFO 0x00020001
#define SCLP_CMDW_READ_SCP_INFO_FORCED 0x00120001
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
int kvm_arch_init(KVMState *s)
{
return 0;
}
int kvm_arch_init_vcpu(CPUState *env)
{
int ret = 0;
if (kvm_vcpu_ioctl(env, KVM_S390_INITIAL_RESET, NULL) < 0) {
perror("cannot init reset vcpu");
}
return ret;
}
void kvm_arch_reset_vcpu(CPUState *env)
{
/* FIXME: add code to reset vcpu. */
}
int kvm_arch_put_registers(CPUState *env, int level)
{
struct kvm_regs regs;
int ret;
int i;
ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
if (ret < 0) {
return ret;
}
for (i = 0; i < 16; i++) {
regs.gprs[i] = env->regs[i];
}
ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
if (ret < 0) {
return ret;
}
env->kvm_run->psw_addr = env->psw.addr;
env->kvm_run->psw_mask = env->psw.mask;
return ret;
}
int kvm_arch_get_registers(CPUState *env)
{
int ret;
struct kvm_regs regs;
int i;
ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
if (ret < 0) {
return ret;
}
for (i = 0; i < 16; i++) {
env->regs[i] = regs.gprs[i];
}
env->psw.addr = env->kvm_run->psw_addr;
env->psw.mask = env->kvm_run->psw_mask;
return 0;
}
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
{
static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
cpu_memory_rw_debug(env, bp->pc, (uint8_t *)diag_501, 4, 1)) {
return -EINVAL;
}
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
{
uint8_t t[4];
static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
if (cpu_memory_rw_debug(env, bp->pc, t, 4, 0)) {
return -EINVAL;
} else if (memcmp(t, diag_501, 4)) {
return -EINVAL;
} else if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
return -EINVAL;
}
return 0;
}
void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
{
}
void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
{
}
int kvm_arch_process_irqchip_events(CPUState *env)
{
return 0;
}
static void kvm_s390_interrupt_internal(CPUState *env, int type, uint32_t parm,
uint64_t parm64, int vm)
{
struct kvm_s390_interrupt kvmint;
int r;
if (!env->kvm_state) {
return;
}
env->halted = 0;
env->exception_index = -1;
qemu_cpu_kick(env);
kvmint.type = type;
kvmint.parm = parm;
kvmint.parm64 = parm64;
if (vm) {
r = kvm_vm_ioctl(env->kvm_state, KVM_S390_INTERRUPT, &kvmint);
} else {
r = kvm_vcpu_ioctl(env, KVM_S390_INTERRUPT, &kvmint);
}
if (r < 0) {
fprintf(stderr, "KVM failed to inject interrupt\n");
exit(1);
}
}
void kvm_s390_virtio_irq(CPUState *env, int config_change, uint64_t token)
{
kvm_s390_interrupt_internal(env, KVM_S390_INT_VIRTIO, config_change,
token, 1);
}
static void kvm_s390_interrupt(CPUState *env, int type, uint32_t code)
{
kvm_s390_interrupt_internal(env, type, code, 0, 0);
}
static void enter_pgmcheck(CPUState *env, uint16_t code)
{
kvm_s390_interrupt(env, KVM_S390_PROGRAM_INT, code);
}
static void setcc(CPUState *env, uint64_t cc)
{
env->kvm_run->psw_mask &= ~(3ul << 44);
env->kvm_run->psw_mask |= (cc & 3) << 44;
env->psw.mask &= ~(3ul << 44);
env->psw.mask |= (cc & 3) << 44;
}
static int sclp_service_call(CPUState *env, struct kvm_run *run, uint16_t ipbh0)
{
uint32_t sccb;
uint64_t code;
int r = 0;
cpu_synchronize_state(env);
sccb = env->regs[ipbh0 & 0xf];
code = env->regs[(ipbh0 & 0xf0) >> 4];
dprintf("sclp(0x%x, 0x%lx)\n", sccb, code);
if (sccb & ~0x7ffffff8ul) {
fprintf(stderr, "KVM: invalid sccb address 0x%x\n", sccb);
r = -1;
goto out;
}
switch(code) {
case SCLP_CMDW_READ_SCP_INFO:
case SCLP_CMDW_READ_SCP_INFO_FORCED:
stw_phys(sccb + SCP_MEM_CODE, ram_size >> 20);
stb_phys(sccb + SCP_INCREMENT, 1);
stw_phys(sccb + SCP_RESPONSE_CODE, 0x10);
setcc(env, 0);
kvm_s390_interrupt_internal(env, KVM_S390_INT_SERVICE,
sccb & ~3, 0, 1);
break;
default:
dprintf("KVM: invalid sclp call 0x%x / 0x%lx\n", sccb, code);
r = -1;
break;
}
out:
if (r < 0) {
setcc(env, 3);
}
return 0;
}
static int handle_priv(CPUState *env, struct kvm_run *run, uint8_t ipa1)
{
int r = 0;
uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
dprintf("KVM: PRIV: %d\n", ipa1);
switch (ipa1) {
case PRIV_SCLP_CALL:
r = sclp_service_call(env, run, ipbh0);
break;
default:
dprintf("KVM: unknown PRIV: 0x%x\n", ipa1);
r = -1;
break;
}
return r;
}
static int handle_hypercall(CPUState *env, struct kvm_run *run)
{
int r;
cpu_synchronize_state(env);
r = s390_virtio_hypercall(env);
return r;
}
static int handle_diag(CPUState *env, struct kvm_run *run, int ipb_code)
{
int r = 0;
switch (ipb_code) {
case DIAG_KVM_HYPERCALL:
r = handle_hypercall(env, run);
break;
case DIAG_KVM_BREAKPOINT:
sleep(10);
break;
default:
dprintf("KVM: unknown DIAG: 0x%x\n", ipb_code);
r = -1;
break;
}
return r;
}
static int s390_cpu_restart(CPUState *env)
{
kvm_s390_interrupt(env, KVM_S390_RESTART, 0);
env->halted = 0;
env->exception_index = -1;
qemu_cpu_kick(env);
dprintf("DONE: SIGP cpu restart: %p\n", env);
return 0;
}
static int s390_store_status(CPUState *env, uint32_t parameter)
{
/* XXX */
fprintf(stderr, "XXX SIGP store status\n");
return -1;
}
static int s390_cpu_initial_reset(CPUState *env)
{
int i;
if (kvm_vcpu_ioctl(env, KVM_S390_INITIAL_RESET, NULL) < 0) {
perror("cannot init reset vcpu");
}
/* Manually zero out all registers */
cpu_synchronize_state(env);
for (i = 0; i < 16; i++) {
env->regs[i] = 0;
}
dprintf("DONE: SIGP initial reset: %p\n", env);
return 0;
}
static int handle_sigp(CPUState *env, struct kvm_run *run, uint8_t ipa1)
{
uint8_t order_code;
uint32_t parameter;
uint16_t cpu_addr;
uint8_t t;
int r = -1;
CPUState *target_env;
cpu_synchronize_state(env);
/* get order code */
order_code = run->s390_sieic.ipb >> 28;
if (order_code > 0) {
order_code = env->regs[order_code];
}
order_code += (run->s390_sieic.ipb & 0x0fff0000) >> 16;
/* get parameters */
t = (ipa1 & 0xf0) >> 4;
if (!(t % 2)) {
t++;
}
parameter = env->regs[t] & 0x7ffffe00;
cpu_addr = env->regs[ipa1 & 0x0f];
target_env = s390_cpu_addr2state(cpu_addr);
if (!target_env) {
goto out;
}
switch (order_code) {
case SIGP_RESTART:
r = s390_cpu_restart(target_env);
break;
case SIGP_STORE_STATUS_ADDR:
r = s390_store_status(target_env, parameter);
break;
case SIGP_SET_ARCH:
/* make the caller panic */
return -1;
case SIGP_INITIAL_CPU_RESET:
r = s390_cpu_initial_reset(target_env);
break;
default:
fprintf(stderr, "KVM: unknown SIGP: 0x%x\n", ipa1);
break;
}
out:
setcc(env, r ? 3 : 0);
return 0;
}
static int handle_instruction(CPUState *env, struct kvm_run *run)
{
unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
int ipb_code = (run->s390_sieic.ipb & 0x0fff0000) >> 16;
int r = -1;
dprintf("handle_instruction 0x%x 0x%x\n", run->s390_sieic.ipa, run->s390_sieic.ipb);
switch (ipa0) {
case IPA0_PRIV:
r = handle_priv(env, run, ipa1);
break;
case IPA0_DIAG:
r = handle_diag(env, run, ipb_code);
break;
case IPA0_SIGP:
r = handle_sigp(env, run, ipa1);
break;
}
if (r < 0) {
enter_pgmcheck(env, 0x0001);
}
return r;
}
static int handle_intercept(CPUState *env)
{
struct kvm_run *run = env->kvm_run;
int icpt_code = run->s390_sieic.icptcode;
int r = 0;
dprintf("intercept: 0x%x (at 0x%lx)\n", icpt_code, env->kvm_run->psw_addr);
switch (icpt_code) {
case ICPT_INSTRUCTION:
r = handle_instruction(env, run);
break;
case ICPT_WAITPSW:
/* XXX What to do on system shutdown? */
env->halted = 1;
env->exception_index = EXCP_HLT;
break;
case ICPT_SOFT_INTERCEPT:
fprintf(stderr, "KVM unimplemented icpt SOFT\n");
exit(1);
break;
case ICPT_CPU_STOP:
qemu_system_shutdown_request();
break;
case ICPT_IO:
fprintf(stderr, "KVM unimplemented icpt IO\n");
exit(1);
break;
default:
fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
exit(1);
break;
}
return r;
}
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
{
int ret = 0;
switch (run->exit_reason) {
case KVM_EXIT_S390_SIEIC:
ret = handle_intercept(env);
break;
case KVM_EXIT_S390_RESET:
fprintf(stderr, "RESET not implemented\n");
exit(1);
break;
default:
fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
break;
}
return ret;
}
bool kvm_arch_stop_on_emulation_error(CPUState *env)
{
return true;
}
int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
{
return 1;
}
int kvm_arch_on_sigbus(int code, void *addr)
{
return 1;
}
|