summaryrefslogtreecommitdiff
path: root/target-microblaze/op_helper.c
blob: ee4f6231319ddff096be4ddab83b4f704a9f7637 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
 *  Microblaze helper routines.
 *
 *  Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include <assert.h>
#include "exec.h"
#include "helper.h"
#include "host-utils.h"

#define D(x)

#if !defined(CONFIG_USER_ONLY)
#define MMUSUFFIX _mmu
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"

/* Try to fill the TLB and return an exception if error. If retaddr is
   NULL, it means that the function was called in C code (i.e. not
   from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
    TranslationBlock *tb;
    CPUState *saved_env;
    unsigned long pc;
    int ret;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;

    ret = cpu_mb_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
    if (unlikely(ret)) {
        if (retaddr) {
            /* now we have a real cpu fault */
            pc = (unsigned long)retaddr;
            tb = tb_find_pc(pc);
            if (tb) {
                /* the PC is inside the translated code. It means that we have
                   a virtual CPU fault */
                cpu_restore_state(tb, env, pc, NULL);
            }
        }
        cpu_loop_exit();
    }
    env = saved_env;
}
#endif

void helper_raise_exception(uint32_t index)
{
    env->exception_index = index;
    cpu_loop_exit();
}

void helper_debug(void)
{
    int i;

    qemu_log("PC=%8.8x\n", env->sregs[SR_PC]);
    for (i = 0; i < 32; i++) {
        qemu_log("r%2.2d=%8.8x ", i, env->regs[i]);
        if ((i + 1) % 4 == 0)
            qemu_log("\n");
    }
    qemu_log("\n\n");
}

static inline uint32_t compute_carry(uint32_t a, uint32_t b, uint32_t cin)
{
    uint32_t cout = 0;

    if ((b == ~0) && cin)
        cout = 1;
    else if ((~0 - a) < (b + cin))
        cout = 1;
    return cout;
}

uint32_t helper_cmp(uint32_t a, uint32_t b)
{
    uint32_t t;

    t = b + ~a + 1;
    if ((b & 0x80000000) ^ (a & 0x80000000))
        t = (t & 0x7fffffff) | (b & 0x80000000);
    return t;
}

uint32_t helper_cmpu(uint32_t a, uint32_t b)
{
    uint32_t t;

    t = b + ~a + 1;
    if ((b & 0x80000000) ^ (a & 0x80000000))
        t = (t & 0x7fffffff) | (a & 0x80000000);
    return t;
}

uint32_t helper_addkc(uint32_t a, uint32_t b, uint32_t k, uint32_t c)
{
    uint32_t d, cf = 0, ncf;

    if (c)
        cf = env->sregs[SR_MSR] >> 31;
    assert(cf == 0 || cf == 1);
    d = a + b + cf;

    if (!k) {
        ncf = compute_carry(a, b, cf);
        assert(ncf == 0 || ncf == 1);
        if (ncf)
            env->sregs[SR_MSR] |= MSR_C | MSR_CC;
        else
            env->sregs[SR_MSR] &= ~(MSR_C | MSR_CC);
    }
    D(qemu_log("%x = %x + %x cf=%d ncf=%d k=%d c=%d\n",
               d, a, b, cf, ncf, k, c));
    return d;
}

uint32_t helper_subkc(uint32_t a, uint32_t b, uint32_t k, uint32_t c)
{
    uint32_t d, cf = 1, ncf;

    if (c)
        cf = env->sregs[SR_MSR] >> 31; 
    assert(cf == 0 || cf == 1);
    d = b + ~a + cf;

    if (!k) {
        ncf = compute_carry(b, ~a, cf);
        assert(ncf == 0 || ncf == 1);
        if (ncf)
            env->sregs[SR_MSR] |= MSR_C | MSR_CC;
        else
            env->sregs[SR_MSR] &= ~(MSR_C | MSR_CC);
    }
    D(qemu_log("%x = %x + %x cf=%d ncf=%d k=%d c=%d\n",
               d, a, b, cf, ncf, k, c));
    return d;
}

static inline int div_prepare(uint32_t a, uint32_t b)
{
    if (b == 0) {
        env->sregs[SR_MSR] |= MSR_DZ;

        if ((env->sregs[SR_MSR] & MSR_EE)
            && !(env->pvr.regs[2] & PVR2_DIV_ZERO_EXC_MASK)) {
            env->sregs[SR_ESR] = ESR_EC_DIVZERO;
            helper_raise_exception(EXCP_HW_EXCP);
        }
        return 0;
    }
    env->sregs[SR_MSR] &= ~MSR_DZ;
    return 1;
}

uint32_t helper_divs(uint32_t a, uint32_t b)
{
    if (!div_prepare(a, b))
        return 0;
    return (int32_t)a / (int32_t)b;
}

uint32_t helper_divu(uint32_t a, uint32_t b)
{
    if (!div_prepare(a, b))
        return 0;
    return a / b;
}

uint32_t helper_pcmpbf(uint32_t a, uint32_t b)
{
    unsigned int i;
    uint32_t mask = 0xff000000;

    for (i = 0; i < 4; i++) {
        if ((a & mask) == (b & mask))
            return i + 1;
        mask >>= 8;
    }
    return 0;
}

void helper_memalign(uint32_t addr, uint32_t dr, uint32_t wr, uint32_t mask)
{
    if (addr & mask) {
            qemu_log_mask(CPU_LOG_INT,
                          "unaligned access addr=%x mask=%x, wr=%d dr=r%d\n",
                          addr, mask, wr, dr);
            env->sregs[SR_EAR] = addr;
            env->sregs[SR_ESR] = ESR_EC_UNALIGNED_DATA | (wr << 10) \
                                 | (dr & 31) << 5;
            if (mask == 3) {
                env->sregs[SR_ESR] |= 1 << 11;
            }
            if (!(env->sregs[SR_MSR] & MSR_EE)) {
                return;
            }
            helper_raise_exception(EXCP_HW_EXCP);
    }
}

#if !defined(CONFIG_USER_ONLY)
/* Writes/reads to the MMU's special regs end up here.  */
uint32_t helper_mmu_read(uint32_t rn)
{
    return mmu_read(env, rn);
}

void helper_mmu_write(uint32_t rn, uint32_t v)
{
    mmu_write(env, rn, v);
}
#endif

void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
                          int is_asi, int size)
{
    CPUState *saved_env;
    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;
    qemu_log_mask(CPU_LOG_INT, "Unassigned " TARGET_FMT_plx " wr=%d exe=%d\n",
             addr, is_write, is_exec);
    if (!(env->sregs[SR_MSR] & MSR_EE)) {
        return;
    }

    env->sregs[SR_EAR] = addr;
    if (is_exec) {
        if ((env->pvr.regs[2] & PVR2_IOPB_BUS_EXC_MASK)) {
            env->sregs[SR_ESR] = ESR_EC_INSN_BUS;
            helper_raise_exception(EXCP_HW_EXCP);
        }
    } else {
        if ((env->pvr.regs[2] & PVR2_DOPB_BUS_EXC_MASK)) {
            env->sregs[SR_ESR] = ESR_EC_DATA_BUS;
            helper_raise_exception(EXCP_HW_EXCP);
        }
    }
}