/* * QEMU System Emulator * * Copyright (c) 2003-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include /* Needed early for CONFIG_BSD etc. */ #include "config-host.h" #ifndef _WIN32 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_BSD #include #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) #include #else #include #endif #else #ifdef __linux__ #include #include #include #include #include #endif #ifdef __sun__ #include #include #include #include #include #include #include #include // must come after ip.h #include #include #include #include #include /* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for discussion about Solaris header problems */ extern int madvise(caddr_t, size_t, int); #endif #endif #endif #if defined(__OpenBSD__) #include #endif #if defined(CONFIG_VDE) #include #endif #ifdef _WIN32 #include #endif #ifdef CONFIG_SDL #if defined(__APPLE__) || defined(main) #include int qemu_main(int argc, char **argv, char **envp); int main(int argc, char **argv) { return qemu_main(argc, argv, NULL); } #undef main #define main qemu_main #endif #endif /* CONFIG_SDL */ #ifdef CONFIG_COCOA #undef main #define main qemu_main #endif /* CONFIG_COCOA */ #include "hw/hw.h" #include "hw/boards.h" #include "hw/usb.h" #include "hw/pcmcia.h" #include "hw/pc.h" #include "hw/audiodev.h" #include "hw/isa.h" #include "hw/baum.h" #include "hw/bt.h" #include "hw/watchdog.h" #include "hw/smbios.h" #include "hw/xen.h" #include "hw/qdev.h" #include "hw/loader.h" #include "bt-host.h" #include "net.h" #include "net/slirp.h" #include "monitor.h" #include "console.h" #include "sysemu.h" #include "gdbstub.h" #include "qemu-timer.h" #include "qemu-char.h" #include "cache-utils.h" #include "block.h" #include "block_int.h" #include "block-migration.h" #include "dma.h" #include "audio/audio.h" #include "migration.h" #include "kvm.h" #include "balloon.h" #include "qemu-option.h" #include "qemu-config.h" #include "qemu-objects.h" #include "disas.h" #include "exec-all.h" #include "qemu_socket.h" #include "slirp/libslirp.h" #include "qemu-queue.h" //#define DEBUG_NET //#define DEBUG_SLIRP #define DEFAULT_RAM_SIZE 128 #define MAX_VIRTIO_CONSOLES 1 static const char *data_dir; const char *bios_name = NULL; /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available to store the VM snapshots */ struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives); struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts); enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB; DisplayType display_type = DT_DEFAULT; const char* keyboard_layout = NULL; ram_addr_t ram_size; const char *mem_path = NULL; #ifdef MAP_POPULATE int mem_prealloc = 0; /* force preallocation of physical target memory */ #endif int nb_nics; NICInfo nd_table[MAX_NICS]; int vm_running; int autostart; static int rtc_utc = 1; static int rtc_date_offset = -1; /* -1 means no change */ QEMUClock *rtc_clock; int vga_interface_type = VGA_NONE; #ifdef TARGET_SPARC int graphic_width = 1024; int graphic_height = 768; int graphic_depth = 8; #else int graphic_width = 800; int graphic_height = 600; int graphic_depth = 15; #endif static int full_screen = 0; #ifdef CONFIG_SDL static int no_frame = 0; #endif int no_quit = 0; CharDriverState *serial_hds[MAX_SERIAL_PORTS]; CharDriverState *parallel_hds[MAX_PARALLEL_PORTS]; CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES]; int win2k_install_hack = 0; #ifdef TARGET_I386 int rtc_td_hack = 0; #endif int usb_enabled = 0; int singlestep = 0; int smp_cpus = 1; int max_cpus = 0; int smp_cores = 1; int smp_threads = 1; const char *vnc_display; int acpi_enabled = 1; int no_hpet = 0; int fd_bootchk = 1; int no_reboot = 0; int no_shutdown = 0; int cursor_hide = 1; int graphic_rotate = 0; uint8_t irq0override = 1; #ifndef _WIN32 int daemonize = 0; #endif const char *watchdog; const char *option_rom[MAX_OPTION_ROMS]; int nb_option_roms; int semihosting_enabled = 0; #ifdef TARGET_ARM int old_param = 0; #endif const char *qemu_name; int alt_grab = 0; int ctrl_grab = 0; #if defined(TARGET_SPARC) || defined(TARGET_PPC) unsigned int nb_prom_envs = 0; const char *prom_envs[MAX_PROM_ENVS]; #endif int boot_menu; int nb_numa_nodes; uint64_t node_mem[MAX_NODES]; uint64_t node_cpumask[MAX_NODES]; static CPUState *cur_cpu; static CPUState *next_cpu; static QEMUTimer *nographic_timer; uint8_t qemu_uuid[16]; static QEMUBootSetHandler *boot_set_handler; static void *boot_set_opaque; #ifdef SIGRTMIN #define SIG_IPI (SIGRTMIN+4) #else #define SIG_IPI SIGUSR1 #endif static int default_serial = 1; static int default_parallel = 1; static int default_virtcon = 1; static int default_monitor = 1; static int default_vga = 1; static int default_floppy = 1; static int default_cdrom = 1; static int default_sdcard = 1; static struct { const char *driver; int *flag; } default_list[] = { { .driver = "isa-serial", .flag = &default_serial }, { .driver = "isa-parallel", .flag = &default_parallel }, { .driver = "isa-fdc", .flag = &default_floppy }, { .driver = "ide-drive", .flag = &default_cdrom }, { .driver = "virtio-serial-pci", .flag = &default_virtcon }, { .driver = "virtio-serial-s390", .flag = &default_virtcon }, { .driver = "virtio-serial", .flag = &default_virtcon }, { .driver = "VGA", .flag = &default_vga }, { .driver = "cirrus-vga", .flag = &default_vga }, { .driver = "vmware-svga", .flag = &default_vga }, }; static int default_driver_check(QemuOpts *opts, void *opaque) { const char *driver = qemu_opt_get(opts, "driver"); int i; if (!driver) return 0; for (i = 0; i < ARRAY_SIZE(default_list); i++) { if (strcmp(default_list[i].driver, driver) != 0) continue; *(default_list[i].flag) = 0; } return 0; } /***********************************************************/ /* x86 ISA bus support */ target_phys_addr_t isa_mem_base = 0; PicState2 *isa_pic; /***********************************************************/ void hw_error(const char *fmt, ...) { va_list ap; CPUState *env; va_start(ap, fmt); fprintf(stderr, "qemu: hardware error: "); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); for(env = first_cpu; env != NULL; env = env->next_cpu) { fprintf(stderr, "CPU #%d:\n", env->cpu_index); #ifdef TARGET_I386 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU); #else cpu_dump_state(env, stderr, fprintf, 0); #endif } va_end(ap); abort(); } static void set_proc_name(const char *s) { #if defined(__linux__) && defined(PR_SET_NAME) char name[16]; if (!s) return; name[sizeof(name) - 1] = 0; strncpy(name, s, sizeof(name)); /* Could rewrite argv[0] too, but that's a bit more complicated. This simple way is enough for `top'. */ prctl(PR_SET_NAME, name); #endif } /***************/ /* ballooning */ static QEMUBalloonEvent *qemu_balloon_event; void *qemu_balloon_event_opaque; void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque) { qemu_balloon_event = func; qemu_balloon_event_opaque = opaque; } int qemu_balloon(ram_addr_t target, MonitorCompletion cb, void *opaque) { if (qemu_balloon_event) { qemu_balloon_event(qemu_balloon_event_opaque, target, cb, opaque); return 1; } else { return 0; } } int qemu_balloon_status(MonitorCompletion cb, void *opaque) { if (qemu_balloon_event) { qemu_balloon_event(qemu_balloon_event_opaque, 0, cb, opaque); return 1; } else { return 0; } } /***********************************************************/ /* real time host monotonic timer */ /* compute with 96 bit intermediate result: (a*b)/c */ uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) { union { uint64_t ll; struct { #ifdef HOST_WORDS_BIGENDIAN uint32_t high, low; #else uint32_t low, high; #endif } l; } u, res; uint64_t rl, rh; u.ll = a; rl = (uint64_t)u.l.low * (uint64_t)b; rh = (uint64_t)u.l.high * (uint64_t)b; rh += (rl >> 32); res.l.high = rh / c; res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c; return res.ll; } /***********************************************************/ /* host time/date access */ void qemu_get_timedate(struct tm *tm, int offset) { time_t ti; struct tm *ret; time(&ti); ti += offset; if (rtc_date_offset == -1) { if (rtc_utc) ret = gmtime(&ti); else ret = localtime(&ti); } else { ti -= rtc_date_offset; ret = gmtime(&ti); } memcpy(tm, ret, sizeof(struct tm)); } int qemu_timedate_diff(struct tm *tm) { time_t seconds; if (rtc_date_offset == -1) if (rtc_utc) seconds = mktimegm(tm); else seconds = mktime(tm); else seconds = mktimegm(tm) + rtc_date_offset; return seconds - time(NULL); } void rtc_change_mon_event(struct tm *tm) { QObject *data; data = qobject_from_jsonf("{ 'offset': %d }", qemu_timedate_diff(tm)); monitor_protocol_event(QEVENT_RTC_CHANGE, data); qobject_decref(data); } static void configure_rtc_date_offset(const char *startdate, int legacy) { time_t rtc_start_date; struct tm tm; if (!strcmp(startdate, "now") && legacy) { rtc_date_offset = -1; } else { if (sscanf(startdate, "%d-%d-%dT%d:%d:%d", &tm.tm_year, &tm.tm_mon, &tm.tm_mday, &tm.tm_hour, &tm.tm_min, &tm.tm_sec) == 6) { /* OK */ } else if (sscanf(startdate, "%d-%d-%d", &tm.tm_year, &tm.tm_mon, &tm.tm_mday) == 3) { tm.tm_hour = 0; tm.tm_min = 0; tm.tm_sec = 0; } else { goto date_fail; } tm.tm_year -= 1900; tm.tm_mon--; rtc_start_date = mktimegm(&tm); if (rtc_start_date == -1) { date_fail: fprintf(stderr, "Invalid date format. Valid formats are:\n" "'2006-06-17T16:01:21' or '2006-06-17'\n"); exit(1); } rtc_date_offset = time(NULL) - rtc_start_date; } } static void configure_rtc(QemuOpts *opts) { const char *value; value = qemu_opt_get(opts, "base"); if (value) { if (!strcmp(value, "utc")) { rtc_utc = 1; } else if (!strcmp(value, "localtime")) { rtc_utc = 0; } else { configure_rtc_date_offset(value, 0); } } value = qemu_opt_get(opts, "clock"); if (value) { if (!strcmp(value, "host")) { rtc_clock = host_clock; } else if (!strcmp(value, "vm")) { rtc_clock = vm_clock; } else { fprintf(stderr, "qemu: invalid option value '%s'\n", value); exit(1); } } #ifdef CONFIG_TARGET_I386 value = qemu_opt_get(opts, "driftfix"); if (value) { if (!strcmp(buf, "slew")) { rtc_td_hack = 1; } else if (!strcmp(buf, "none")) { rtc_td_hack = 0; } else { fprintf(stderr, "qemu: invalid option value '%s'\n", value); exit(1); } } #endif } #ifdef _WIN32 static void socket_cleanup(void) { WSACleanup(); } static int socket_init(void) { WSADATA Data; int ret, err; ret = WSAStartup(MAKEWORD(2,2), &Data); if (ret != 0) { err = WSAGetLastError(); fprintf(stderr, "WSAStartup: %d\n", err); return -1; } atexit(socket_cleanup); return 0; } #endif /***********************************************************/ /* Bluetooth support */ static int nb_hcis; static int cur_hci; static struct HCIInfo *hci_table[MAX_NICS]; static struct bt_vlan_s { struct bt_scatternet_s net; int id; struct bt_vlan_s *next; } *first_bt_vlan; /* find or alloc a new bluetooth "VLAN" */ static struct bt_scatternet_s *qemu_find_bt_vlan(int id) { struct bt_vlan_s **pvlan, *vlan; for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) { if (vlan->id == id) return &vlan->net; } vlan = qemu_mallocz(sizeof(struct bt_vlan_s)); vlan->id = id; pvlan = &first_bt_vlan; while (*pvlan != NULL) pvlan = &(*pvlan)->next; *pvlan = vlan; return &vlan->net; } static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len) { } static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr) { return -ENOTSUP; } static struct HCIInfo null_hci = { .cmd_send = null_hci_send, .sco_send = null_hci_send, .acl_send = null_hci_send, .bdaddr_set = null_hci_addr_set, }; struct HCIInfo *qemu_next_hci(void) { if (cur_hci == nb_hcis) return &null_hci; return hci_table[cur_hci++]; } static struct HCIInfo *hci_init(const char *str) { char *endp; struct bt_scatternet_s *vlan = 0; if (!strcmp(str, "null")) /* null */ return &null_hci; else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':')) /* host[:hciN] */ return bt_host_hci(str[4] ? str + 5 : "hci0"); else if (!strncmp(str, "hci", 3)) { /* hci[,vlan=n] */ if (str[3]) { if (!strncmp(str + 3, ",vlan=", 6)) { vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0)); if (*endp) vlan = 0; } } else vlan = qemu_find_bt_vlan(0); if (vlan) return bt_new_hci(vlan); } fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str); return 0; } static int bt_hci_parse(const char *str) { struct HCIInfo *hci; bdaddr_t bdaddr; if (nb_hcis >= MAX_NICS) { fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS); return -1; } hci = hci_init(str); if (!hci) return -1; bdaddr.b[0] = 0x52; bdaddr.b[1] = 0x54; bdaddr.b[2] = 0x00; bdaddr.b[3] = 0x12; bdaddr.b[4] = 0x34; bdaddr.b[5] = 0x56 + nb_hcis; hci->bdaddr_set(hci, bdaddr.b); hci_table[nb_hcis++] = hci; return 0; } static void bt_vhci_add(int vlan_id) { struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id); if (!vlan->slave) fprintf(stderr, "qemu: warning: adding a VHCI to " "an empty scatternet %i\n", vlan_id); bt_vhci_init(bt_new_hci(vlan)); } static struct bt_device_s *bt_device_add(const char *opt) { struct bt_scatternet_s *vlan; int vlan_id = 0; char *endp = strstr(opt, ",vlan="); int len = (endp ? endp - opt : strlen(opt)) + 1; char devname[10]; pstrcpy(devname, MIN(sizeof(devname), len), opt); if (endp) { vlan_id = strtol(endp + 6, &endp, 0); if (*endp) { fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n"); return 0; } } vlan = qemu_find_bt_vlan(vlan_id); if (!vlan->slave) fprintf(stderr, "qemu: warning: adding a slave device to " "an empty scatternet %i\n", vlan_id); if (!strcmp(devname, "keyboard")) return bt_keyboard_init(vlan); fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname); return 0; } static int bt_parse(const char *opt) { const char *endp, *p; int vlan; if (strstart(opt, "hci", &endp)) { if (!*endp || *endp == ',') { if (*endp) if (!strstart(endp, ",vlan=", 0)) opt = endp + 1; return bt_hci_parse(opt); } } else if (strstart(opt, "vhci", &endp)) { if (!*endp || *endp == ',') { if (*endp) { if (strstart(endp, ",vlan=", &p)) { vlan = strtol(p, (char **) &endp, 0); if (*endp) { fprintf(stderr, "qemu: bad scatternet '%s'\n", p); return 1; } } else { fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1); return 1; } } else vlan = 0; bt_vhci_add(vlan); return 0; } } else if (strstart(opt, "device:", &endp)) return !bt_device_add(endp); fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt); return 1; } /***********************************************************/ /* QEMU Block devices */ #define HD_ALIAS "index=%d,media=disk" #define CDROM_ALIAS "index=2,media=cdrom" #define FD_ALIAS "index=%d,if=floppy" #define PFLASH_ALIAS "if=pflash" #define MTD_ALIAS "if=mtd" #define SD_ALIAS "index=0,if=sd" QemuOpts *drive_add(const char *file, const char *fmt, ...) { va_list ap; char optstr[1024]; QemuOpts *opts; va_start(ap, fmt); vsnprintf(optstr, sizeof(optstr), fmt, ap); va_end(ap); opts = qemu_opts_parse(&qemu_drive_opts, optstr, 0); if (!opts) { fprintf(stderr, "%s: huh? duplicate? (%s)\n", __FUNCTION__, optstr); return NULL; } if (file) qemu_opt_set(opts, "file", file); return opts; } DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit) { DriveInfo *dinfo; /* seek interface, bus and unit */ QTAILQ_FOREACH(dinfo, &drives, next) { if (dinfo->type == type && dinfo->bus == bus && dinfo->unit == unit) return dinfo; } return NULL; } DriveInfo *drive_get_by_id(const char *id) { DriveInfo *dinfo; QTAILQ_FOREACH(dinfo, &drives, next) { if (strcmp(id, dinfo->id)) continue; return dinfo; } return NULL; } int drive_get_max_bus(BlockInterfaceType type) { int max_bus; DriveInfo *dinfo; max_bus = -1; QTAILQ_FOREACH(dinfo, &drives, next) { if(dinfo->type == type && dinfo->bus > max_bus) max_bus = dinfo->bus; } return max_bus; } const char *drive_get_serial(BlockDriverState *bdrv) { DriveInfo *dinfo; QTAILQ_FOREACH(dinfo, &drives, next) { if (dinfo->bdrv == bdrv) return dinfo->serial; } return "\0"; } BlockInterfaceErrorAction drive_get_on_error( BlockDriverState *bdrv, int is_read) { DriveInfo *dinfo; QTAILQ_FOREACH(dinfo, &drives, next) { if (dinfo->bdrv == bdrv) return is_read ? dinfo->on_read_error : dinfo->on_write_error; } return is_read ? BLOCK_ERR_REPORT : BLOCK_ERR_STOP_ENOSPC; } static void bdrv_format_print(void *opaque, const char *name) { fprintf(stderr, " %s", name); } void drive_uninit(DriveInfo *dinfo) { qemu_opts_del(dinfo->opts); bdrv_delete(dinfo->bdrv); QTAILQ_REMOVE(&drives, dinfo, next); qemu_free(dinfo); } static int parse_block_error_action(const char *buf, int is_read) { if (!strcmp(buf, "ignore")) { return BLOCK_ERR_IGNORE; } else if (!is_read && !strcmp(buf, "enospc")) { return BLOCK_ERR_STOP_ENOSPC; } else if (!strcmp(buf, "stop")) { return BLOCK_ERR_STOP_ANY; } else if (!strcmp(buf, "report")) { return BLOCK_ERR_REPORT; } else { fprintf(stderr, "qemu: '%s' invalid %s error action\n", buf, is_read ? "read" : "write"); return -1; } } DriveInfo *drive_init(QemuOpts *opts, void *opaque, int *fatal_error) { const char *buf; const char *file = NULL; char devname[128]; const char *serial; const char *mediastr = ""; BlockInterfaceType type; enum { MEDIA_DISK, MEDIA_CDROM } media; int bus_id, unit_id; int cyls, heads, secs, translation; BlockDriver *drv = NULL; QEMUMachine *machine = opaque; int max_devs; int index; int cache; int aio = 0; int ro = 0; int bdrv_flags; int on_read_error, on_write_error; const char *devaddr; DriveInfo *dinfo; int snapshot = 0; *fatal_error = 1; translation = BIOS_ATA_TRANSLATION_AUTO; cache = 1; if (machine && machine->use_scsi) { type = IF_SCSI; max_devs = MAX_SCSI_DEVS; pstrcpy(devname, sizeof(devname), "scsi"); } else { type = IF_IDE; max_devs = MAX_IDE_DEVS; pstrcpy(devname, sizeof(devname), "ide"); } media = MEDIA_DISK; /* extract parameters */ bus_id = qemu_opt_get_number(opts, "bus", 0); unit_id = qemu_opt_get_number(opts, "unit", -1); index = qemu_opt_get_number(opts, "index", -1); cyls = qemu_opt_get_number(opts, "cyls", 0); heads = qemu_opt_get_number(opts, "heads", 0); secs = qemu_opt_get_number(opts, "secs", 0); snapshot = qemu_opt_get_bool(opts, "snapshot", 0); ro = qemu_opt_get_bool(opts, "readonly", 0); file = qemu_opt_get(opts, "file"); serial = qemu_opt_get(opts, "serial"); if ((buf = qemu_opt_get(opts, "if")) != NULL) { pstrcpy(devname, sizeof(devname), buf); if (!strcmp(buf, "ide")) { type = IF_IDE; max_devs = MAX_IDE_DEVS; } else if (!strcmp(buf, "scsi")) { type = IF_SCSI; max_devs = MAX_SCSI_DEVS; } else if (!strcmp(buf, "floppy")) { type = IF_FLOPPY; max_devs = 0; } else if (!strcmp(buf, "pflash")) { type = IF_PFLASH; max_devs = 0; } else if (!strcmp(buf, "mtd")) { type = IF_MTD; max_devs = 0; } else if (!strcmp(buf, "sd")) { type = IF_SD; max_devs = 0; } else if (!strcmp(buf, "virtio")) { type = IF_VIRTIO; max_devs = 0; } else if (!strcmp(buf, "xen")) { type = IF_XEN; max_devs = 0; } else if (!strcmp(buf, "none")) { type = IF_NONE; max_devs = 0; } else { fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf); return NULL; } } if (cyls || heads || secs) { if (cyls < 1 || (type == IF_IDE && cyls > 16383)) { fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf); return NULL; } if (heads < 1 || (type == IF_IDE && heads > 16)) { fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf); return NULL; } if (secs < 1 || (type == IF_IDE && secs > 63)) { fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf); return NULL; } } if ((buf = qemu_opt_get(opts, "trans")) != NULL) { if (!cyls) { fprintf(stderr, "qemu: '%s' trans must be used with cyls,heads and secs\n", buf); return NULL; } if (!strcmp(buf, "none")) translation = BIOS_ATA_TRANSLATION_NONE; else if (!strcmp(buf, "lba")) translation = BIOS_ATA_TRANSLATION_LBA; else if (!strcmp(buf, "auto")) translation = BIOS_ATA_TRANSLATION_AUTO; else { fprintf(stderr, "qemu: '%s' invalid translation type\n", buf); return NULL; } } if ((buf = qemu_opt_get(opts, "media")) != NULL) { if (!strcmp(buf, "disk")) { media = MEDIA_DISK; } else if (!strcmp(buf, "cdrom")) { if (cyls || secs || heads) { fprintf(stderr, "qemu: '%s' invalid physical CHS format\n", buf); return NULL; } media = MEDIA_CDROM; } else { fprintf(stderr, "qemu: '%s' invalid media\n", buf); return NULL; } } if ((buf = qemu_opt_get(opts, "cache")) != NULL) { if (!strcmp(buf, "off") || !strcmp(buf, "none")) cache = 0; else if (!strcmp(buf, "writethrough")) cache = 1; else if (!strcmp(buf, "writeback")) cache = 2; else { fprintf(stderr, "qemu: invalid cache option\n"); return NULL; } } #ifdef CONFIG_LINUX_AIO if ((buf = qemu_opt_get(opts, "aio")) != NULL) { if (!strcmp(buf, "threads")) aio = 0; else if (!strcmp(buf, "native")) aio = 1; else { fprintf(stderr, "qemu: invalid aio option\n"); return NULL; } } #endif if ((buf = qemu_opt_get(opts, "format")) != NULL) { if (strcmp(buf, "?") == 0) { fprintf(stderr, "qemu: Supported formats:"); bdrv_iterate_format(bdrv_format_print, NULL); fprintf(stderr, "\n"); return NULL; } drv = bdrv_find_whitelisted_format(buf); if (!drv) { fprintf(stderr, "qemu: '%s' invalid format\n", buf); return NULL; } } on_write_error = BLOCK_ERR_STOP_ENOSPC; if ((buf = qemu_opt_get(opts, "werror")) != NULL) { if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) { fprintf(stderr, "werror is no supported by this format\n"); return NULL; } on_write_error = parse_block_error_action(buf, 0); if (on_write_error < 0) { return NULL; } } on_read_error = BLOCK_ERR_REPORT; if ((buf = qemu_opt_get(opts, "rerror")) != NULL) { if (type != IF_IDE && type != IF_VIRTIO) { fprintf(stderr, "rerror is no supported by this format\n"); return NULL; } on_read_error = parse_block_error_action(buf, 1); if (on_read_error < 0) { return NULL; } } if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) { if (type != IF_VIRTIO) { fprintf(stderr, "addr is not supported\n"); return NULL; } } /* compute bus and unit according index */ if (index != -1) { if (bus_id != 0 || unit_id != -1) { fprintf(stderr, "qemu: index cannot be used with bus and unit\n"); return NULL; } if (max_devs == 0) { unit_id = index; bus_id = 0; } else { unit_id = index % max_devs; bus_id = index / max_devs; } } /* if user doesn't specify a unit_id, * try to find the first free */ if (unit_id == -1) { unit_id = 0; while (drive_get(type, bus_id, unit_id) != NULL) { unit_id++; if (max_devs && unit_id >= max_devs) { unit_id -= max_devs; bus_id++; } } } /* check unit id */ if (max_devs && unit_id >= max_devs) { fprintf(stderr, "qemu: unit %d too big (max is %d)\n", unit_id, max_devs - 1); return NULL; } /* * ignore multiple definitions */ if (drive_get(type, bus_id, unit_id) != NULL) { *fatal_error = 0; return NULL; } /* init */ dinfo = qemu_mallocz(sizeof(*dinfo)); if ((buf = qemu_opts_id(opts)) != NULL) { dinfo->id = qemu_strdup(buf); } else { /* no id supplied -> create one */ dinfo->id = qemu_mallocz(32); if (type == IF_IDE || type == IF_SCSI) mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd"; if (max_devs) snprintf(dinfo->id, 32, "%s%i%s%i", devname, bus_id, mediastr, unit_id); else snprintf(dinfo->id, 32, "%s%s%i", devname, mediastr, unit_id); } dinfo->bdrv = bdrv_new(dinfo->id); dinfo->devaddr = devaddr; dinfo->type = type; dinfo->bus = bus_id; dinfo->unit = unit_id; dinfo->on_read_error = on_read_error; dinfo->on_write_error = on_write_error; dinfo->opts = opts; if (serial) strncpy(dinfo->serial, serial, sizeof(serial)); QTAILQ_INSERT_TAIL(&drives, dinfo, next); switch(type) { case IF_IDE: case IF_SCSI: case IF_XEN: case IF_NONE: switch(media) { case MEDIA_DISK: if (cyls != 0) { bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs); bdrv_set_translation_hint(dinfo->bdrv, translation); } break; case MEDIA_CDROM: bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM); break; } break; case IF_SD: /* FIXME: This isn't really a floppy, but it's a reasonable approximation. */ case IF_FLOPPY: bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY); break; case IF_PFLASH: case IF_MTD: break; case IF_VIRTIO: /* add virtio block device */ opts = qemu_opts_create(&qemu_device_opts, NULL, 0); qemu_opt_set(opts, "driver", "virtio-blk-pci"); qemu_opt_set(opts, "drive", dinfo->id); if (devaddr) qemu_opt_set(opts, "addr", devaddr); break; case IF_COUNT: abort(); } if (!file) { *fatal_error = 0; return NULL; } bdrv_flags = 0; if (snapshot) { bdrv_flags |= BDRV_O_SNAPSHOT; cache = 2; /* always use write-back with snapshot */ } if (cache == 0) /* no caching */ bdrv_flags |= BDRV_O_NOCACHE; else if (cache == 2) /* write-back */ bdrv_flags |= BDRV_O_CACHE_WB; if (aio == 1) { bdrv_flags |= BDRV_O_NATIVE_AIO; } else { bdrv_flags &= ~BDRV_O_NATIVE_AIO; } if (ro == 1) { if (type != IF_SCSI && type != IF_VIRTIO && type != IF_FLOPPY) { fprintf(stderr, "qemu: readonly flag not supported for drive with this interface\n"); return NULL; } } /* * cdrom is read-only. Set it now, after above interface checking * since readonly attribute not explicitly required, so no error. */ if (media == MEDIA_CDROM) { ro = 1; } bdrv_flags |= ro ? 0 : BDRV_O_RDWR; if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) { fprintf(stderr, "qemu: could not open disk image %s: %s\n", file, strerror(errno)); return NULL; } if (bdrv_key_required(dinfo->bdrv)) autostart = 0; *fatal_error = 0; return dinfo; } static int drive_init_func(QemuOpts *opts, void *opaque) { QEMUMachine *machine = opaque; int fatal_error = 0; if (drive_init(opts, machine, &fatal_error) == NULL) { if (fatal_error) return 1; } return 0; } static int drive_enable_snapshot(QemuOpts *opts, void *opaque) { if (NULL == qemu_opt_get(opts, "snapshot")) { qemu_opt_set(opts, "snapshot", "on"); } return 0; } void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque) { boot_set_handler = func; boot_set_opaque = opaque; } int qemu_boot_set(const char *boot_devices) { if (!boot_set_handler) { return -EINVAL; } return boot_set_handler(boot_set_opaque, boot_devices); } static int parse_bootdevices(char *devices) { /* We just do some generic consistency checks */ const char *p; int bitmap = 0; for (p = devices; *p != '\0'; p++) { /* Allowed boot devices are: * a-b: floppy disk drives * c-f: IDE disk drives * g-m: machine implementation dependant drives * n-p: network devices * It's up to each machine implementation to check if the given boot * devices match the actual hardware implementation and firmware * features. */ if (*p < 'a' || *p > 'p') { fprintf(stderr, "Invalid boot device '%c'\n", *p); exit(1); } if (bitmap & (1 << (*p - 'a'))) { fprintf(stderr, "Boot device '%c' was given twice\n", *p); exit(1); } bitmap |= 1 << (*p - 'a'); } return bitmap; } static void restore_boot_devices(void *opaque) { char *standard_boot_devices = opaque; qemu_boot_set(standard_boot_devices); qemu_unregister_reset(restore_boot_devices, standard_boot_devices); qemu_free(standard_boot_devices); } static void numa_add(const char *optarg) { char option[128]; char *endptr; unsigned long long value, endvalue; int nodenr; optarg = get_opt_name(option, 128, optarg, ',') + 1; if (!strcmp(option, "node")) { if (get_param_value(option, 128, "nodeid", optarg) == 0) { nodenr = nb_numa_nodes; } else { nodenr = strtoull(option, NULL, 10); } if (get_param_value(option, 128, "mem", optarg) == 0) { node_mem[nodenr] = 0; } else { value = strtoull(option, &endptr, 0); switch (*endptr) { case 0: case 'M': case 'm': value <<= 20; break; case 'G': case 'g': value <<= 30; break; } node_mem[nodenr] = value; } if (get_param_value(option, 128, "cpus", optarg) == 0) { node_cpumask[nodenr] = 0; } else { value = strtoull(option, &endptr, 10); if (value >= 64) { value = 63; fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n"); } else { if (*endptr == '-') { endvalue = strtoull(endptr+1, &endptr, 10); if (endvalue >= 63) { endvalue = 62; fprintf(stderr, "only 63 CPUs in NUMA mode supported.\n"); } value = (2ULL << endvalue) - (1ULL << value); } else { value = 1ULL << value; } } node_cpumask[nodenr] = value; } nb_numa_nodes++; } return; } static void smp_parse(const char *optarg) { int smp, sockets = 0, threads = 0, cores = 0; char *endptr; char option[128]; smp = strtoul(optarg, &endptr, 10); if (endptr != optarg) { if (*endptr == ',') { endptr++; } } if (get_param_value(option, 128, "sockets", endptr) != 0) sockets = strtoull(option, NULL, 10); if (get_param_value(option, 128, "cores", endptr) != 0) cores = strtoull(option, NULL, 10); if (get_param_value(option, 128, "threads", endptr) != 0) threads = strtoull(option, NULL, 10); if (get_param_value(option, 128, "maxcpus", endptr) != 0) max_cpus = strtoull(option, NULL, 10); /* compute missing values, prefer sockets over cores over threads */ if (smp == 0 || sockets == 0) { sockets = sockets > 0 ? sockets : 1; cores = cores > 0 ? cores : 1; threads = threads > 0 ? threads : 1; if (smp == 0) { smp = cores * threads * sockets; } } else { if (cores == 0) { threads = threads > 0 ? threads : 1; cores = smp / (sockets * threads); } else { if (sockets) { threads = smp / (cores * sockets); } } } smp_cpus = smp; smp_cores = cores > 0 ? cores : 1; smp_threads = threads > 0 ? threads : 1; if (max_cpus == 0) max_cpus = smp_cpus; } /***********************************************************/ /* USB devices */ static int usb_device_add(const char *devname, int is_hotplug) { const char *p; USBDevice *dev = NULL; if (!usb_enabled) return -1; /* drivers with .usbdevice_name entry in USBDeviceInfo */ dev = usbdevice_create(devname); if (dev) goto done; /* the other ones */ if (strstart(devname, "host:", &p)) { dev = usb_host_device_open(p); } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) { dev = usb_bt_init(devname[2] ? hci_init(p) : bt_new_hci(qemu_find_bt_vlan(0))); } else { return -1; } if (!dev) return -1; done: return 0; } static int usb_device_del(const char *devname) { int bus_num, addr; const char *p; if (strstart(devname, "host:", &p)) return usb_host_device_close(p); if (!usb_enabled) return -1; p = strchr(devname, '.'); if (!p) return -1; bus_num = strtoul(devname, NULL, 0); addr = strtoul(p + 1, NULL, 0); return usb_device_delete_addr(bus_num, addr); } static int usb_parse(const char *cmdline) { int r; r = usb_device_add(cmdline, 0); if (r < 0) { fprintf(stderr, "qemu: could not add USB device '%s'\n", cmdline); } return r; } void do_usb_add(Monitor *mon, const QDict *qdict) { const char *devname = qdict_get_str(qdict, "devname"); if (usb_device_add(devname, 1) < 0) { error_report("could not add USB device '%s'", devname); } } void do_usb_del(Monitor *mon, const QDict *qdict) { const char *devname = qdict_get_str(qdict, "devname"); if (usb_device_del(devname) < 0) { error_report("could not delete USB device '%s'", devname); } } /***********************************************************/ /* PCMCIA/Cardbus */ static struct pcmcia_socket_entry_s { PCMCIASocket *socket; struct pcmcia_socket_entry_s *next; } *pcmcia_sockets = 0; void pcmcia_socket_register(PCMCIASocket *socket) { struct pcmcia_socket_entry_s *entry; entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s)); entry->socket = socket; entry->next = pcmcia_sockets; pcmcia_sockets = entry; } void pcmcia_socket_unregister(PCMCIASocket *socket) { struct pcmcia_socket_entry_s *entry, **ptr; ptr = &pcmcia_sockets; for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr) if (entry->socket == socket) { *ptr = entry->next; qemu_free(entry); } } void pcmcia_info(Monitor *mon) { struct pcmcia_socket_entry_s *iter; if (!pcmcia_sockets) monitor_printf(mon, "No PCMCIA sockets\n"); for (iter = pcmcia_sockets; iter; iter = iter->next) monitor_printf(mon, "%s: %s\n", iter->socket->slot_string, iter->socket->attached ? iter->socket->card_string : "Empty"); } /***********************************************************/ /* I/O handling */ typedef struct IOHandlerRecord { int fd; IOCanReadHandler *fd_read_poll; IOHandler *fd_read; IOHandler *fd_write; int deleted; void *opaque; /* temporary data */ struct pollfd *ufd; QLIST_ENTRY(IOHandlerRecord) next; } IOHandlerRecord; static QLIST_HEAD(, IOHandlerRecord) io_handlers = QLIST_HEAD_INITIALIZER(io_handlers); /* XXX: fd_read_poll should be suppressed, but an API change is necessary in the character devices to suppress fd_can_read(). */ int qemu_set_fd_handler2(int fd, IOCanReadHandler *fd_read_poll, IOHandler *fd_read, IOHandler *fd_write, void *opaque) { IOHandlerRecord *ioh; if (!fd_read && !fd_write) { QLIST_FOREACH(ioh, &io_handlers, next) { if (ioh->fd == fd) { ioh->deleted = 1; break; } } } else { QLIST_FOREACH(ioh, &io_handlers, next) { if (ioh->fd == fd) goto found; } ioh = qemu_mallocz(sizeof(IOHandlerRecord)); QLIST_INSERT_HEAD(&io_handlers, ioh, next); found: ioh->fd = fd; ioh->fd_read_poll = fd_read_poll; ioh->fd_read = fd_read; ioh->fd_write = fd_write; ioh->opaque = opaque; ioh->deleted = 0; } return 0; } int qemu_set_fd_handler(int fd, IOHandler *fd_read, IOHandler *fd_write, void *opaque) { return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque); } #ifdef _WIN32 /***********************************************************/ /* Polling handling */ typedef struct PollingEntry { PollingFunc *func; void *opaque; struct PollingEntry *next; } PollingEntry; static PollingEntry *first_polling_entry; int qemu_add_polling_cb(PollingFunc *func, void *opaque) { PollingEntry **ppe, *pe; pe = qemu_mallocz(sizeof(PollingEntry)); pe->func = func; pe->opaque = opaque; for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next); *ppe = pe; return 0; } void qemu_del_polling_cb(PollingFunc *func, void *opaque) { PollingEntry **ppe, *pe; for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) { pe = *ppe; if (pe->func == func && pe->opaque == opaque) { *ppe = pe->next; qemu_free(pe); break; } } } /***********************************************************/ /* Wait objects support */ typedef struct WaitObjects { int num; HANDLE events[MAXIMUM_WAIT_OBJECTS + 1]; WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1]; void *opaque[MAXIMUM_WAIT_OBJECTS + 1]; } WaitObjects; static WaitObjects wait_objects = {0}; int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) { WaitObjects *w = &wait_objects; if (w->num >= MAXIMUM_WAIT_OBJECTS) return -1; w->events[w->num] = handle; w->func[w->num] = func; w->opaque[w->num] = opaque; w->num++; return 0; } void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) { int i, found; WaitObjects *w = &wait_objects; found = 0; for (i = 0; i < w->num; i++) { if (w->events[i] == handle) found = 1; if (found) { w->events[i] = w->events[i + 1]; w->func[i] = w->func[i + 1]; w->opaque[i] = w->opaque[i + 1]; } } if (found) w->num--; } #endif /***********************************************************/ /* ram save/restore */ #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ #define RAM_SAVE_FLAG_COMPRESS 0x02 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 #define RAM_SAVE_FLAG_PAGE 0x08 #define RAM_SAVE_FLAG_EOS 0x10 static int is_dup_page(uint8_t *page, uint8_t ch) { uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch; uint32_t *array = (uint32_t *)page; int i; for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) { if (array[i] != val) return 0; } return 1; } static int ram_save_block(QEMUFile *f) { static ram_addr_t current_addr = 0; ram_addr_t saved_addr = current_addr; ram_addr_t addr = 0; int found = 0; while (addr < last_ram_offset) { if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) { uint8_t *p; cpu_physical_memory_reset_dirty(current_addr, current_addr + TARGET_PAGE_SIZE, MIGRATION_DIRTY_FLAG); p = qemu_get_ram_ptr(current_addr); if (is_dup_page(p, *p)) { qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS); qemu_put_byte(f, *p); } else { qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE); qemu_put_buffer(f, p, TARGET_PAGE_SIZE); } found = 1; break; } addr += TARGET_PAGE_SIZE; current_addr = (saved_addr + addr) % last_ram_offset; } return found; } static uint64_t bytes_transferred; static ram_addr_t ram_save_remaining(void) { ram_addr_t addr; ram_addr_t count = 0; for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) { if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG)) count++; } return count; } uint64_t ram_bytes_remaining(void) { return ram_save_remaining() * TARGET_PAGE_SIZE; } uint64_t ram_bytes_transferred(void) { return bytes_transferred; } uint64_t ram_bytes_total(void) { return last_ram_offset; } static int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque) { ram_addr_t addr; uint64_t bytes_transferred_last; double bwidth = 0; uint64_t expected_time = 0; if (stage < 0) { cpu_physical_memory_set_dirty_tracking(0); return 0; } if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) { qemu_file_set_error(f); return 0; } if (stage == 1) { bytes_transferred = 0; /* Make sure all dirty bits are set */ for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) { if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG)) cpu_physical_memory_set_dirty(addr); } /* Enable dirty memory tracking */ cpu_physical_memory_set_dirty_tracking(1); qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE); } bytes_transferred_last = bytes_transferred; bwidth = qemu_get_clock_ns(rt_clock); while (!qemu_file_rate_limit(f)) { int ret; ret = ram_save_block(f); bytes_transferred += ret * TARGET_PAGE_SIZE; if (ret == 0) /* no more blocks */ break; } bwidth = qemu_get_clock_ns(rt_clock) - bwidth; bwidth = (bytes_transferred - bytes_transferred_last) / bwidth; /* if we haven't transferred anything this round, force expected_time to a * a very high value, but without crashing */ if (bwidth == 0) bwidth = 0.000001; /* try transferring iterative blocks of memory */ if (stage == 3) { /* flush all remaining blocks regardless of rate limiting */ while (ram_save_block(f) != 0) { bytes_transferred += TARGET_PAGE_SIZE; } cpu_physical_memory_set_dirty_tracking(0); } qemu_put_be64(f, RAM_SAVE_FLAG_EOS); expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth; return (stage == 2) && (expected_time <= migrate_max_downtime()); } static int ram_load(QEMUFile *f, void *opaque, int version_id) { ram_addr_t addr; int flags; if (version_id != 3) return -EINVAL; do { addr = qemu_get_be64(f); flags = addr & ~TARGET_PAGE_MASK; addr &= TARGET_PAGE_MASK; if (flags & RAM_SAVE_FLAG_MEM_SIZE) { if (addr != last_ram_offset) return -EINVAL; } if (flags & RAM_SAVE_FLAG_COMPRESS) { uint8_t ch = qemu_get_byte(f); memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE); #ifndef _WIN32 if (ch == 0 && (!kvm_enabled() || kvm_has_sync_mmu())) { madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED); } #endif } else if (flags & RAM_SAVE_FLAG_PAGE) { qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE); } if (qemu_file_has_error(f)) { return -EIO; } } while (!(flags & RAM_SAVE_FLAG_EOS)); return 0; } void qemu_service_io(void) { qemu_notify_event(); } /***********************************************************/ /* machine registration */ static QEMUMachine *first_machine = NULL; QEMUMachine *current_machine = NULL; int qemu_register_machine(QEMUMachine *m) { QEMUMachine **pm; pm = &first_machine; while (*pm != NULL) pm = &(*pm)->next; m->next = NULL; *pm = m; return 0; } static QEMUMachine *find_machine(const char *name) { QEMUMachine *m; for(m = first_machine; m != NULL; m = m->next) { if (!strcmp(m->name, name)) return m; if (m->alias && !strcmp(m->alias, name)) return m; } return NULL; } static QEMUMachine *find_default_machine(void) { QEMUMachine *m; for(m = first_machine; m != NULL; m = m->next) { if (m->is_default) { return m; } } return NULL; } /***********************************************************/ /* main execution loop */ static void gui_update(void *opaque) { uint64_t interval = GUI_REFRESH_INTERVAL; DisplayState *ds = opaque; DisplayChangeListener *dcl = ds->listeners; qemu_flush_coalesced_mmio_buffer(); dpy_refresh(ds); while (dcl != NULL) { if (dcl->gui_timer_interval && dcl->gui_timer_interval < interval) interval = dcl->gui_timer_interval; dcl = dcl->next; } qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock)); } static void nographic_update(void *opaque) { uint64_t interval = GUI_REFRESH_INTERVAL; qemu_flush_coalesced_mmio_buffer(); qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock)); } void cpu_synchronize_all_states(void) { CPUState *cpu; for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) { cpu_synchronize_state(cpu); } } void cpu_synchronize_all_post_reset(void) { CPUState *cpu; for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) { cpu_synchronize_post_reset(cpu); } } void cpu_synchronize_all_post_init(void) { CPUState *cpu; for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) { cpu_synchronize_post_init(cpu); } } struct vm_change_state_entry { VMChangeStateHandler *cb; void *opaque; QLIST_ENTRY (vm_change_state_entry) entries; }; static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head; VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb, void *opaque) { VMChangeStateEntry *e; e = qemu_mallocz(sizeof (*e)); e->cb = cb; e->opaque = opaque; QLIST_INSERT_HEAD(&vm_change_state_head, e, entries); return e; } void qemu_del_vm_change_state_handler(VMChangeStateEntry *e) { QLIST_REMOVE (e, entries); qemu_free (e); } static void vm_state_notify(int running, int reason) { VMChangeStateEntry *e; for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) { e->cb(e->opaque, running, reason); } } static void resume_all_vcpus(void); static void pause_all_vcpus(void); void vm_start(void) { if (!vm_running) { cpu_enable_ticks(); vm_running = 1; vm_state_notify(1, 0); resume_all_vcpus(); } } /* reset/shutdown handler */ typedef struct QEMUResetEntry { QTAILQ_ENTRY(QEMUResetEntry) entry; QEMUResetHandler *func; void *opaque; } QEMUResetEntry; static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers = QTAILQ_HEAD_INITIALIZER(reset_handlers); static int reset_requested; static int shutdown_requested; static int powerdown_requested; static int debug_requested; static int vmstop_requested; int qemu_shutdown_requested(void) { int r = shutdown_requested; shutdown_requested = 0; return r; } int qemu_reset_requested(void) { int r = reset_requested; reset_requested = 0; return r; } int qemu_powerdown_requested(void) { int r = powerdown_requested; powerdown_requested = 0; return r; } static int qemu_debug_requested(void) { int r = debug_requested; debug_requested = 0; return r; } static int qemu_vmstop_requested(void) { int r = vmstop_requested; vmstop_requested = 0; return r; } static void do_vm_stop(int reason) { if (vm_running) { cpu_disable_ticks(); vm_running = 0; pause_all_vcpus(); vm_state_notify(0, reason); monitor_protocol_event(QEVENT_STOP, NULL); } } void qemu_register_reset(QEMUResetHandler *func, void *opaque) { QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry)); re->func = func; re->opaque = opaque; QTAILQ_INSERT_TAIL(&reset_handlers, re, entry); } void qemu_unregister_reset(QEMUResetHandler *func, void *opaque) { QEMUResetEntry *re; QTAILQ_FOREACH(re, &reset_handlers, entry) { if (re->func == func && re->opaque == opaque) { QTAILQ_REMOVE(&reset_handlers, re, entry); qemu_free(re); return; } } } void qemu_system_reset(void) { QEMUResetEntry *re, *nre; /* reset all devices */ QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) { re->func(re->opaque); } monitor_protocol_event(QEVENT_RESET, NULL); cpu_synchronize_all_post_reset(); } void qemu_system_reset_request(void) { if (no_reboot) { shutdown_requested = 1; } else { reset_requested = 1; } qemu_notify_event(); } void qemu_system_shutdown_request(void) { shutdown_requested = 1; qemu_notify_event(); } void qemu_system_powerdown_request(void) { powerdown_requested = 1; qemu_notify_event(); } static int cpu_can_run(CPUState *env) { if (env->stop) return 0; if (env->stopped) return 0; if (!vm_running) return 0; return 1; } static int cpu_has_work(CPUState *env) { if (env->stop) return 1; if (env->stopped) return 0; if (!env->halted) return 1; if (qemu_cpu_has_work(env)) return 1; return 0; } static int tcg_has_work(void) { CPUState *env; for (env = first_cpu; env != NULL; env = env->next_cpu) if (cpu_has_work(env)) return 1; return 0; } #ifndef _WIN32 static int io_thread_fd = -1; static void qemu_event_increment(void) { /* Write 8 bytes to be compatible with eventfd. */ static uint64_t val = 1; ssize_t ret; if (io_thread_fd == -1) return; do { ret = write(io_thread_fd, &val, sizeof(val)); } while (ret < 0 && errno == EINTR); /* EAGAIN is fine, a read must be pending. */ if (ret < 0 && errno != EAGAIN) { fprintf(stderr, "qemu_event_increment: write() filed: %s\n", strerror(errno)); exit (1); } } static void qemu_event_read(void *opaque) { int fd = (unsigned long)opaque; ssize_t len; char buffer[512]; /* Drain the notify pipe. For eventfd, only 8 bytes will be read. */ do { len = read(fd, buffer, sizeof(buffer)); } while ((len == -1 && errno == EINTR) || len == sizeof(buffer)); } static int qemu_event_init(void) { int err; int fds[2]; err = qemu_eventfd(fds); if (err == -1) return -errno; err = fcntl_setfl(fds[0], O_NONBLOCK); if (err < 0) goto fail; err = fcntl_setfl(fds[1], O_NONBLOCK); if (err < 0) goto fail; qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL, (void *)(unsigned long)fds[0]); io_thread_fd = fds[1]; return 0; fail: close(fds[0]); close(fds[1]); return err; } #else HANDLE qemu_event_handle; static void dummy_event_handler(void *opaque) { } static int qemu_event_init(void) { qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL); if (!qemu_event_handle) { fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError()); return -1; } qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL); return 0; } static void qemu_event_increment(void) { if (!SetEvent(qemu_event_handle)) { fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n", GetLastError()); exit (1); } } #endif #ifndef CONFIG_IOTHREAD static int qemu_init_main_loop(void) { return qemu_event_init(); } void qemu_init_vcpu(void *_env) { CPUState *env = _env; env->nr_cores = smp_cores; env->nr_threads = smp_threads; if (kvm_enabled()) kvm_init_vcpu(env); return; } int qemu_cpu_self(void *env) { return 1; } static void resume_all_vcpus(void) { } static void pause_all_vcpus(void) { } void qemu_cpu_kick(void *env) { return; } void qemu_notify_event(void) { CPUState *env = cpu_single_env; qemu_event_increment (); if (env) { cpu_exit(env); } if (next_cpu && env != next_cpu) { cpu_exit(next_cpu); } } void qemu_mutex_lock_iothread(void) {} void qemu_mutex_unlock_iothread(void) {} void vm_stop(int reason) { do_vm_stop(reason); } #else /* CONFIG_IOTHREAD */ #include "qemu-thread.h" QemuMutex qemu_global_mutex; static QemuMutex qemu_fair_mutex; static QemuThread io_thread; static QemuThread *tcg_cpu_thread; static QemuCond *tcg_halt_cond; static int qemu_system_ready; /* cpu creation */ static QemuCond qemu_cpu_cond; /* system init */ static QemuCond qemu_system_cond; static QemuCond qemu_pause_cond; static void tcg_block_io_signals(void); static void kvm_block_io_signals(CPUState *env); static void unblock_io_signals(void); static int qemu_init_main_loop(void) { int ret; ret = qemu_event_init(); if (ret) return ret; qemu_cond_init(&qemu_pause_cond); qemu_mutex_init(&qemu_fair_mutex); qemu_mutex_init(&qemu_global_mutex); qemu_mutex_lock(&qemu_global_mutex); unblock_io_signals(); qemu_thread_self(&io_thread); return 0; } static void qemu_wait_io_event_common(CPUState *env) { if (env->stop) { env->stop = 0; env->stopped = 1; qemu_cond_signal(&qemu_pause_cond); } } static void qemu_wait_io_event(CPUState *env) { while (!tcg_has_work()) qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000); qemu_mutex_unlock(&qemu_global_mutex); /* * Users of qemu_global_mutex can be starved, having no chance * to acquire it since this path will get to it first. * So use another lock to provide fairness. */ qemu_mutex_lock(&qemu_fair_mutex); qemu_mutex_unlock(&qemu_fair_mutex); qemu_mutex_lock(&qemu_global_mutex); qemu_wait_io_event_common(env); } static void qemu_kvm_eat_signal(CPUState *env, int timeout) { struct timespec ts; int r, e; siginfo_t siginfo; sigset_t waitset; ts.tv_sec = timeout / 1000; ts.tv_nsec = (timeout % 1000) * 1000000; sigemptyset(&waitset); sigaddset(&waitset, SIG_IPI); qemu_mutex_unlock(&qemu_global_mutex); r = sigtimedwait(&waitset, &siginfo, &ts); e = errno; qemu_mutex_lock(&qemu_global_mutex); if (r == -1 && !(e == EAGAIN || e == EINTR)) { fprintf(stderr, "sigtimedwait: %s\n", strerror(e)); exit(1); } } static void qemu_kvm_wait_io_event(CPUState *env) { while (!cpu_has_work(env)) qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000); qemu_kvm_eat_signal(env, 0); qemu_wait_io_event_common(env); } static int qemu_cpu_exec(CPUState *env); static void *kvm_cpu_thread_fn(void *arg) { CPUState *env = arg; qemu_thread_self(env->thread); if (kvm_enabled()) kvm_init_vcpu(env); kvm_block_io_signals(env); /* signal CPU creation */ qemu_mutex_lock(&qemu_global_mutex); env->created = 1; qemu_cond_signal(&qemu_cpu_cond); /* and wait for machine initialization */ while (!qemu_system_ready) qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100); while (1) { if (cpu_can_run(env)) qemu_cpu_exec(env); qemu_kvm_wait_io_event(env); } return NULL; } static bool tcg_cpu_exec(void); static void *tcg_cpu_thread_fn(void *arg) { CPUState *env = arg; tcg_block_io_signals(); qemu_thread_self(env->thread); /* signal CPU creation */ qemu_mutex_lock(&qemu_global_mutex); for (env = first_cpu; env != NULL; env = env->next_cpu) env->created = 1; qemu_cond_signal(&qemu_cpu_cond); /* and wait for machine initialization */ while (!qemu_system_ready) qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100); while (1) { tcg_cpu_exec(); qemu_wait_io_event(cur_cpu); } return NULL; } void qemu_cpu_kick(void *_env) { CPUState *env = _env; qemu_cond_broadcast(env->halt_cond); if (kvm_enabled()) qemu_thread_signal(env->thread, SIG_IPI); } int qemu_cpu_self(void *_env) { CPUState *env = _env; QemuThread this; qemu_thread_self(&this); return qemu_thread_equal(&this, env->thread); } static void cpu_signal(int sig) { if (cpu_single_env) cpu_exit(cpu_single_env); } static void tcg_block_io_signals(void) { sigset_t set; struct sigaction sigact; sigemptyset(&set); sigaddset(&set, SIGUSR2); sigaddset(&set, SIGIO); sigaddset(&set, SIGALRM); sigaddset(&set, SIGCHLD); pthread_sigmask(SIG_BLOCK, &set, NULL); sigemptyset(&set); sigaddset(&set, SIG_IPI); pthread_sigmask(SIG_UNBLOCK, &set, NULL); memset(&sigact, 0, sizeof(sigact)); sigact.sa_handler = cpu_signal; sigaction(SIG_IPI, &sigact, NULL); } static void dummy_signal(int sig) { } static void kvm_block_io_signals(CPUState *env) { int r; sigset_t set; struct sigaction sigact; sigemptyset(&set); sigaddset(&set, SIGUSR2); sigaddset(&set, SIGIO); sigaddset(&set, SIGALRM); sigaddset(&set, SIGCHLD); sigaddset(&set, SIG_IPI); pthread_sigmask(SIG_BLOCK, &set, NULL); pthread_sigmask(SIG_BLOCK, NULL, &set); sigdelset(&set, SIG_IPI); memset(&sigact, 0, sizeof(sigact)); sigact.sa_handler = dummy_signal; sigaction(SIG_IPI, &sigact, NULL); r = kvm_set_signal_mask(env, &set); if (r) { fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(r)); exit(1); } } static void unblock_io_signals(void) { sigset_t set; sigemptyset(&set); sigaddset(&set, SIGUSR2); sigaddset(&set, SIGIO); sigaddset(&set, SIGALRM); pthread_sigmask(SIG_UNBLOCK, &set, NULL); sigemptyset(&set); sigaddset(&set, SIG_IPI); pthread_sigmask(SIG_BLOCK, &set, NULL); } static void qemu_signal_lock(unsigned int msecs) { qemu_mutex_lock(&qemu_fair_mutex); while (qemu_mutex_trylock(&qemu_global_mutex)) { qemu_thread_signal(tcg_cpu_thread, SIG_IPI); if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs)) break; } qemu_mutex_unlock(&qemu_fair_mutex); } void qemu_mutex_lock_iothread(void) { if (kvm_enabled()) { qemu_mutex_lock(&qemu_fair_mutex); qemu_mutex_lock(&qemu_global_mutex); qemu_mutex_unlock(&qemu_fair_mutex); } else qemu_signal_lock(100); } void qemu_mutex_unlock_iothread(void) { qemu_mutex_unlock(&qemu_global_mutex); } static int all_vcpus_paused(void) { CPUState *penv = first_cpu; while (penv) { if (!penv->stopped) return 0; penv = (CPUState *)penv->next_cpu; } return 1; } static void pause_all_vcpus(void) { CPUState *penv = first_cpu; while (penv) { penv->stop = 1; qemu_thread_signal(penv->thread, SIG_IPI); qemu_cpu_kick(penv); penv = (CPUState *)penv->next_cpu; } while (!all_vcpus_paused()) { qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100); penv = first_cpu; while (penv) { qemu_thread_signal(penv->thread, SIG_IPI); penv = (CPUState *)penv->next_cpu; } } } static void resume_all_vcpus(void) { CPUState *penv = first_cpu; while (penv) { penv->stop = 0; penv->stopped = 0; qemu_thread_signal(penv->thread, SIG_IPI); qemu_cpu_kick(penv); penv = (CPUState *)penv->next_cpu; } } static void tcg_init_vcpu(void *_env) { CPUState *env = _env; /* share a single thread for all cpus with TCG */ if (!tcg_cpu_thread) { env->thread = qemu_mallocz(sizeof(QemuThread)); env->halt_cond = qemu_mallocz(sizeof(QemuCond)); qemu_cond_init(env->halt_cond); qemu_thread_create(env->thread, tcg_cpu_thread_fn, env); while (env->created == 0) qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100); tcg_cpu_thread = env->thread; tcg_halt_cond = env->halt_cond; } else { env->thread = tcg_cpu_thread; env->halt_cond = tcg_halt_cond; } } static void kvm_start_vcpu(CPUState *env) { env->thread = qemu_mallocz(sizeof(QemuThread)); env->halt_cond = qemu_mallocz(sizeof(QemuCond)); qemu_cond_init(env->halt_cond); qemu_thread_create(env->thread, kvm_cpu_thread_fn, env); while (env->created == 0) qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100); } void qemu_init_vcpu(void *_env) { CPUState *env = _env; env->nr_cores = smp_cores; env->nr_threads = smp_threads; if (kvm_enabled()) kvm_start_vcpu(env); else tcg_init_vcpu(env); } void qemu_notify_event(void) { qemu_event_increment(); } static void qemu_system_vmstop_request(int reason) { vmstop_requested = reason; qemu_notify_event(); } void vm_stop(int reason) { QemuThread me; qemu_thread_self(&me); if (!qemu_thread_equal(&me, &io_thread)) { qemu_system_vmstop_request(reason); /* * FIXME: should not return to device code in case * vm_stop() has been requested. */ if (cpu_single_env) { cpu_exit(cpu_single_env); cpu_single_env->stop = 1; } return; } do_vm_stop(reason); } #endif #ifdef _WIN32 static void host_main_loop_wait(int *timeout) { int ret, ret2, i; PollingEntry *pe; /* XXX: need to suppress polling by better using win32 events */ ret = 0; for(pe = first_polling_entry; pe != NULL; pe = pe->next) { ret |= pe->func(pe->opaque); } if (ret == 0) { int err; WaitObjects *w = &wait_objects; ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout); if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) { if (w->func[ret - WAIT_OBJECT_0]) w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]); /* Check for additional signaled events */ for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) { /* Check if event is signaled */ ret2 = WaitForSingleObject(w->events[i], 0); if(ret2 == WAIT_OBJECT_0) { if (w->func[i]) w->func[i](w->opaque[i]); } else if (ret2 == WAIT_TIMEOUT) { } else { err = GetLastError(); fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err); } } } else if (ret == WAIT_TIMEOUT) { } else { err = GetLastError(); fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err); } } *timeout = 0; } #else static void host_main_loop_wait(int *timeout) { } #endif void main_loop_wait(int nonblocking) { IOHandlerRecord *ioh; fd_set rfds, wfds, xfds; int ret, nfds; struct timeval tv; int timeout; if (nonblocking) timeout = 0; else { timeout = qemu_calculate_timeout(); qemu_bh_update_timeout(&timeout); } host_main_loop_wait(&timeout); /* poll any events */ /* XXX: separate device handlers from system ones */ nfds = -1; FD_ZERO(&rfds); FD_ZERO(&wfds); FD_ZERO(&xfds); QLIST_FOREACH(ioh, &io_handlers, next) { if (ioh->deleted) continue; if (ioh->fd_read && (!ioh->fd_read_poll || ioh->fd_read_poll(ioh->opaque) != 0)) { FD_SET(ioh->fd, &rfds); if (ioh->fd > nfds) nfds = ioh->fd; } if (ioh->fd_write) { FD_SET(ioh->fd, &wfds); if (ioh->fd > nfds) nfds = ioh->fd; } } tv.tv_sec = timeout / 1000; tv.tv_usec = (timeout % 1000) * 1000; slirp_select_fill(&nfds, &rfds, &wfds, &xfds); qemu_mutex_unlock_iothread(); ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv); qemu_mutex_lock_iothread(); if (ret > 0) { IOHandlerRecord *pioh; QLIST_FOREACH_SAFE(ioh, &io_handlers, next, pioh) { if (ioh->deleted) { QLIST_REMOVE(ioh, next); qemu_free(ioh); continue; } if (ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) { ioh->fd_read(ioh->opaque); } if (ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) { ioh->fd_write(ioh->opaque); } } } slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0)); qemu_run_all_timers(); /* Check bottom-halves last in case any of the earlier events triggered them. */ qemu_bh_poll(); } static int qemu_cpu_exec(CPUState *env) { int ret; #ifdef CONFIG_PROFILER int64_t ti; #endif #ifdef CONFIG_PROFILER ti = profile_getclock(); #endif if (use_icount) { int64_t count; int decr; qemu_icount -= (env->icount_decr.u16.low + env->icount_extra); env->icount_decr.u16.low = 0; env->icount_extra = 0; count = qemu_icount_round (qemu_next_deadline()); qemu_icount += count; decr = (count > 0xffff) ? 0xffff : count; count -= decr; env->icount_decr.u16.low = decr; env->icount_extra = count; } ret = cpu_exec(env); #ifdef CONFIG_PROFILER qemu_time += profile_getclock() - ti; #endif if (use_icount) { /* Fold pending instructions back into the instruction counter, and clear the interrupt flag. */ qemu_icount -= (env->icount_decr.u16.low + env->icount_extra); env->icount_decr.u32 = 0; env->icount_extra = 0; } return ret; } static bool tcg_cpu_exec(void) { int ret = 0; if (next_cpu == NULL) next_cpu = first_cpu; for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) { CPUState *env = cur_cpu = next_cpu; qemu_clock_enable(vm_clock, (cur_cpu->singlestep_enabled & SSTEP_NOTIMER) == 0); if (qemu_alarm_pending()) break; if (cpu_can_run(env)) ret = qemu_cpu_exec(env); else if (env->stop) break; if (ret == EXCP_DEBUG) { gdb_set_stop_cpu(env); debug_requested = 1; break; } } return tcg_has_work(); } static void set_numa_modes(void) { CPUState *env; int i; for (env = first_cpu; env != NULL; env = env->next_cpu) { for (i = 0; i < nb_numa_nodes; i++) { if (node_cpumask[i] & (1 << env->cpu_index)) { env->numa_node = i; } } } } static int vm_can_run(void) { if (powerdown_requested) return 0; if (reset_requested) return 0; if (shutdown_requested) return 0; if (debug_requested) return 0; return 1; } qemu_irq qemu_system_powerdown; static void main_loop(void) { int r; #ifdef CONFIG_IOTHREAD qemu_system_ready = 1; qemu_cond_broadcast(&qemu_system_cond); #endif for (;;) { do { bool nonblocking = false; #ifdef CONFIG_PROFILER int64_t ti; #endif #ifndef CONFIG_IOTHREAD nonblocking = tcg_cpu_exec(); #endif #ifdef CONFIG_PROFILER ti = profile_getclock(); #endif main_loop_wait(nonblocking); #ifdef CONFIG_PROFILER dev_time += profile_getclock() - ti; #endif } while (vm_can_run()); if (qemu_debug_requested()) { vm_stop(EXCP_DEBUG); } if (qemu_shutdown_requested()) { monitor_protocol_event(QEVENT_SHUTDOWN, NULL); if (no_shutdown) { vm_stop(0); no_shutdown = 0; } else break; } if (qemu_reset_requested()) { pause_all_vcpus(); qemu_system_reset(); resume_all_vcpus(); } if (qemu_powerdown_requested()) { monitor_protocol_event(QEVENT_POWERDOWN, NULL); qemu_irq_raise(qemu_system_powerdown); } if ((r = qemu_vmstop_requested())) { vm_stop(r); } } pause_all_vcpus(); } static void version(void) { printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"); } static void help(int exitcode) { const char *options_help = #define DEF(option, opt_arg, opt_enum, opt_help) \ opt_help #define DEFHEADING(text) stringify(text) "\n" #include "qemu-options.h" #undef DEF #undef DEFHEADING #undef GEN_DOCS ; version(); printf("usage: %s [options] [disk_image]\n" "\n" "'disk_image' is a raw hard image image for IDE hard disk 0\n" "\n" "%s\n" "During emulation, the following keys are useful:\n" "ctrl-alt-f toggle full screen\n" "ctrl-alt-n switch to virtual console 'n'\n" "ctrl-alt toggle mouse and keyboard grab\n" "\n" "When using -nographic, press 'ctrl-a h' to get some help.\n", "qemu", options_help); exit(exitcode); } #define HAS_ARG 0x0001 enum { #define DEF(option, opt_arg, opt_enum, opt_help) \ opt_enum, #define DEFHEADING(text) #include "qemu-options.h" #undef DEF #undef DEFHEADING #undef GEN_DOCS }; typedef struct QEMUOption { const char *name; int flags; int index; } QEMUOption; static const QEMUOption qemu_options[] = { { "h", 0, QEMU_OPTION_h }, #define DEF(option, opt_arg, opt_enum, opt_help) \ { option, opt_arg, opt_enum }, #define DEFHEADING(text) #include "qemu-options.h" #undef DEF #undef DEFHEADING #undef GEN_DOCS { NULL }, }; #ifdef HAS_AUDIO struct soundhw soundhw[] = { #ifdef HAS_AUDIO_CHOICE #if defined(TARGET_I386) || defined(TARGET_MIPS) { "pcspk", "PC speaker", 0, 1, { .init_isa = pcspk_audio_init } }, #endif #ifdef CONFIG_SB16 { "sb16", "Creative Sound Blaster 16", 0, 1, { .init_isa = SB16_init } }, #endif #ifdef CONFIG_CS4231A { "cs4231a", "CS4231A", 0, 1, { .init_isa = cs4231a_init } }, #endif #ifdef CONFIG_ADLIB { "adlib", #ifdef HAS_YMF262 "Yamaha YMF262 (OPL3)", #else "Yamaha YM3812 (OPL2)", #endif 0, 1, { .init_isa = Adlib_init } }, #endif #ifdef CONFIG_GUS { "gus", "Gravis Ultrasound GF1", 0, 1, { .init_isa = GUS_init } }, #endif #ifdef CONFIG_AC97 { "ac97", "Intel 82801AA AC97 Audio", 0, 0, { .init_pci = ac97_init } }, #endif #ifdef CONFIG_ES1370 { "es1370", "ENSONIQ AudioPCI ES1370", 0, 0, { .init_pci = es1370_init } }, #endif #endif /* HAS_AUDIO_CHOICE */ { NULL, NULL, 0, 0, { NULL } } }; static void select_soundhw (const char *optarg) { struct soundhw *c; if (*optarg == '?') { show_valid_cards: printf ("Valid sound card names (comma separated):\n"); for (c = soundhw; c->name; ++c) { printf ("%-11s %s\n", c->name, c->descr); } printf ("\n-soundhw all will enable all of the above\n"); exit (*optarg != '?'); } else { size_t l; const char *p; char *e; int bad_card = 0; if (!strcmp (optarg, "all")) { for (c = soundhw; c->name; ++c) { c->enabled = 1; } return; } p = optarg; while (*p) { e = strchr (p, ','); l = !e ? strlen (p) : (size_t) (e - p); for (c = soundhw; c->name; ++c) { if (!strncmp (c->name, p, l) && !c->name[l]) { c->enabled = 1; break; } } if (!c->name) { if (l > 80) { fprintf (stderr, "Unknown sound card name (too big to show)\n"); } else { fprintf (stderr, "Unknown sound card name `%.*s'\n", (int) l, p); } bad_card = 1; } p += l + (e != NULL); } if (bad_card) goto show_valid_cards; } } #endif static void select_vgahw (const char *p) { const char *opts; default_vga = 0; vga_interface_type = VGA_NONE; if (strstart(p, "std", &opts)) { vga_interface_type = VGA_STD; } else if (strstart(p, "cirrus", &opts)) { vga_interface_type = VGA_CIRRUS; } else if (strstart(p, "vmware", &opts)) { vga_interface_type = VGA_VMWARE; } else if (strstart(p, "xenfb", &opts)) { vga_interface_type = VGA_XENFB; } else if (!strstart(p, "none", &opts)) { invalid_vga: fprintf(stderr, "Unknown vga type: %s\n", p); exit(1); } while (*opts) { const char *nextopt; if (strstart(opts, ",retrace=", &nextopt)) { opts = nextopt; if (strstart(opts, "dumb", &nextopt)) vga_retrace_method = VGA_RETRACE_DUMB; else if (strstart(opts, "precise", &nextopt)) vga_retrace_method = VGA_RETRACE_PRECISE; else goto invalid_vga; } else goto invalid_vga; opts = nextopt; } } #ifdef TARGET_I386 static int balloon_parse(const char *arg) { QemuOpts *opts; if (strcmp(arg, "none") == 0) { return 0; } if (!strncmp(arg, "virtio", 6)) { if (arg[6] == ',') { /* have params -> parse them */ opts = qemu_opts_parse(&qemu_device_opts, arg+7, 0); if (!opts) return -1; } else { /* create empty opts */ opts = qemu_opts_create(&qemu_device_opts, NULL, 0); } qemu_opt_set(opts, "driver", "virtio-balloon-pci"); return 0; } return -1; } #endif #ifdef _WIN32 static BOOL WINAPI qemu_ctrl_handler(DWORD type) { exit(STATUS_CONTROL_C_EXIT); return TRUE; } #endif int qemu_uuid_parse(const char *str, uint8_t *uuid) { int ret; if(strlen(str) != 36) return -1; ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]); if(ret != 16) return -1; #ifdef TARGET_I386 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid); #endif return 0; } #ifndef _WIN32 static void termsig_handler(int signal) { qemu_system_shutdown_request(); } static void sigchld_handler(int signal) { waitpid(-1, NULL, WNOHANG); } static void sighandler_setup(void) { struct sigaction act; memset(&act, 0, sizeof(act)); act.sa_handler = termsig_handler; sigaction(SIGINT, &act, NULL); sigaction(SIGHUP, &act, NULL); sigaction(SIGTERM, &act, NULL); act.sa_handler = sigchld_handler; act.sa_flags = SA_NOCLDSTOP; sigaction(SIGCHLD, &act, NULL); } #endif #ifdef _WIN32 /* Look for support files in the same directory as the executable. */ static char *find_datadir(const char *argv0) { char *p; char buf[MAX_PATH]; DWORD len; len = GetModuleFileName(NULL, buf, sizeof(buf) - 1); if (len == 0) { return NULL; } buf[len] = 0; p = buf + len - 1; while (p != buf && *p != '\\') p--; *p = 0; if (access(buf, R_OK) == 0) { return qemu_strdup(buf); } return NULL; } #else /* !_WIN32 */ /* Find a likely location for support files using the location of the binary. For installed binaries this will be "$bindir/../share/qemu". When running from the build tree this will be "$bindir/../pc-bios". */ #define SHARE_SUFFIX "/share/qemu" #define BUILD_SUFFIX "/pc-bios" static char *find_datadir(const char *argv0) { char *dir; char *p = NULL; char *res; char buf[PATH_MAX]; size_t max_len; #if defined(__linux__) { int len; len = readlink("/proc/self/exe", buf, sizeof(buf) - 1); if (len > 0) { buf[len] = 0; p = buf; } } #elif defined(__FreeBSD__) { int len; len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1); if (len > 0) { buf[len] = 0; p = buf; } } #endif /* If we don't have any way of figuring out the actual executable location then try argv[0]. */ if (!p) { p = realpath(argv0, buf); if (!p) { return NULL; } } dir = dirname(p); dir = dirname(dir); max_len = strlen(dir) + MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1; res = qemu_mallocz(max_len); snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX); if (access(res, R_OK)) { snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX); if (access(res, R_OK)) { qemu_free(res); res = NULL; } } return res; } #undef SHARE_SUFFIX #undef BUILD_SUFFIX #endif char *qemu_find_file(int type, const char *name) { int len; const char *subdir; char *buf; /* If name contains path separators then try it as a straight path. */ if ((strchr(name, '/') || strchr(name, '\\')) && access(name, R_OK) == 0) { return qemu_strdup(name); } switch (type) { case QEMU_FILE_TYPE_BIOS: subdir = ""; break; case QEMU_FILE_TYPE_KEYMAP: subdir = "keymaps/"; break; default: abort(); } len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2; buf = qemu_mallocz(len); snprintf(buf, len, "%s/%s%s", data_dir, subdir, name); if (access(buf, R_OK)) { qemu_free(buf); return NULL; } return buf; } static int device_help_func(QemuOpts *opts, void *opaque) { return qdev_device_help(opts); } static int device_init_func(QemuOpts *opts, void *opaque) { DeviceState *dev; dev = qdev_device_add(opts); if (!dev) return -1; return 0; } static int chardev_init_func(QemuOpts *opts, void *opaque) { CharDriverState *chr; chr = qemu_chr_open_opts(opts, NULL); if (!chr) return -1; return 0; } static int mon_init_func(QemuOpts *opts, void *opaque) { CharDriverState *chr; const char *chardev; const char *mode; int flags; mode = qemu_opt_get(opts, "mode"); if (mode == NULL) { mode = "readline"; } if (strcmp(mode, "readline") == 0) { flags = MONITOR_USE_READLINE; } else if (strcmp(mode, "control") == 0) { flags = MONITOR_USE_CONTROL; } else { fprintf(stderr, "unknown monitor mode \"%s\"\n", mode); exit(1); } if (qemu_opt_get_bool(opts, "default", 0)) flags |= MONITOR_IS_DEFAULT; chardev = qemu_opt_get(opts, "chardev"); chr = qemu_chr_find(chardev); if (chr == NULL) { fprintf(stderr, "chardev \"%s\" not found\n", chardev); exit(1); } monitor_init(chr, flags); return 0; } static void monitor_parse(const char *optarg, const char *mode) { static int monitor_device_index = 0; QemuOpts *opts; const char *p; char label[32]; int def = 0; if (strstart(optarg, "chardev:", &p)) { snprintf(label, sizeof(label), "%s", p); } else { if (monitor_device_index) { snprintf(label, sizeof(label), "monitor%d", monitor_device_index); } else { snprintf(label, sizeof(label), "monitor"); def = 1; } opts = qemu_chr_parse_compat(label, optarg); if (!opts) { fprintf(stderr, "parse error: %s\n", optarg); exit(1); } } opts = qemu_opts_create(&qemu_mon_opts, label, 1); if (!opts) { fprintf(stderr, "duplicate chardev: %s\n", label); exit(1); } qemu_opt_set(opts, "mode", mode); qemu_opt_set(opts, "chardev", label); if (def) qemu_opt_set(opts, "default", "on"); monitor_device_index++; } struct device_config { enum { DEV_USB, /* -usbdevice */ DEV_BT, /* -bt */ DEV_SERIAL, /* -serial */ DEV_PARALLEL, /* -parallel */ DEV_VIRTCON, /* -virtioconsole */ DEV_DEBUGCON, /* -debugcon */ } type; const char *cmdline; QTAILQ_ENTRY(device_config) next; }; QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs); static void add_device_config(int type, const char *cmdline) { struct device_config *conf; conf = qemu_mallocz(sizeof(*conf)); conf->type = type; conf->cmdline = cmdline; QTAILQ_INSERT_TAIL(&device_configs, conf, next); } static int foreach_device_config(int type, int (*func)(const char *cmdline)) { struct device_config *conf; int rc; QTAILQ_FOREACH(conf, &device_configs, next) { if (conf->type != type) continue; rc = func(conf->cmdline); if (0 != rc) return rc; } return 0; } static int serial_parse(const char *devname) { static int index = 0; char label[32]; if (strcmp(devname, "none") == 0) return 0; if (index == MAX_SERIAL_PORTS) { fprintf(stderr, "qemu: too many serial ports\n"); exit(1); } snprintf(label, sizeof(label), "serial%d", index); serial_hds[index] = qemu_chr_open(label, devname, NULL); if (!serial_hds[index]) { fprintf(stderr, "qemu: could not open serial device '%s': %s\n", devname, strerror(errno)); return -1; } index++; return 0; } static int parallel_parse(const char *devname) { static int index = 0; char label[32]; if (strcmp(devname, "none") == 0) return 0; if (index == MAX_PARALLEL_PORTS) { fprintf(stderr, "qemu: too many parallel ports\n"); exit(1); } snprintf(label, sizeof(label), "parallel%d", index); parallel_hds[index] = qemu_chr_open(label, devname, NULL); if (!parallel_hds[index]) { fprintf(stderr, "qemu: could not open parallel device '%s': %s\n", devname, strerror(errno)); return -1; } index++; return 0; } static int virtcon_parse(const char *devname) { static int index = 0; char label[32]; QemuOpts *bus_opts, *dev_opts; if (strcmp(devname, "none") == 0) return 0; if (index == MAX_VIRTIO_CONSOLES) { fprintf(stderr, "qemu: too many virtio consoles\n"); exit(1); } bus_opts = qemu_opts_create(&qemu_device_opts, NULL, 0); qemu_opt_set(bus_opts, "driver", "virtio-serial"); dev_opts = qemu_opts_create(&qemu_device_opts, NULL, 0); qemu_opt_set(dev_opts, "driver", "virtconsole"); snprintf(label, sizeof(label), "virtcon%d", index); virtcon_hds[index] = qemu_chr_open(label, devname, NULL); if (!virtcon_hds[index]) { fprintf(stderr, "qemu: could not open virtio console '%s': %s\n", devname, strerror(errno)); return -1; } qemu_opt_set(dev_opts, "chardev", label); index++; return 0; } static int debugcon_parse(const char *devname) { QemuOpts *opts; if (!qemu_chr_open("debugcon", devname, NULL)) { exit(1); } opts = qemu_opts_create(&qemu_device_opts, "debugcon", 1); if (!opts) { fprintf(stderr, "qemu: already have a debugcon device\n"); exit(1); } qemu_opt_set(opts, "driver", "isa-debugcon"); qemu_opt_set(opts, "chardev", "debugcon"); return 0; } static const QEMUOption *lookup_opt(int argc, char **argv, const char **poptarg, int *poptind) { const QEMUOption *popt; int optind = *poptind; char *r = argv[optind]; const char *optarg; loc_set_cmdline(argv, optind, 1); optind++; /* Treat --foo the same as -foo. */ if (r[1] == '-') r++; popt = qemu_options; for(;;) { if (!popt->name) { error_report("invalid option"); exit(1); } if (!strcmp(popt->name, r + 1)) break; popt++; } if (popt->flags & HAS_ARG) { if (optind >= argc) { error_report("requires an argument"); exit(1); } optarg = argv[optind++]; loc_set_cmdline(argv, optind - 2, 2); } else { optarg = NULL; } *poptarg = optarg; *poptind = optind; return popt; } int main(int argc, char **argv, char **envp) { const char *gdbstub_dev = NULL; uint32_t boot_devices_bitmap = 0; int i; int snapshot, linux_boot, net_boot; const char *icount_option = NULL; const char *initrd_filename; const char *kernel_filename, *kernel_cmdline; char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */ DisplayState *ds; DisplayChangeListener *dcl; int cyls, heads, secs, translation; QemuOpts *hda_opts = NULL, *opts; int optind; const char *optarg; const char *loadvm = NULL; QEMUMachine *machine; const char *cpu_model; #ifndef _WIN32 int fds[2]; #endif int tb_size; const char *pid_file = NULL; const char *incoming = NULL; #ifndef _WIN32 int fd = 0; struct passwd *pwd = NULL; const char *chroot_dir = NULL; const char *run_as = NULL; #endif int show_vnc_port = 0; int defconfig = 1; error_set_progname(argv[0]); init_clocks(); qemu_cache_utils_init(envp); QLIST_INIT (&vm_change_state_head); #ifndef _WIN32 { struct sigaction act; sigfillset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = SIG_IGN; sigaction(SIGPIPE, &act, NULL); } #else SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE); /* Note: cpu_interrupt() is currently not SMP safe, so we force QEMU to run on a single CPU */ { HANDLE h; DWORD mask, smask; int i; h = GetCurrentProcess(); if (GetProcessAffinityMask(h, &mask, &smask)) { for(i = 0; i < 32; i++) { if (mask & (1 << i)) break; } if (i != 32) { mask = 1 << i; SetProcessAffinityMask(h, mask); } } } #endif module_call_init(MODULE_INIT_MACHINE); machine = find_default_machine(); cpu_model = NULL; initrd_filename = NULL; ram_size = 0; snapshot = 0; kernel_filename = NULL; kernel_cmdline = ""; cyls = heads = secs = 0; translation = BIOS_ATA_TRANSLATION_AUTO; for (i = 0; i < MAX_NODES; i++) { node_mem[i] = 0; node_cpumask[i] = 0; } nb_numa_nodes = 0; nb_nics = 0; tb_size = 0; autostart= 1; /* first pass of option parsing */ optind = 1; while (optind < argc) { if (argv[optind][0] != '-') { /* disk image */ optind++; continue; } else { const QEMUOption *popt; popt = lookup_opt(argc, argv, &optarg, &optind); switch (popt->index) { case QEMU_OPTION_nodefconfig: defconfig=0; break; } } } if (defconfig) { const char *fname; FILE *fp; fname = CONFIG_QEMU_CONFDIR "/qemu.conf"; fp = fopen(fname, "r"); if (fp) { if (qemu_config_parse(fp, fname) != 0) { exit(1); } fclose(fp); } fname = CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf"; fp = fopen(fname, "r"); if (fp) { if (qemu_config_parse(fp, fname) != 0) { exit(1); } fclose(fp); } } #if defined(cpudef_setup) cpudef_setup(); /* parse cpu definitions in target config file */ #endif /* second pass of option parsing */ optind = 1; for(;;) { if (optind >= argc) break; if (argv[optind][0] != '-') { hda_opts = drive_add(argv[optind++], HD_ALIAS, 0); } else { const QEMUOption *popt; popt = lookup_opt(argc, argv, &optarg, &optind); switch(popt->index) { case QEMU_OPTION_M: machine = find_machine(optarg); if (!machine) { QEMUMachine *m; printf("Supported machines are:\n"); for(m = first_machine; m != NULL; m = m->next) { if (m->alias) printf("%-10s %s (alias of %s)\n", m->alias, m->desc, m->name); printf("%-10s %s%s\n", m->name, m->desc, m->is_default ? " (default)" : ""); } exit(*optarg != '?'); } break; case QEMU_OPTION_cpu: /* hw initialization will check this */ if (*optarg == '?') { /* XXX: implement xxx_cpu_list for targets that still miss it */ #if defined(cpu_list_id) cpu_list_id(stdout, &fprintf, optarg); #elif defined(cpu_list) cpu_list(stdout, &fprintf); /* deprecated */ #endif exit(0); } else { cpu_model = optarg; } break; case QEMU_OPTION_initrd: initrd_filename = optarg; break; case QEMU_OPTION_hda: if (cyls == 0) hda_opts = drive_add(optarg, HD_ALIAS, 0); else hda_opts = drive_add(optarg, HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s", 0, cyls, heads, secs, translation == BIOS_ATA_TRANSLATION_LBA ? ",trans=lba" : translation == BIOS_ATA_TRANSLATION_NONE ? ",trans=none" : ""); break; case QEMU_OPTION_hdb: case QEMU_OPTION_hdc: case QEMU_OPTION_hdd: drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda); break; case QEMU_OPTION_drive: drive_add(NULL, "%s", optarg); break; case QEMU_OPTION_set: if (qemu_set_option(optarg) != 0) exit(1); break; case QEMU_OPTION_global: if (qemu_global_option(optarg) != 0) exit(1); break; case QEMU_OPTION_mtdblock: drive_add(optarg, MTD_ALIAS); break; case QEMU_OPTION_sd: drive_add(optarg, SD_ALIAS); break; case QEMU_OPTION_pflash: drive_add(optarg, PFLASH_ALIAS); break; case QEMU_OPTION_snapshot: snapshot = 1; break; case QEMU_OPTION_hdachs: { const char *p; p = optarg; cyls = strtol(p, (char **)&p, 0); if (cyls < 1 || cyls > 16383) goto chs_fail; if (*p != ',') goto chs_fail; p++; heads = strtol(p, (char **)&p, 0); if (heads < 1 || heads > 16) goto chs_fail; if (*p != ',') goto chs_fail; p++; secs = strtol(p, (char **)&p, 0); if (secs < 1 || secs > 63) goto chs_fail; if (*p == ',') { p++; if (!strcmp(p, "none")) translation = BIOS_ATA_TRANSLATION_NONE; else if (!strcmp(p, "lba")) translation = BIOS_ATA_TRANSLATION_LBA; else if (!strcmp(p, "auto")) translation = BIOS_ATA_TRANSLATION_AUTO; else goto chs_fail; } else if (*p != '\0') { chs_fail: fprintf(stderr, "qemu: invalid physical CHS format\n"); exit(1); } if (hda_opts != NULL) { char num[16]; snprintf(num, sizeof(num), "%d", cyls); qemu_opt_set(hda_opts, "cyls", num); snprintf(num, sizeof(num), "%d", heads); qemu_opt_set(hda_opts, "heads", num); snprintf(num, sizeof(num), "%d", secs); qemu_opt_set(hda_opts, "secs", num); if (translation == BIOS_ATA_TRANSLATION_LBA) qemu_opt_set(hda_opts, "trans", "lba"); if (translation == BIOS_ATA_TRANSLATION_NONE) qemu_opt_set(hda_opts, "trans", "none"); } } break; case QEMU_OPTION_numa: if (nb_numa_nodes >= MAX_NODES) { fprintf(stderr, "qemu: too many NUMA nodes\n"); exit(1); } numa_add(optarg); break; case QEMU_OPTION_nographic: display_type = DT_NOGRAPHIC; break; #ifdef CONFIG_CURSES case QEMU_OPTION_curses: display_type = DT_CURSES; break; #endif case QEMU_OPTION_portrait: graphic_rotate = 1; break; case QEMU_OPTION_kernel: kernel_filename = optarg; break; case QEMU_OPTION_append: kernel_cmdline = optarg; break; case QEMU_OPTION_cdrom: drive_add(optarg, CDROM_ALIAS); break; case QEMU_OPTION_boot: { static const char * const params[] = { "order", "once", "menu", NULL }; char buf[sizeof(boot_devices)]; char *standard_boot_devices; int legacy = 0; if (!strchr(optarg, '=')) { legacy = 1; pstrcpy(buf, sizeof(buf), optarg); } else if (check_params(buf, sizeof(buf), params, optarg) < 0) { fprintf(stderr, "qemu: unknown boot parameter '%s' in '%s'\n", buf, optarg); exit(1); } if (legacy || get_param_value(buf, sizeof(buf), "order", optarg)) { boot_devices_bitmap = parse_bootdevices(buf); pstrcpy(boot_devices, sizeof(boot_devices), buf); } if (!legacy) { if (get_param_value(buf, sizeof(buf), "once", optarg)) { boot_devices_bitmap |= parse_bootdevices(buf); standard_boot_devices = qemu_strdup(boot_devices); pstrcpy(boot_devices, sizeof(boot_devices), buf); qemu_register_reset(restore_boot_devices, standard_boot_devices); } if (get_param_value(buf, sizeof(buf), "menu", optarg)) { if (!strcmp(buf, "on")) { boot_menu = 1; } else if (!strcmp(buf, "off")) { boot_menu = 0; } else { fprintf(stderr, "qemu: invalid option value '%s'\n", buf); exit(1); } } } } break; case QEMU_OPTION_fda: case QEMU_OPTION_fdb: drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda); break; #ifdef TARGET_I386 case QEMU_OPTION_no_fd_bootchk: fd_bootchk = 0; break; #endif case QEMU_OPTION_netdev: if (net_client_parse(&qemu_netdev_opts, optarg) == -1) { exit(1); } break; case QEMU_OPTION_net: if (net_client_parse(&qemu_net_opts, optarg) == -1) { exit(1); } break; #ifdef CONFIG_SLIRP case QEMU_OPTION_tftp: legacy_tftp_prefix = optarg; break; case QEMU_OPTION_bootp: legacy_bootp_filename = optarg; break; #ifndef _WIN32 case QEMU_OPTION_smb: if (net_slirp_smb(optarg) < 0) exit(1); break; #endif case QEMU_OPTION_redir: if (net_slirp_redir(optarg) < 0) exit(1); break; #endif case QEMU_OPTION_bt: add_device_config(DEV_BT, optarg); break; #ifdef HAS_AUDIO case QEMU_OPTION_audio_help: AUD_help (); exit (0); break; case QEMU_OPTION_soundhw: select_soundhw (optarg); break; #endif case QEMU_OPTION_h: help(0); break; case QEMU_OPTION_version: version(); exit(0); break; case QEMU_OPTION_m: { uint64_t value; char *ptr; value = strtoul(optarg, &ptr, 10); switch (*ptr) { case 0: case 'M': case 'm': value <<= 20; break; case 'G': case 'g': value <<= 30; break; default: fprintf(stderr, "qemu: invalid ram size: %s\n", optarg); exit(1); } /* On 32-bit hosts, QEMU is limited by virtual address space */ if (value > (2047 << 20) && HOST_LONG_BITS == 32) { fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n"); exit(1); } if (value != (uint64_t)(ram_addr_t)value) { fprintf(stderr, "qemu: ram size too large\n"); exit(1); } ram_size = value; break; } case QEMU_OPTION_mempath: mem_path = optarg; break; #ifdef MAP_POPULATE case QEMU_OPTION_mem_prealloc: mem_prealloc = 1; break; #endif case QEMU_OPTION_d: { int mask; const CPULogItem *item; mask = cpu_str_to_log_mask(optarg); if (!mask) { printf("Log items (comma separated):\n"); for(item = cpu_log_items; item->mask != 0; item++) { printf("%-10s %s\n", item->name, item->help); } exit(1); } cpu_set_log(mask); } break; case QEMU_OPTION_s: gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT; break; case QEMU_OPTION_gdb: gdbstub_dev = optarg; break; case QEMU_OPTION_L: data_dir = optarg; break; case QEMU_OPTION_bios: bios_name = optarg; break; case QEMU_OPTION_singlestep: singlestep = 1; break; case QEMU_OPTION_S: autostart = 0; break; case QEMU_OPTION_k: keyboard_layout = optarg; break; case QEMU_OPTION_localtime: rtc_utc = 0; break; case QEMU_OPTION_vga: select_vgahw (optarg); break; #if defined(TARGET_PPC) || defined(TARGET_SPARC) case QEMU_OPTION_g: { const char *p; int w, h, depth; p = optarg; w = strtol(p, (char **)&p, 10); if (w <= 0) { graphic_error: fprintf(stderr, "qemu: invalid resolution or depth\n"); exit(1); } if (*p != 'x') goto graphic_error; p++; h = strtol(p, (char **)&p, 10); if (h <= 0) goto graphic_error; if (*p == 'x') { p++; depth = strtol(p, (char **)&p, 10); if (depth != 8 && depth != 15 && depth != 16 && depth != 24 && depth != 32) goto graphic_error; } else if (*p == '\0') { depth = graphic_depth; } else { goto graphic_error; } graphic_width = w; graphic_height = h; graphic_depth = depth; } break; #endif case QEMU_OPTION_echr: { char *r; term_escape_char = strtol(optarg, &r, 0); if (r == optarg) printf("Bad argument to echr\n"); break; } case QEMU_OPTION_monitor: monitor_parse(optarg, "readline"); default_monitor = 0; break; case QEMU_OPTION_qmp: monitor_parse(optarg, "control"); default_monitor = 0; break; case QEMU_OPTION_mon: opts = qemu_opts_parse(&qemu_mon_opts, optarg, 1); if (!opts) { fprintf(stderr, "parse error: %s\n", optarg); exit(1); } default_monitor = 0; break; case QEMU_OPTION_chardev: opts = qemu_opts_parse(&qemu_chardev_opts, optarg, 1); if (!opts) { fprintf(stderr, "parse error: %s\n", optarg); exit(1); } break; case QEMU_OPTION_serial: add_device_config(DEV_SERIAL, optarg); default_serial = 0; if (strncmp(optarg, "mon:", 4) == 0) { default_monitor = 0; } break; case QEMU_OPTION_watchdog: if (watchdog) { fprintf(stderr, "qemu: only one watchdog option may be given\n"); return 1; } watchdog = optarg; break; case QEMU_OPTION_watchdog_action: if (select_watchdog_action(optarg) == -1) { fprintf(stderr, "Unknown -watchdog-action parameter\n"); exit(1); } break; case QEMU_OPTION_virtiocon: add_device_config(DEV_VIRTCON, optarg); default_virtcon = 0; if (strncmp(optarg, "mon:", 4) == 0) { default_monitor = 0; } break; case QEMU_OPTION_parallel: add_device_config(DEV_PARALLEL, optarg); default_parallel = 0; if (strncmp(optarg, "mon:", 4) == 0) { default_monitor = 0; } break; case QEMU_OPTION_debugcon: add_device_config(DEV_DEBUGCON, optarg); break; case QEMU_OPTION_loadvm: loadvm = optarg; break; case QEMU_OPTION_full_screen: full_screen = 1; break; #ifdef CONFIG_SDL case QEMU_OPTION_no_frame: no_frame = 1; break; case QEMU_OPTION_alt_grab: alt_grab = 1; break; case QEMU_OPTION_ctrl_grab: ctrl_grab = 1; break; case QEMU_OPTION_no_quit: no_quit = 1; break; case QEMU_OPTION_sdl: display_type = DT_SDL; break; #endif case QEMU_OPTION_pidfile: pid_file = optarg; break; #ifdef TARGET_I386 case QEMU_OPTION_win2k_hack: win2k_install_hack = 1; break; case QEMU_OPTION_rtc_td_hack: rtc_td_hack = 1; break; case QEMU_OPTION_acpitable: if(acpi_table_add(optarg) < 0) { fprintf(stderr, "Wrong acpi table provided\n"); exit(1); } break; case QEMU_OPTION_smbios: if(smbios_entry_add(optarg) < 0) { fprintf(stderr, "Wrong smbios provided\n"); exit(1); } break; #endif #ifdef CONFIG_KVM case QEMU_OPTION_enable_kvm: kvm_allowed = 1; break; #endif case QEMU_OPTION_usb: usb_enabled = 1; break; case QEMU_OPTION_usbdevice: usb_enabled = 1; add_device_config(DEV_USB, optarg); break; case QEMU_OPTION_device: if (!qemu_opts_parse(&qemu_device_opts, optarg, 1)) { exit(1); } break; case QEMU_OPTION_smp: smp_parse(optarg); if (smp_cpus < 1) { fprintf(stderr, "Invalid number of CPUs\n"); exit(1); } if (max_cpus < smp_cpus) { fprintf(stderr, "maxcpus must be equal to or greater than " "smp\n"); exit(1); } if (max_cpus > 255) { fprintf(stderr, "Unsupported number of maxcpus\n"); exit(1); } break; case QEMU_OPTION_vnc: display_type = DT_VNC; vnc_display = optarg; break; #ifdef TARGET_I386 case QEMU_OPTION_no_acpi: acpi_enabled = 0; break; case QEMU_OPTION_no_hpet: no_hpet = 1; break; case QEMU_OPTION_balloon: if (balloon_parse(optarg) < 0) { fprintf(stderr, "Unknown -balloon argument %s\n", optarg); exit(1); } break; #endif case QEMU_OPTION_no_reboot: no_reboot = 1; break; case QEMU_OPTION_no_shutdown: no_shutdown = 1; break; case QEMU_OPTION_show_cursor: cursor_hide = 0; break; case QEMU_OPTION_uuid: if(qemu_uuid_parse(optarg, qemu_uuid) < 0) { fprintf(stderr, "Fail to parse UUID string." " Wrong format.\n"); exit(1); } break; #ifndef _WIN32 case QEMU_OPTION_daemonize: daemonize = 1; break; #endif case QEMU_OPTION_option_rom: if (nb_option_roms >= MAX_OPTION_ROMS) { fprintf(stderr, "Too many option ROMs\n"); exit(1); } option_rom[nb_option_roms] = optarg; nb_option_roms++; break; #if defined(TARGET_ARM) || defined(TARGET_M68K) case QEMU_OPTION_semihosting: semihosting_enabled = 1; break; #endif case QEMU_OPTION_name: qemu_name = qemu_strdup(optarg); { char *p = strchr(qemu_name, ','); if (p != NULL) { *p++ = 0; if (strncmp(p, "process=", 8)) { fprintf(stderr, "Unknown subargument %s to -name", p); exit(1); } p += 8; set_proc_name(p); } } break; #if defined(TARGET_SPARC) || defined(TARGET_PPC) case QEMU_OPTION_prom_env: if (nb_prom_envs >= MAX_PROM_ENVS) { fprintf(stderr, "Too many prom variables\n"); exit(1); } prom_envs[nb_prom_envs] = optarg; nb_prom_envs++; break; #endif #ifdef TARGET_ARM case QEMU_OPTION_old_param: old_param = 1; break; #endif case QEMU_OPTION_clock: configure_alarms(optarg); break; case QEMU_OPTION_startdate: configure_rtc_date_offset(optarg, 1); break; case QEMU_OPTION_rtc: opts = qemu_opts_parse(&qemu_rtc_opts, optarg, 0); if (!opts) { fprintf(stderr, "parse error: %s\n", optarg); exit(1); } configure_rtc(opts); break; case QEMU_OPTION_tb_size: tb_size = strtol(optarg, NULL, 0); if (tb_size < 0) tb_size = 0; break; case QEMU_OPTION_icount: icount_option = optarg; break; case QEMU_OPTION_incoming: incoming = optarg; break; case QEMU_OPTION_nodefaults: default_serial = 0; default_parallel = 0; default_virtcon = 0; default_monitor = 0; default_vga = 0; default_net = 0; default_floppy = 0; default_cdrom = 0; default_sdcard = 0; break; #ifndef _WIN32 case QEMU_OPTION_chroot: chroot_dir = optarg; break; case QEMU_OPTION_runas: run_as = optarg; break; #endif #ifdef CONFIG_XEN case QEMU_OPTION_xen_domid: xen_domid = atoi(optarg); break; case QEMU_OPTION_xen_create: xen_mode = XEN_CREATE; break; case QEMU_OPTION_xen_attach: xen_mode = XEN_ATTACH; break; #endif case QEMU_OPTION_readconfig: { FILE *fp; fp = fopen(optarg, "r"); if (fp == NULL) { fprintf(stderr, "open %s: %s\n", optarg, strerror(errno)); exit(1); } if (qemu_config_parse(fp, optarg) != 0) { exit(1); } fclose(fp); break; } case QEMU_OPTION_writeconfig: { FILE *fp; if (strcmp(optarg, "-") == 0) { fp = stdout; } else { fp = fopen(optarg, "w"); if (fp == NULL) { fprintf(stderr, "open %s: %s\n", optarg, strerror(errno)); exit(1); } } qemu_config_write(fp); fclose(fp); break; } } } } loc_set_none(); /* If no data_dir is specified then try to find it relative to the executable path. */ if (!data_dir) { data_dir = find_datadir(argv[0]); } /* If all else fails use the install patch specified when building. */ if (!data_dir) { data_dir = CONFIG_QEMU_SHAREDIR; } /* * Default to max_cpus = smp_cpus, in case the user doesn't * specify a max_cpus value. */ if (!max_cpus) max_cpus = smp_cpus; machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */ if (smp_cpus > machine->max_cpus) { fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus " "supported by machine `%s' (%d)\n", smp_cpus, machine->name, machine->max_cpus); exit(1); } qemu_opts_foreach(&qemu_device_opts, default_driver_check, NULL, 0); qemu_opts_foreach(&qemu_global_opts, default_driver_check, NULL, 0); if (machine->no_serial) { default_serial = 0; } if (machine->no_parallel) { default_parallel = 0; } if (!machine->use_virtcon) { default_virtcon = 0; } if (machine->no_vga) { default_vga = 0; } if (machine->no_floppy) { default_floppy = 0; } if (machine->no_cdrom) { default_cdrom = 0; } if (machine->no_sdcard) { default_sdcard = 0; } if (display_type == DT_NOGRAPHIC) { if (default_parallel) add_device_config(DEV_PARALLEL, "null"); if (default_serial && default_monitor) { add_device_config(DEV_SERIAL, "mon:stdio"); } else if (default_virtcon && default_monitor) { add_device_config(DEV_VIRTCON, "mon:stdio"); } else { if (default_serial) add_device_config(DEV_SERIAL, "stdio"); if (default_virtcon) add_device_config(DEV_VIRTCON, "stdio"); if (default_monitor) monitor_parse("stdio", "readline"); } } else { if (default_serial) add_device_config(DEV_SERIAL, "vc:80Cx24C"); if (default_parallel) add_device_config(DEV_PARALLEL, "vc:80Cx24C"); if (default_monitor) monitor_parse("vc:80Cx24C", "readline"); if (default_virtcon) add_device_config(DEV_VIRTCON, "vc:80Cx24C"); } if (default_vga) vga_interface_type = VGA_CIRRUS; if (qemu_opts_foreach(&qemu_chardev_opts, chardev_init_func, NULL, 1) != 0) exit(1); #ifndef _WIN32 if (daemonize) { pid_t pid; if (pipe(fds) == -1) exit(1); pid = fork(); if (pid > 0) { uint8_t status; ssize_t len; close(fds[1]); again: len = read(fds[0], &status, 1); if (len == -1 && (errno == EINTR)) goto again; if (len != 1) exit(1); else if (status == 1) { fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno)); exit(1); } else exit(0); } else if (pid < 0) exit(1); close(fds[0]); qemu_set_cloexec(fds[1]); setsid(); pid = fork(); if (pid > 0) exit(0); else if (pid < 0) exit(1); umask(027); signal(SIGTSTP, SIG_IGN); signal(SIGTTOU, SIG_IGN); signal(SIGTTIN, SIG_IGN); } #endif if (pid_file && qemu_create_pidfile(pid_file) != 0) { #ifndef _WIN32 if (daemonize) { uint8_t status = 1; if (write(fds[1], &status, 1) != 1) { perror("daemonize. Writing to pipe\n"); } } else #endif fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno)); exit(1); } if (kvm_enabled()) { int ret; ret = kvm_init(smp_cpus); if (ret < 0) { fprintf(stderr, "failed to initialize KVM\n"); exit(1); } } if (qemu_init_main_loop()) { fprintf(stderr, "qemu_init_main_loop failed\n"); exit(1); } linux_boot = (kernel_filename != NULL); if (!linux_boot && *kernel_cmdline != '\0') { fprintf(stderr, "-append only allowed with -kernel option\n"); exit(1); } if (!linux_boot && initrd_filename != NULL) { fprintf(stderr, "-initrd only allowed with -kernel option\n"); exit(1); } #ifndef _WIN32 /* Win32 doesn't support line-buffering and requires size >= 2 */ setvbuf(stdout, NULL, _IOLBF, 0); #endif if (init_timer_alarm() < 0) { fprintf(stderr, "could not initialize alarm timer\n"); exit(1); } configure_icount(icount_option); #ifdef _WIN32 socket_init(); #endif if (net_init_clients() < 0) { exit(1); } net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF; net_set_boot_mask(net_boot); /* init the bluetooth world */ if (foreach_device_config(DEV_BT, bt_parse)) exit(1); /* init the memory */ if (ram_size == 0) ram_size = DEFAULT_RAM_SIZE * 1024 * 1024; /* init the dynamic translator */ cpu_exec_init_all(tb_size * 1024 * 1024); bdrv_init_with_whitelist(); blk_mig_init(); if (default_cdrom) { /* we always create the cdrom drive, even if no disk is there */ drive_add(NULL, CDROM_ALIAS); } if (default_floppy) { /* we always create at least one floppy */ drive_add(NULL, FD_ALIAS, 0); } if (default_sdcard) { /* we always create one sd slot, even if no card is in it */ drive_add(NULL, SD_ALIAS); } /* open the virtual block devices */ if (snapshot) qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0); if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0) exit(1); register_savevm_live("ram", 0, 3, NULL, ram_save_live, NULL, ram_load, NULL); if (nb_numa_nodes > 0) { int i; if (nb_numa_nodes > smp_cpus) { nb_numa_nodes = smp_cpus; } /* If no memory size if given for any node, assume the default case * and distribute the available memory equally across all nodes */ for (i = 0; i < nb_numa_nodes; i++) { if (node_mem[i] != 0) break; } if (i == nb_numa_nodes) { uint64_t usedmem = 0; /* On Linux, the each node's border has to be 8MB aligned, * the final node gets the rest. */ for (i = 0; i < nb_numa_nodes - 1; i++) { node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1); usedmem += node_mem[i]; } node_mem[i] = ram_size - usedmem; } for (i = 0; i < nb_numa_nodes; i++) { if (node_cpumask[i] != 0) break; } /* assigning the VCPUs round-robin is easier to implement, guest OSes * must cope with this anyway, because there are BIOSes out there in * real machines which also use this scheme. */ if (i == nb_numa_nodes) { for (i = 0; i < smp_cpus; i++) { node_cpumask[i % nb_numa_nodes] |= 1 << i; } } } if (foreach_device_config(DEV_SERIAL, serial_parse) < 0) exit(1); if (foreach_device_config(DEV_PARALLEL, parallel_parse) < 0) exit(1); if (foreach_device_config(DEV_VIRTCON, virtcon_parse) < 0) exit(1); if (foreach_device_config(DEV_DEBUGCON, debugcon_parse) < 0) exit(1); module_call_init(MODULE_INIT_DEVICE); if (qemu_opts_foreach(&qemu_device_opts, device_help_func, NULL, 0) != 0) exit(0); if (watchdog) { i = select_watchdog(watchdog); if (i > 0) exit (i == 1 ? 1 : 0); } if (machine->compat_props) { qdev_prop_register_global_list(machine->compat_props); } qemu_add_globals(); machine->init(ram_size, boot_devices, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); cpu_synchronize_all_post_init(); #ifndef _WIN32 /* must be after terminal init, SDL library changes signal handlers */ sighandler_setup(); #endif set_numa_modes(); current_machine = machine; /* init USB devices */ if (usb_enabled) { if (foreach_device_config(DEV_USB, usb_parse) < 0) exit(1); } /* init generic devices */ if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0) exit(1); net_check_clients(); /* just use the first displaystate for the moment */ ds = get_displaystate(); if (display_type == DT_DEFAULT) { #if defined(CONFIG_SDL) || defined(CONFIG_COCOA) display_type = DT_SDL; #else display_type = DT_VNC; vnc_display = "localhost:0,to=99"; show_vnc_port = 1; #endif } switch (display_type) { case DT_NOGRAPHIC: break; #if defined(CONFIG_CURSES) case DT_CURSES: curses_display_init(ds, full_screen); break; #endif #if defined(CONFIG_SDL) case DT_SDL: sdl_display_init(ds, full_screen, no_frame); break; #elif defined(CONFIG_COCOA) case DT_SDL: cocoa_display_init(ds, full_screen); break; #endif case DT_VNC: vnc_display_init(ds); if (vnc_display_open(ds, vnc_display) < 0) exit(1); if (show_vnc_port) { printf("VNC server running on `%s'\n", vnc_display_local_addr(ds)); } break; default: break; } dpy_resize(ds); dcl = ds->listeners; while (dcl != NULL) { if (dcl->dpy_refresh != NULL) { ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds); qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock)); } dcl = dcl->next; } if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) { nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL); qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock)); } text_consoles_set_display(ds); if (qemu_opts_foreach(&qemu_mon_opts, mon_init_func, NULL, 1) != 0) exit(1); if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) { fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n", gdbstub_dev); exit(1); } qdev_machine_creation_done(); if (rom_load_all() != 0) { fprintf(stderr, "rom loading failed\n"); exit(1); } qemu_system_reset(); if (loadvm) { if (load_vmstate(loadvm) < 0) { autostart = 0; } } if (incoming) { qemu_start_incoming_migration(incoming); } else if (autostart) { vm_start(); } #ifndef _WIN32 if (daemonize) { uint8_t status = 0; ssize_t len; again1: len = write(fds[1], &status, 1); if (len == -1 && (errno == EINTR)) goto again1; if (len != 1) exit(1); if (chdir("/")) { perror("not able to chdir to /"); exit(1); } TFR(fd = qemu_open("/dev/null", O_RDWR)); if (fd == -1) exit(1); } if (run_as) { pwd = getpwnam(run_as); if (!pwd) { fprintf(stderr, "User \"%s\" doesn't exist\n", run_as); exit(1); } } if (chroot_dir) { if (chroot(chroot_dir) < 0) { fprintf(stderr, "chroot failed\n"); exit(1); } if (chdir("/")) { perror("not able to chdir to /"); exit(1); } } if (run_as) { if (setgid(pwd->pw_gid) < 0) { fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid); exit(1); } if (setuid(pwd->pw_uid) < 0) { fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid); exit(1); } if (setuid(0) != -1) { fprintf(stderr, "Dropping privileges failed\n"); exit(1); } } if (daemonize) { dup2(fd, 0); dup2(fd, 1); dup2(fd, 2); close(fd); } #endif main_loop(); quit_timers(); net_cleanup(); return 0; }