/* * QEMU System Emulator * * Copyright (c) 2003-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu-common.h" #include "qemu/timer.h" #include "qemu/sockets.h" // struct in_addr needed for libslirp.h #include "slirp/libslirp.h" #include "qemu/main-loop.h" #include "block/aio.h" #include "sysemu/hax.h" #ifndef _WIN32 #include "qemu/compatfd.h" /* If we have signalfd, we mask out the signals we want to handle and then * use signalfd to listen for them. We rely on whatever the current signal * handler is to dispatch the signals when we receive them. */ static void sigfd_handler(void *opaque) { int fd = (intptr_t)opaque; struct qemu_signalfd_siginfo info; struct sigaction action; ssize_t len; while (1) { do { len = read(fd, &info, sizeof(info)); } while (len == -1 && errno == EINTR); if (len == -1 && errno == EAGAIN) { break; } if (len != sizeof(info)) { printf("read from sigfd returned %zd: %m\n", len); return; } sigaction(info.ssi_signo, NULL, &action); if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) { action.sa_sigaction(info.ssi_signo, (siginfo_t *)&info, NULL); } else if (action.sa_handler) { action.sa_handler(info.ssi_signo); } } } static int qemu_signal_init(void) { int sigfd; sigset_t set; /* * SIG_IPI must be blocked in the main thread and must not be caught * by sigwait() in the signal thread. Otherwise, the cpu thread will * not catch it reliably. */ sigemptyset(&set); sigaddset(&set, SIG_IPI); sigaddset(&set, SIGIO); sigaddset(&set, SIGALRM); sigaddset(&set, SIGBUS); pthread_sigmask(SIG_BLOCK, &set, NULL); sigdelset(&set, SIG_IPI); sigfd = qemu_signalfd(&set); if (sigfd == -1) { fprintf(stderr, "failed to create signalfd\n"); return -errno; } fcntl_setfl(sigfd, O_NONBLOCK); qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL, (void *)(intptr_t)sigfd); return 0; } #else /* _WIN32 */ static int qemu_signal_init(void) { return 0; } #endif static AioContext *qemu_aio_context; AioContext *qemu_get_aio_context(void) { return qemu_aio_context; } #ifdef CONFIG_HAX static void qemu_notify_hax_event(void) { CPUArchState *env = NULL; if (hax_enabled()) { for (env = first_cpu; env != NULL; env = env->next_cpu) { hax_raise_event(env); } } } #endif void qemu_notify_event(void) { if (!qemu_aio_context) { return; } #ifdef CONFIG_HAX qemu_notify_hax_event(); #endif aio_notify(qemu_aio_context); } static GArray *gpollfds; int qemu_init_main_loop(void) { int ret; GSource *src; init_clocks(); ret = qemu_signal_init(); if (ret) { return ret; } gpollfds = g_array_new(FALSE, FALSE, sizeof(GPollFD)); qemu_aio_context = aio_context_new(); src = aio_get_g_source(qemu_aio_context); g_source_attach(src, NULL); g_source_unref(src); return 0; } static int max_priority; #ifndef _WIN32 static int glib_pollfds_idx; static int glib_n_poll_fds; static void glib_pollfds_fill(int64_t *cur_timeout) { GMainContext *context = g_main_context_default(); int timeout = 0; int64_t timeout_ns; int n; g_main_context_prepare(context, &max_priority); glib_pollfds_idx = gpollfds->len; n = glib_n_poll_fds; do { GPollFD *pfds; glib_n_poll_fds = n; g_array_set_size(gpollfds, glib_pollfds_idx + glib_n_poll_fds); pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx); n = g_main_context_query(context, max_priority, &timeout, pfds, glib_n_poll_fds); } while (n != glib_n_poll_fds); if (timeout < 0) { timeout_ns = -1; } else { timeout_ns = (int64_t)timeout * (int64_t)SCALE_MS; } *cur_timeout = qemu_soonest_timeout(timeout_ns, *cur_timeout); } static void glib_pollfds_poll(void) { GMainContext *context = g_main_context_default(); GPollFD *pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx); if (g_main_context_check(context, max_priority, pfds, glib_n_poll_fds)) { g_main_context_dispatch(context); } } #define MAX_MAIN_LOOP_SPIN (1000) static int os_host_main_loop_wait(int64_t timeout) { int ret; static int spin_counter; glib_pollfds_fill(&timeout); /* If the I/O thread is very busy or we are incorrectly busy waiting in * the I/O thread, this can lead to starvation of the BQL such that the * VCPU threads never run. To make sure we can detect the later case, * print a message to the screen. If we run into this condition, create * a fake timeout in order to give the VCPU threads a chance to run. */ if (!timeout && (spin_counter > MAX_MAIN_LOOP_SPIN)) { static bool notified; if (!notified) { fprintf(stderr, "main-loop: WARNING: I/O thread spun for %d iterations\n", MAX_MAIN_LOOP_SPIN); notified = true; } timeout = SCALE_MS; } if (timeout) { spin_counter = 0; qemu_mutex_unlock_iothread(); } else { spin_counter++; } ret = qemu_poll_ns((GPollFD *)gpollfds->data, gpollfds->len, timeout); if (timeout) { qemu_mutex_lock_iothread(); } glib_pollfds_poll(); return ret; } #else /***********************************************************/ /* Polling handling */ typedef struct PollingEntry { PollingFunc *func; void *opaque; struct PollingEntry *next; } PollingEntry; static PollingEntry *first_polling_entry; int qemu_add_polling_cb(PollingFunc *func, void *opaque) { PollingEntry **ppe, *pe; pe = g_malloc0(sizeof(PollingEntry)); pe->func = func; pe->opaque = opaque; for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next); *ppe = pe; return 0; } void qemu_del_polling_cb(PollingFunc *func, void *opaque) { PollingEntry **ppe, *pe; for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) { pe = *ppe; if (pe->func == func && pe->opaque == opaque) { *ppe = pe->next; g_free(pe); break; } } } /***********************************************************/ /* Wait objects support */ typedef struct WaitObjects { int num; int revents[MAXIMUM_WAIT_OBJECTS + 1]; HANDLE events[MAXIMUM_WAIT_OBJECTS + 1]; WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1]; void *opaque[MAXIMUM_WAIT_OBJECTS + 1]; } WaitObjects; static WaitObjects wait_objects = {0}; int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) { WaitObjects *w = &wait_objects; if (w->num >= MAXIMUM_WAIT_OBJECTS) { return -1; } w->events[w->num] = handle; w->func[w->num] = func; w->opaque[w->num] = opaque; w->revents[w->num] = 0; w->num++; return 0; } void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) { int i, found; WaitObjects *w = &wait_objects; found = 0; for (i = 0; i < w->num; i++) { if (w->events[i] == handle) { found = 1; } if (found) { w->events[i] = w->events[i + 1]; w->func[i] = w->func[i + 1]; w->opaque[i] = w->opaque[i + 1]; w->revents[i] = w->revents[i + 1]; } } if (found) { w->num--; } } void qemu_fd_register(int fd) { WSAEventSelect(fd, event_notifier_get_handle(&qemu_aio_context->notifier), FD_READ | FD_ACCEPT | FD_CLOSE | FD_CONNECT | FD_WRITE | FD_OOB); } static int pollfds_fill(GArray *pollfds, fd_set *rfds, fd_set *wfds, fd_set *xfds) { int nfds = -1; int i; for (i = 0; i < pollfds->len; i++) { GPollFD *pfd = &g_array_index(pollfds, GPollFD, i); int fd = pfd->fd; int events = pfd->events; if (events & G_IO_IN) { FD_SET(fd, rfds); nfds = MAX(nfds, fd); } if (events & G_IO_OUT) { FD_SET(fd, wfds); nfds = MAX(nfds, fd); } if (events & G_IO_PRI) { FD_SET(fd, xfds); nfds = MAX(nfds, fd); } } return nfds; } static void pollfds_poll(GArray *pollfds, int nfds, fd_set *rfds, fd_set *wfds, fd_set *xfds) { int i; for (i = 0; i < pollfds->len; i++) { GPollFD *pfd = &g_array_index(pollfds, GPollFD, i); int fd = pfd->fd; int revents = 0; if (FD_ISSET(fd, rfds)) { revents |= G_IO_IN; } if (FD_ISSET(fd, wfds)) { revents |= G_IO_OUT; } if (FD_ISSET(fd, xfds)) { revents |= G_IO_PRI; } pfd->revents = revents & pfd->events; } } static int os_host_main_loop_wait(int64_t timeout) { GMainContext *context = g_main_context_default(); GPollFD poll_fds[1024 * 2]; /* this is probably overkill */ int select_ret = 0; int g_poll_ret, ret, i, n_poll_fds; PollingEntry *pe; WaitObjects *w = &wait_objects; gint poll_timeout; int64_t poll_timeout_ns; static struct timeval tv0; fd_set rfds, wfds, xfds; int nfds; /* XXX: need to suppress polling by better using win32 events */ ret = 0; for (pe = first_polling_entry; pe != NULL; pe = pe->next) { ret |= pe->func(pe->opaque); } if (ret != 0) { return ret; } FD_ZERO(&rfds); FD_ZERO(&wfds); FD_ZERO(&xfds); nfds = pollfds_fill(gpollfds, &rfds, &wfds, &xfds); if (nfds >= 0) { select_ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv0); if (select_ret != 0) { timeout = 0; } if (select_ret > 0) { pollfds_poll(gpollfds, nfds, &rfds, &wfds, &xfds); } } g_main_context_prepare(context, &max_priority); n_poll_fds = g_main_context_query(context, max_priority, &poll_timeout, poll_fds, ARRAY_SIZE(poll_fds)); g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds)); for (i = 0; i < w->num; i++) { poll_fds[n_poll_fds + i].fd = (DWORD_PTR)w->events[i]; poll_fds[n_poll_fds + i].events = G_IO_IN; } if (poll_timeout < 0) { poll_timeout_ns = -1; } else { poll_timeout_ns = (int64_t)poll_timeout * (int64_t)SCALE_MS; } poll_timeout_ns = qemu_soonest_timeout(poll_timeout_ns, timeout); qemu_mutex_unlock_iothread(); g_poll_ret = qemu_poll_ns(poll_fds, n_poll_fds + w->num, poll_timeout_ns); qemu_mutex_lock_iothread(); if (g_poll_ret > 0) { for (i = 0; i < w->num; i++) { w->revents[i] = poll_fds[n_poll_fds + i].revents; } for (i = 0; i < w->num; i++) { if (w->revents[i] && w->func[i]) { w->func[i](w->opaque[i]); } } } if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) { g_main_context_dispatch(context); } return select_ret || g_poll_ret; } #endif int main_loop_wait(int nonblocking) { int ret; uint32_t timeout = UINT32_MAX; int64_t timeout_ns; if (nonblocking) { timeout = 0; } /* poll any events */ g_array_set_size(gpollfds, 0); /* reset for new iteration */ /* XXX: separate device handlers from system ones */ #ifdef CONFIG_SLIRP slirp_pollfds_fill(gpollfds, &timeout); #endif qemu_iohandler_fill(gpollfds); if (timeout == UINT32_MAX) { timeout_ns = -1; } else { timeout_ns = (uint64_t)timeout * (int64_t)(SCALE_MS); } timeout_ns = qemu_soonest_timeout(timeout_ns, timerlistgroup_deadline_ns( &main_loop_tlg)); ret = os_host_main_loop_wait(timeout_ns); qemu_iohandler_poll(gpollfds, ret); #ifdef CONFIG_SLIRP slirp_pollfds_poll(gpollfds, (ret < 0)); #endif qemu_clock_run_all_timers(); return ret; } /* Functions to operate on the main QEMU AioContext. */ QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque) { return aio_bh_new(qemu_aio_context, cb, opaque); } bool qemu_aio_wait(void) { return aio_poll(qemu_aio_context, true); } #ifdef CONFIG_POSIX void qemu_aio_set_fd_handler(int fd, IOHandler *io_read, IOHandler *io_write, void *opaque) { aio_set_fd_handler(qemu_aio_context, fd, io_read, io_write, opaque); } #endif void qemu_aio_set_event_notifier(EventNotifier *notifier, EventNotifierHandler *io_read) { aio_set_event_notifier(qemu_aio_context, notifier, io_read); }