/* * libqos AHCI functions * * Copyright (c) 2014 John Snow * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "libqtest.h" #include "libqos/ahci.h" #include "libqos/pci-pc.h" #include "qemu-common.h" #include "qemu/host-utils.h" #include "hw/pci/pci_ids.h" #include "hw/pci/pci_regs.h" typedef struct AHCICommandProp { uint8_t cmd; /* Command Code */ bool data; /* Data transfer command? */ bool pio; bool dma; bool lba28; bool lba48; bool read; bool write; bool atapi; bool ncq; uint64_t size; /* Static transfer size, for commands like IDENTIFY. */ uint32_t interrupts; /* Expected interrupts for this command. */ } AHCICommandProp; AHCICommandProp ahci_command_properties[] = { { .cmd = CMD_READ_PIO, .data = true, .pio = true, .lba28 = true, .read = true }, { .cmd = CMD_WRITE_PIO, .data = true, .pio = true, .lba28 = true, .write = true }, { .cmd = CMD_READ_PIO_EXT, .data = true, .pio = true, .lba48 = true, .read = true }, { .cmd = CMD_WRITE_PIO_EXT, .data = true, .pio = true, .lba48 = true, .write = true }, { .cmd = CMD_READ_DMA, .data = true, .dma = true, .lba28 = true, .read = true }, { .cmd = CMD_WRITE_DMA, .data = true, .dma = true, .lba28 = true, .write = true }, { .cmd = CMD_READ_DMA_EXT, .data = true, .dma = true, .lba48 = true, .read = true }, { .cmd = CMD_WRITE_DMA_EXT, .data = true, .dma = true, .lba48 = true, .write = true }, { .cmd = CMD_IDENTIFY, .data = true, .pio = true, .size = 512, .read = true }, { .cmd = READ_FPDMA_QUEUED, .data = true, .dma = true, .lba48 = true, .read = true, .ncq = true }, { .cmd = WRITE_FPDMA_QUEUED, .data = true, .dma = true, .lba48 = true, .write = true, .ncq = true }, { .cmd = CMD_READ_MAX, .lba28 = true }, { .cmd = CMD_READ_MAX_EXT, .lba48 = true }, { .cmd = CMD_FLUSH_CACHE, .data = false } }; struct AHCICommand { /* Test Management Data */ uint8_t name; uint8_t port; uint8_t slot; uint32_t interrupts; uint64_t xbytes; uint32_t prd_size; uint64_t buffer; AHCICommandProp *props; /* Data to be transferred to the guest */ AHCICommandHeader header; RegH2DFIS fis; void *atapi_cmd; }; /** * Allocate space in the guest using information in the AHCIQState object. */ uint64_t ahci_alloc(AHCIQState *ahci, size_t bytes) { g_assert(ahci); g_assert(ahci->parent); return qmalloc(ahci->parent, bytes); } void ahci_free(AHCIQState *ahci, uint64_t addr) { g_assert(ahci); g_assert(ahci->parent); qfree(ahci->parent, addr); } /** * Locate, verify, and return a handle to the AHCI device. */ QPCIDevice *get_ahci_device(uint32_t *fingerprint) { QPCIDevice *ahci; uint32_t ahci_fingerprint; QPCIBus *pcibus; pcibus = qpci_init_pc(); /* Find the AHCI PCI device and verify it's the right one. */ ahci = qpci_device_find(pcibus, QPCI_DEVFN(0x1F, 0x02)); g_assert(ahci != NULL); ahci_fingerprint = qpci_config_readl(ahci, PCI_VENDOR_ID); switch (ahci_fingerprint) { case AHCI_INTEL_ICH9: break; default: /* Unknown device. */ g_assert_not_reached(); } if (fingerprint) { *fingerprint = ahci_fingerprint; } return ahci; } void free_ahci_device(QPCIDevice *dev) { QPCIBus *pcibus = dev ? dev->bus : NULL; /* libqos doesn't have a function for this, so free it manually */ g_free(dev); qpci_free_pc(pcibus); } /* Free all memory in-use by the AHCI device. */ void ahci_clean_mem(AHCIQState *ahci) { uint8_t port, slot; for (port = 0; port < 32; ++port) { if (ahci->port[port].fb) { ahci_free(ahci, ahci->port[port].fb); ahci->port[port].fb = 0; } if (ahci->port[port].clb) { for (slot = 0; slot < 32; slot++) { ahci_destroy_command(ahci, port, slot); } ahci_free(ahci, ahci->port[port].clb); ahci->port[port].clb = 0; } } } /*** Logical Device Initialization ***/ /** * Start the PCI device and sanity-check default operation. */ void ahci_pci_enable(AHCIQState *ahci) { uint8_t reg; start_ahci_device(ahci); switch (ahci->fingerprint) { case AHCI_INTEL_ICH9: /* ICH9 has a register at PCI 0x92 that * acts as a master port enabler mask. */ reg = qpci_config_readb(ahci->dev, 0x92); reg |= 0x3F; qpci_config_writeb(ahci->dev, 0x92, reg); /* 0...0111111b -- bit significant, ports 0-5 enabled. */ ASSERT_BIT_SET(qpci_config_readb(ahci->dev, 0x92), 0x3F); break; } } /** * Map BAR5/ABAR, and engage the PCI device. */ void start_ahci_device(AHCIQState *ahci) { /* Map AHCI's ABAR (BAR5) */ ahci->hba_base = qpci_iomap(ahci->dev, 5, &ahci->barsize); g_assert(ahci->hba_base); /* turns on pci.cmd.iose, pci.cmd.mse and pci.cmd.bme */ qpci_device_enable(ahci->dev); } /** * Test and initialize the AHCI's HBA memory areas. * Initialize and start any ports with devices attached. * Bring the HBA into the idle state. */ void ahci_hba_enable(AHCIQState *ahci) { /* Bits of interest in this section: * GHC.AE Global Host Control / AHCI Enable * PxCMD.ST Port Command: Start * PxCMD.SUD "Spin Up Device" * PxCMD.POD "Power On Device" * PxCMD.FRE "FIS Receive Enable" * PxCMD.FR "FIS Receive Running" * PxCMD.CR "Command List Running" */ uint32_t reg, ports_impl; uint16_t i; uint8_t num_cmd_slots; g_assert(ahci != NULL); /* Set GHC.AE to 1 */ ahci_set(ahci, AHCI_GHC, AHCI_GHC_AE); reg = ahci_rreg(ahci, AHCI_GHC); ASSERT_BIT_SET(reg, AHCI_GHC_AE); /* Cache CAP and CAP2. */ ahci->cap = ahci_rreg(ahci, AHCI_CAP); ahci->cap2 = ahci_rreg(ahci, AHCI_CAP2); /* Read CAP.NCS, how many command slots do we have? */ num_cmd_slots = ((ahci->cap & AHCI_CAP_NCS) >> ctzl(AHCI_CAP_NCS)) + 1; g_test_message("Number of Command Slots: %u", num_cmd_slots); /* Determine which ports are implemented. */ ports_impl = ahci_rreg(ahci, AHCI_PI); for (i = 0; ports_impl; ports_impl >>= 1, ++i) { if (!(ports_impl & 0x01)) { continue; } g_test_message("Initializing port %u", i); reg = ahci_px_rreg(ahci, i, AHCI_PX_CMD); if (BITCLR(reg, AHCI_PX_CMD_ST | AHCI_PX_CMD_CR | AHCI_PX_CMD_FRE | AHCI_PX_CMD_FR)) { g_test_message("port is idle"); } else { g_test_message("port needs to be idled"); ahci_px_clr(ahci, i, AHCI_PX_CMD, (AHCI_PX_CMD_ST | AHCI_PX_CMD_FRE)); /* The port has 500ms to disengage. */ usleep(500000); reg = ahci_px_rreg(ahci, i, AHCI_PX_CMD); ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_CR); ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_FR); g_test_message("port is now idle"); /* The spec does allow for possibly needing a PORT RESET * or HBA reset if we fail to idle the port. */ } /* Allocate Memory for the Command List Buffer & FIS Buffer */ /* PxCLB space ... 0x20 per command, as in 4.2.2 p 36 */ ahci->port[i].clb = ahci_alloc(ahci, num_cmd_slots * 0x20); qmemset(ahci->port[i].clb, 0x00, num_cmd_slots * 0x20); g_test_message("CLB: 0x%08" PRIx64, ahci->port[i].clb); ahci_px_wreg(ahci, i, AHCI_PX_CLB, ahci->port[i].clb); g_assert_cmphex(ahci->port[i].clb, ==, ahci_px_rreg(ahci, i, AHCI_PX_CLB)); /* PxFB space ... 0x100, as in 4.2.1 p 35 */ ahci->port[i].fb = ahci_alloc(ahci, 0x100); qmemset(ahci->port[i].fb, 0x00, 0x100); g_test_message("FB: 0x%08" PRIx64, ahci->port[i].fb); ahci_px_wreg(ahci, i, AHCI_PX_FB, ahci->port[i].fb); g_assert_cmphex(ahci->port[i].fb, ==, ahci_px_rreg(ahci, i, AHCI_PX_FB)); /* Clear PxSERR, PxIS, then IS.IPS[x] by writing '1's. */ ahci_px_wreg(ahci, i, AHCI_PX_SERR, 0xFFFFFFFF); ahci_px_wreg(ahci, i, AHCI_PX_IS, 0xFFFFFFFF); ahci_wreg(ahci, AHCI_IS, (1 << i)); /* Verify Interrupts Cleared */ reg = ahci_px_rreg(ahci, i, AHCI_PX_SERR); g_assert_cmphex(reg, ==, 0); reg = ahci_px_rreg(ahci, i, AHCI_PX_IS); g_assert_cmphex(reg, ==, 0); reg = ahci_rreg(ahci, AHCI_IS); ASSERT_BIT_CLEAR(reg, (1 << i)); /* Enable All Interrupts: */ ahci_px_wreg(ahci, i, AHCI_PX_IE, 0xFFFFFFFF); reg = ahci_px_rreg(ahci, i, AHCI_PX_IE); g_assert_cmphex(reg, ==, ~((uint32_t)AHCI_PX_IE_RESERVED)); /* Enable the FIS Receive Engine. */ ahci_px_set(ahci, i, AHCI_PX_CMD, AHCI_PX_CMD_FRE); reg = ahci_px_rreg(ahci, i, AHCI_PX_CMD); ASSERT_BIT_SET(reg, AHCI_PX_CMD_FR); /* AHCI 1.3 spec: if !STS.BSY, !STS.DRQ and PxSSTS.DET indicates * physical presence, a device is present and may be started. However, * PxSERR.DIAG.X /may/ need to be cleared a priori. */ reg = ahci_px_rreg(ahci, i, AHCI_PX_SERR); if (BITSET(reg, AHCI_PX_SERR_DIAG_X)) { ahci_px_set(ahci, i, AHCI_PX_SERR, AHCI_PX_SERR_DIAG_X); } reg = ahci_px_rreg(ahci, i, AHCI_PX_TFD); if (BITCLR(reg, AHCI_PX_TFD_STS_BSY | AHCI_PX_TFD_STS_DRQ)) { reg = ahci_px_rreg(ahci, i, AHCI_PX_SSTS); if ((reg & AHCI_PX_SSTS_DET) == SSTS_DET_ESTABLISHED) { /* Device Found: set PxCMD.ST := 1 */ ahci_px_set(ahci, i, AHCI_PX_CMD, AHCI_PX_CMD_ST); ASSERT_BIT_SET(ahci_px_rreg(ahci, i, AHCI_PX_CMD), AHCI_PX_CMD_CR); g_test_message("Started Device %u", i); } else if ((reg & AHCI_PX_SSTS_DET)) { /* Device present, but in some unknown state. */ g_assert_not_reached(); } } } /* Enable GHC.IE */ ahci_set(ahci, AHCI_GHC, AHCI_GHC_IE); reg = ahci_rreg(ahci, AHCI_GHC); ASSERT_BIT_SET(reg, AHCI_GHC_IE); /* TODO: The device should now be idling and waiting for commands. * In the future, a small test-case to inspect the Register D2H FIS * and clear the initial interrupts might be good. */ } /** * Pick the first implemented and running port */ unsigned ahci_port_select(AHCIQState *ahci) { uint32_t ports, reg; unsigned i; ports = ahci_rreg(ahci, AHCI_PI); for (i = 0; i < 32; ports >>= 1, ++i) { if (ports == 0) { i = 32; } if (!(ports & 0x01)) { continue; } reg = ahci_px_rreg(ahci, i, AHCI_PX_CMD); if (BITSET(reg, AHCI_PX_CMD_ST)) { break; } } g_assert(i < 32); return i; } /** * Clear a port's interrupts and status information prior to a test. */ void ahci_port_clear(AHCIQState *ahci, uint8_t port) { uint32_t reg; /* Clear out this port's interrupts (ignore the init register d2h fis) */ reg = ahci_px_rreg(ahci, port, AHCI_PX_IS); ahci_px_wreg(ahci, port, AHCI_PX_IS, reg); g_assert_cmphex(ahci_px_rreg(ahci, port, AHCI_PX_IS), ==, 0); /* Wipe the FIS-Receive Buffer */ qmemset(ahci->port[port].fb, 0x00, 0x100); } /** * Check a port for errors. */ void ahci_port_check_error(AHCIQState *ahci, uint8_t port) { uint32_t reg; /* The upper 9 bits of the IS register all indicate errors. */ reg = ahci_px_rreg(ahci, port, AHCI_PX_IS); reg >>= 23; g_assert_cmphex(reg, ==, 0); /* The Sata Error Register should be empty. */ reg = ahci_px_rreg(ahci, port, AHCI_PX_SERR); g_assert_cmphex(reg, ==, 0); /* The TFD also has two error sections. */ reg = ahci_px_rreg(ahci, port, AHCI_PX_TFD); ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_STS_ERR); ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_ERR); } void ahci_port_check_interrupts(AHCIQState *ahci, uint8_t port, uint32_t intr_mask) { uint32_t reg; /* Check for expected interrupts */ reg = ahci_px_rreg(ahci, port, AHCI_PX_IS); ASSERT_BIT_SET(reg, intr_mask); /* Clear expected interrupts and assert all interrupts now cleared. */ ahci_px_wreg(ahci, port, AHCI_PX_IS, intr_mask); g_assert_cmphex(ahci_px_rreg(ahci, port, AHCI_PX_IS), ==, 0); } void ahci_port_check_nonbusy(AHCIQState *ahci, uint8_t port, uint8_t slot) { uint32_t reg; /* Assert that the command slot is no longer busy (NCQ) */ reg = ahci_px_rreg(ahci, port, AHCI_PX_SACT); ASSERT_BIT_CLEAR(reg, (1 << slot)); /* Non-NCQ */ reg = ahci_px_rreg(ahci, port, AHCI_PX_CI); ASSERT_BIT_CLEAR(reg, (1 << slot)); /* And assert that we are generally not busy. */ reg = ahci_px_rreg(ahci, port, AHCI_PX_TFD); ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_STS_BSY); ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_STS_DRQ); } void ahci_port_check_d2h_sanity(AHCIQState *ahci, uint8_t port, uint8_t slot) { RegD2HFIS *d2h = g_malloc0(0x20); uint32_t reg; memread(ahci->port[port].fb + 0x40, d2h, 0x20); g_assert_cmphex(d2h->fis_type, ==, 0x34); reg = ahci_px_rreg(ahci, port, AHCI_PX_TFD); g_assert_cmphex((reg & AHCI_PX_TFD_ERR) >> 8, ==, d2h->error); g_assert_cmphex((reg & AHCI_PX_TFD_STS), ==, d2h->status); g_free(d2h); } void ahci_port_check_pio_sanity(AHCIQState *ahci, uint8_t port, uint8_t slot, size_t buffsize) { PIOSetupFIS *pio = g_malloc0(0x20); /* We cannot check the Status or E_Status registers, because * the status may have again changed between the PIO Setup FIS * and the conclusion of the command with the D2H Register FIS. */ memread(ahci->port[port].fb + 0x20, pio, 0x20); g_assert_cmphex(pio->fis_type, ==, 0x5f); /* BUG: PIO Setup FIS as utilized by QEMU tries to fit the entire * transfer size in a uint16_t field. The maximum transfer size can * eclipse this; the field is meant to convey the size of data per * each Data FIS, not the entire operation as a whole. For now, * we will sanity check the broken case where applicable. */ if (buffsize <= UINT16_MAX) { g_assert_cmphex(le16_to_cpu(pio->tx_count), ==, buffsize); } g_free(pio); } void ahci_port_check_cmd_sanity(AHCIQState *ahci, AHCICommand *cmd) { AHCICommandHeader cmdh; ahci_get_command_header(ahci, cmd->port, cmd->slot, &cmdh); /* Physical Region Descriptor Byte Count is not required to work for NCQ. */ if (!cmd->props->ncq) { g_assert_cmphex(cmd->xbytes, ==, cmdh.prdbc); } } /* Get the command in #slot of port #port. */ void ahci_get_command_header(AHCIQState *ahci, uint8_t port, uint8_t slot, AHCICommandHeader *cmd) { uint64_t ba = ahci->port[port].clb; ba += slot * sizeof(AHCICommandHeader); memread(ba, cmd, sizeof(AHCICommandHeader)); cmd->flags = le16_to_cpu(cmd->flags); cmd->prdtl = le16_to_cpu(cmd->prdtl); cmd->prdbc = le32_to_cpu(cmd->prdbc); cmd->ctba = le64_to_cpu(cmd->ctba); } /* Set the command in #slot of port #port. */ void ahci_set_command_header(AHCIQState *ahci, uint8_t port, uint8_t slot, AHCICommandHeader *cmd) { AHCICommandHeader tmp = { .flags = 0 }; uint64_t ba = ahci->port[port].clb; ba += slot * sizeof(AHCICommandHeader); tmp.flags = cpu_to_le16(cmd->flags); tmp.prdtl = cpu_to_le16(cmd->prdtl); tmp.prdbc = cpu_to_le32(cmd->prdbc); tmp.ctba = cpu_to_le64(cmd->ctba); memwrite(ba, &tmp, sizeof(AHCICommandHeader)); } void ahci_destroy_command(AHCIQState *ahci, uint8_t port, uint8_t slot) { AHCICommandHeader cmd; /* Obtain the Nth Command Header */ ahci_get_command_header(ahci, port, slot, &cmd); if (cmd.ctba == 0) { /* No address in it, so just return -- it's empty. */ goto tidy; } /* Free the Table */ ahci_free(ahci, cmd.ctba); tidy: /* NULL the header. */ memset(&cmd, 0x00, sizeof(cmd)); ahci_set_command_header(ahci, port, slot, &cmd); ahci->port[port].ctba[slot] = 0; ahci->port[port].prdtl[slot] = 0; } void ahci_write_fis(AHCIQState *ahci, AHCICommand *cmd) { RegH2DFIS tmp = cmd->fis; uint64_t addr = cmd->header.ctba; /* NCQ commands use exclusively 8 bit fields and needs no adjustment. * Only the count field needs to be adjusted for non-NCQ commands. * The auxiliary FIS fields are defined per-command and are not currently * implemented in libqos/ahci.o, but may or may not need to be flipped. */ if (!cmd->props->ncq) { tmp.count = cpu_to_le16(tmp.count); } memwrite(addr, &tmp, sizeof(tmp)); } unsigned ahci_pick_cmd(AHCIQState *ahci, uint8_t port) { unsigned i; unsigned j; uint32_t reg; reg = ahci_px_rreg(ahci, port, AHCI_PX_CI); /* Pick the least recently used command slot that's available */ for (i = 0; i < 32; ++i) { j = ((ahci->port[port].next + i) % 32); if (reg & (1 << j)) { continue; } ahci_destroy_command(ahci, port, j); ahci->port[port].next = (j + 1) % 32; return j; } g_test_message("All command slots were busy."); g_assert_not_reached(); } inline unsigned size_to_prdtl(unsigned bytes, unsigned bytes_per_prd) { /* Each PRD can describe up to 4MiB */ g_assert_cmphex(bytes_per_prd, <=, 4096 * 1024); g_assert_cmphex(bytes_per_prd & 0x01, ==, 0x00); return (bytes + bytes_per_prd - 1) / bytes_per_prd; } /* Issue a command, expecting it to fail and STOP the VM */ AHCICommand *ahci_guest_io_halt(AHCIQState *ahci, uint8_t port, uint8_t ide_cmd, uint64_t buffer, size_t bufsize, uint64_t sector) { AHCICommand *cmd; cmd = ahci_command_create(ide_cmd); ahci_command_adjust(cmd, sector, buffer, bufsize, 0); ahci_command_commit(ahci, cmd, port); ahci_command_issue_async(ahci, cmd); qmp_eventwait("STOP"); return cmd; } /* Resume a previously failed command and verify/finalize */ void ahci_guest_io_resume(AHCIQState *ahci, AHCICommand *cmd) { /* Complete the command */ qmp_async("{'execute':'cont' }"); qmp_eventwait("RESUME"); ahci_command_wait(ahci, cmd); ahci_command_verify(ahci, cmd); ahci_command_free(cmd); } /* Given a guest buffer address, perform an IO operation */ void ahci_guest_io(AHCIQState *ahci, uint8_t port, uint8_t ide_cmd, uint64_t buffer, size_t bufsize, uint64_t sector) { AHCICommand *cmd; cmd = ahci_command_create(ide_cmd); ahci_command_set_buffer(cmd, buffer); ahci_command_set_size(cmd, bufsize); if (sector) { ahci_command_set_offset(cmd, sector); } ahci_command_commit(ahci, cmd, port); ahci_command_issue(ahci, cmd); ahci_command_verify(ahci, cmd); ahci_command_free(cmd); } static AHCICommandProp *ahci_command_find(uint8_t command_name) { int i; for (i = 0; i < ARRAY_SIZE(ahci_command_properties); i++) { if (ahci_command_properties[i].cmd == command_name) { return &ahci_command_properties[i]; } } return NULL; } /* Given a HOST buffer, create a buffer address and perform an IO operation. */ void ahci_io(AHCIQState *ahci, uint8_t port, uint8_t ide_cmd, void *buffer, size_t bufsize, uint64_t sector) { uint64_t ptr; AHCICommandProp *props; props = ahci_command_find(ide_cmd); g_assert(props); ptr = ahci_alloc(ahci, bufsize); g_assert(ptr); qmemset(ptr, 0x00, bufsize); if (props->write) { bufwrite(ptr, buffer, bufsize); } ahci_guest_io(ahci, port, ide_cmd, ptr, bufsize, sector); if (props->read) { bufread(ptr, buffer, bufsize); } ahci_free(ahci, ptr); } /** * Initializes a basic command header in memory. * We assume that this is for an ATA command using RegH2DFIS. */ static void command_header_init(AHCICommand *cmd) { AHCICommandHeader *hdr = &cmd->header; AHCICommandProp *props = cmd->props; hdr->flags = 5; /* RegH2DFIS is 5 DW long. Must be < 32 */ hdr->flags |= CMDH_CLR_BSY; /* Clear the BSY bit when done */ if (props->write) { hdr->flags |= CMDH_WRITE; } if (props->atapi) { hdr->flags |= CMDH_ATAPI; } /* Other flags: PREFETCH, RESET, and BIST */ hdr->prdtl = size_to_prdtl(cmd->xbytes, cmd->prd_size); hdr->prdbc = 0; hdr->ctba = 0; } static void command_table_init(AHCICommand *cmd) { RegH2DFIS *fis = &(cmd->fis); uint16_t sect_count = (cmd->xbytes / AHCI_SECTOR_SIZE); fis->fis_type = REG_H2D_FIS; fis->flags = REG_H2D_FIS_CMD; /* "Command" bit */ fis->command = cmd->name; if (cmd->props->ncq) { NCQFIS *ncqfis = (NCQFIS *)fis; /* NCQ is weird and re-uses FIS frames for unrelated data. * See SATA 3.2, 13.6.4.1 READ FPDMA QUEUED for an example. */ ncqfis->sector_low = sect_count & 0xFF; ncqfis->sector_hi = (sect_count >> 8) & 0xFF; ncqfis->device = NCQ_DEVICE_MAGIC; /* Force Unit Access is bit 7 in the device register */ ncqfis->tag = 0; /* bits 3-7 are the NCQ tag */ ncqfis->prio = 0; /* bits 6,7 are a prio tag */ /* RARC bit is bit 0 of TAG field */ } else { fis->feature_low = 0x00; fis->feature_high = 0x00; if (cmd->props->lba28 || cmd->props->lba48) { fis->device = ATA_DEVICE_LBA; } fis->count = (cmd->xbytes / AHCI_SECTOR_SIZE); } fis->icc = 0x00; fis->control = 0x00; memset(fis->aux, 0x00, ARRAY_SIZE(fis->aux)); } AHCICommand *ahci_command_create(uint8_t command_name) { AHCICommandProp *props = ahci_command_find(command_name); AHCICommand *cmd; g_assert(props); cmd = g_malloc0(sizeof(AHCICommand)); g_assert(!(props->dma && props->pio)); g_assert(!(props->lba28 && props->lba48)); g_assert(!(props->read && props->write)); g_assert(!props->size || props->data); g_assert(!props->ncq || props->lba48); /* Defaults and book-keeping */ cmd->props = props; cmd->name = command_name; cmd->xbytes = props->size; cmd->prd_size = 4096; cmd->buffer = 0xabad1dea; if (!cmd->props->ncq) { cmd->interrupts = AHCI_PX_IS_DHRS; } /* BUG: We expect the DPS interrupt for data commands */ /* cmd->interrupts |= props->data ? AHCI_PX_IS_DPS : 0; */ /* BUG: We expect the DMA Setup interrupt for DMA commands */ /* cmd->interrupts |= props->dma ? AHCI_PX_IS_DSS : 0; */ cmd->interrupts |= props->pio ? AHCI_PX_IS_PSS : 0; cmd->interrupts |= props->ncq ? AHCI_PX_IS_SDBS : 0; command_header_init(cmd); command_table_init(cmd); return cmd; } void ahci_command_free(AHCICommand *cmd) { g_free(cmd); } void ahci_command_set_flags(AHCICommand *cmd, uint16_t cmdh_flags) { cmd->header.flags |= cmdh_flags; } void ahci_command_clr_flags(AHCICommand *cmd, uint16_t cmdh_flags) { cmd->header.flags &= ~cmdh_flags; } void ahci_command_set_offset(AHCICommand *cmd, uint64_t lba_sect) { RegH2DFIS *fis = &(cmd->fis); if (cmd->props->lba28) { g_assert_cmphex(lba_sect, <=, 0xFFFFFFF); } else if (cmd->props->lba48 || cmd->props->ncq) { g_assert_cmphex(lba_sect, <=, 0xFFFFFFFFFFFF); } else { /* Can't set offset if we don't know the format. */ g_assert_not_reached(); } /* LBA28 uses the low nibble of the device/control register for LBA24:27 */ fis->lba_lo[0] = (lba_sect & 0xFF); fis->lba_lo[1] = (lba_sect >> 8) & 0xFF; fis->lba_lo[2] = (lba_sect >> 16) & 0xFF; if (cmd->props->lba28) { fis->device = (fis->device & 0xF0) | ((lba_sect >> 24) & 0x0F); } fis->lba_hi[0] = (lba_sect >> 24) & 0xFF; fis->lba_hi[1] = (lba_sect >> 32) & 0xFF; fis->lba_hi[2] = (lba_sect >> 40) & 0xFF; } void ahci_command_set_buffer(AHCICommand *cmd, uint64_t buffer) { cmd->buffer = buffer; } void ahci_command_set_sizes(AHCICommand *cmd, uint64_t xbytes, unsigned prd_size) { uint16_t sect_count; /* Each PRD can describe up to 4MiB, and must not be odd. */ g_assert_cmphex(prd_size, <=, 4096 * 1024); g_assert_cmphex(prd_size & 0x01, ==, 0x00); if (prd_size) { cmd->prd_size = prd_size; } cmd->xbytes = xbytes; sect_count = (cmd->xbytes / AHCI_SECTOR_SIZE); if (cmd->props->ncq) { NCQFIS *nfis = (NCQFIS *)&(cmd->fis); nfis->sector_low = sect_count & 0xFF; nfis->sector_hi = (sect_count >> 8) & 0xFF; } else { cmd->fis.count = sect_count; } cmd->header.prdtl = size_to_prdtl(cmd->xbytes, cmd->prd_size); } void ahci_command_set_size(AHCICommand *cmd, uint64_t xbytes) { ahci_command_set_sizes(cmd, xbytes, cmd->prd_size); } void ahci_command_set_prd_size(AHCICommand *cmd, unsigned prd_size) { ahci_command_set_sizes(cmd, cmd->xbytes, prd_size); } void ahci_command_adjust(AHCICommand *cmd, uint64_t offset, uint64_t buffer, uint64_t xbytes, unsigned prd_size) { ahci_command_set_sizes(cmd, xbytes, prd_size); ahci_command_set_buffer(cmd, buffer); ahci_command_set_offset(cmd, offset); } void ahci_command_commit(AHCIQState *ahci, AHCICommand *cmd, uint8_t port) { uint16_t i, prdtl; uint64_t table_size, table_ptr, remaining; PRD prd; /* This command is now tied to this port/command slot */ cmd->port = port; cmd->slot = ahci_pick_cmd(ahci, port); if (cmd->props->ncq) { NCQFIS *nfis = (NCQFIS *)&cmd->fis; nfis->tag = (cmd->slot << 3) & 0xFC; } /* Create a buffer for the command table */ prdtl = size_to_prdtl(cmd->xbytes, cmd->prd_size); table_size = CMD_TBL_SIZ(prdtl); table_ptr = ahci_alloc(ahci, table_size); g_assert(table_ptr); /* AHCI 1.3: Must be aligned to 0x80 */ g_assert((table_ptr & 0x7F) == 0x00); cmd->header.ctba = table_ptr; /* Commit the command header and command FIS */ ahci_set_command_header(ahci, port, cmd->slot, &(cmd->header)); ahci_write_fis(ahci, cmd); /* Construct and write the PRDs to the command table */ g_assert_cmphex(prdtl, ==, cmd->header.prdtl); remaining = cmd->xbytes; for (i = 0; i < prdtl; ++i) { prd.dba = cpu_to_le64(cmd->buffer + (cmd->prd_size * i)); prd.res = 0; if (remaining > cmd->prd_size) { /* Note that byte count is 0-based. */ prd.dbc = cpu_to_le32(cmd->prd_size - 1); remaining -= cmd->prd_size; } else { /* Again, dbc is 0-based. */ prd.dbc = cpu_to_le32(remaining - 1); remaining = 0; } prd.dbc |= cpu_to_le32(0x80000000); /* Request DPS Interrupt */ /* Commit the PRD entry to the Command Table */ memwrite(table_ptr + 0x80 + (i * sizeof(PRD)), &prd, sizeof(PRD)); } /* Bookmark the PRDTL and CTBA values */ ahci->port[port].ctba[cmd->slot] = table_ptr; ahci->port[port].prdtl[cmd->slot] = prdtl; } void ahci_command_issue_async(AHCIQState *ahci, AHCICommand *cmd) { if (cmd->props->ncq) { ahci_px_wreg(ahci, cmd->port, AHCI_PX_SACT, (1 << cmd->slot)); } ahci_px_wreg(ahci, cmd->port, AHCI_PX_CI, (1 << cmd->slot)); } void ahci_command_wait(AHCIQState *ahci, AHCICommand *cmd) { /* We can't rely on STS_BSY until the command has started processing. * Therefore, we also use the Command Issue bit as indication of * a command in-flight. */ #define RSET(REG, MASK) (BITSET(ahci_px_rreg(ahci, cmd->port, (REG)), (MASK))) while (RSET(AHCI_PX_TFD, AHCI_PX_TFD_STS_BSY) || RSET(AHCI_PX_CI, 1 << cmd->slot) || (cmd->props->ncq && RSET(AHCI_PX_SACT, 1 << cmd->slot))) { usleep(50); } } void ahci_command_issue(AHCIQState *ahci, AHCICommand *cmd) { ahci_command_issue_async(ahci, cmd); ahci_command_wait(ahci, cmd); } void ahci_command_verify(AHCIQState *ahci, AHCICommand *cmd) { uint8_t slot = cmd->slot; uint8_t port = cmd->port; ahci_port_check_error(ahci, port); ahci_port_check_interrupts(ahci, port, cmd->interrupts); ahci_port_check_nonbusy(ahci, port, slot); ahci_port_check_cmd_sanity(ahci, cmd); if (cmd->interrupts & AHCI_PX_IS_DHRS) { ahci_port_check_d2h_sanity(ahci, port, slot); } if (cmd->props->pio) { ahci_port_check_pio_sanity(ahci, port, slot, cmd->xbytes); } } uint8_t ahci_command_slot(AHCICommand *cmd) { return cmd->slot; }