/* * QEMU ESP/NCR53C9x emulation * * Copyright (c) 2005-2006 Fabrice Bellard * Copyright (c) 2012 Herve Poussineau * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw/sysbus.h" #include "hw/scsi/esp.h" #include "trace.h" #include "qemu/log.h" /* * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O), * also produced as NCR89C100. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt * and * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt */ static void esp_raise_irq(ESPState *s) { if (!(s->rregs[ESP_RSTAT] & STAT_INT)) { s->rregs[ESP_RSTAT] |= STAT_INT; qemu_irq_raise(s->irq); trace_esp_raise_irq(); } } static void esp_lower_irq(ESPState *s) { if (s->rregs[ESP_RSTAT] & STAT_INT) { s->rregs[ESP_RSTAT] &= ~STAT_INT; qemu_irq_lower(s->irq); trace_esp_lower_irq(); } } void esp_dma_enable(ESPState *s, int irq, int level) { if (level) { s->dma_enabled = 1; trace_esp_dma_enable(); if (s->dma_cb) { s->dma_cb(s); s->dma_cb = NULL; } } else { trace_esp_dma_disable(); s->dma_enabled = 0; } } void esp_request_cancelled(SCSIRequest *req) { ESPState *s = req->hba_private; if (req == s->current_req) { scsi_req_unref(s->current_req); s->current_req = NULL; s->current_dev = NULL; } } static uint32_t get_cmd(ESPState *s, uint8_t *buf) { uint32_t dmalen; int target; target = s->wregs[ESP_WBUSID] & BUSID_DID; if (s->dma) { dmalen = s->rregs[ESP_TCLO]; dmalen |= s->rregs[ESP_TCMID] << 8; dmalen |= s->rregs[ESP_TCHI] << 16; s->dma_memory_read(s->dma_opaque, buf, dmalen); } else { dmalen = s->ti_size; memcpy(buf, s->ti_buf, dmalen); buf[0] = buf[2] >> 5; } trace_esp_get_cmd(dmalen, target); s->ti_size = 0; s->ti_rptr = 0; s->ti_wptr = 0; if (s->current_req) { /* Started a new command before the old one finished. Cancel it. */ scsi_req_cancel(s->current_req); s->async_len = 0; } s->current_dev = scsi_device_find(&s->bus, 0, target, 0); if (!s->current_dev) { // No such drive s->rregs[ESP_RSTAT] = 0; s->rregs[ESP_RINTR] = INTR_DC; s->rregs[ESP_RSEQ] = SEQ_0; esp_raise_irq(s); return 0; } return dmalen; } static void do_busid_cmd(ESPState *s, uint8_t *buf, uint8_t busid) { int32_t datalen; int lun; SCSIDevice *current_lun; trace_esp_do_busid_cmd(busid); lun = busid & 7; current_lun = scsi_device_find(&s->bus, 0, s->current_dev->id, lun); s->current_req = scsi_req_new(current_lun, 0, lun, buf, s); datalen = scsi_req_enqueue(s->current_req); s->ti_size = datalen; if (datalen != 0) { s->rregs[ESP_RSTAT] = STAT_TC; s->dma_left = 0; s->dma_counter = 0; if (datalen > 0) { s->rregs[ESP_RSTAT] |= STAT_DI; } else { s->rregs[ESP_RSTAT] |= STAT_DO; } scsi_req_continue(s->current_req); } s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_raise_irq(s); } static void do_cmd(ESPState *s, uint8_t *buf) { uint8_t busid = buf[0]; do_busid_cmd(s, &buf[1], busid); } static void handle_satn(ESPState *s) { uint8_t buf[32]; int len; if (s->dma && !s->dma_enabled) { s->dma_cb = handle_satn; return; } len = get_cmd(s, buf); if (len) do_cmd(s, buf); } static void handle_s_without_atn(ESPState *s) { uint8_t buf[32]; int len; if (s->dma && !s->dma_enabled) { s->dma_cb = handle_s_without_atn; return; } len = get_cmd(s, buf); if (len) { do_busid_cmd(s, buf, 0); } } static void handle_satn_stop(ESPState *s) { if (s->dma && !s->dma_enabled) { s->dma_cb = handle_satn_stop; return; } s->cmdlen = get_cmd(s, s->cmdbuf); if (s->cmdlen) { trace_esp_handle_satn_stop(s->cmdlen); s->do_cmd = 1; s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD; s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_raise_irq(s); } } static void write_response(ESPState *s) { trace_esp_write_response(s->status); s->ti_buf[0] = s->status; s->ti_buf[1] = 0; if (s->dma) { s->dma_memory_write(s->dma_opaque, s->ti_buf, 2); s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST; s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; } else { s->ti_size = 2; s->ti_rptr = 0; s->ti_wptr = 0; s->rregs[ESP_RFLAGS] = 2; } esp_raise_irq(s); } static void esp_dma_done(ESPState *s) { s->rregs[ESP_RSTAT] |= STAT_TC; s->rregs[ESP_RINTR] = INTR_BS; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; s->rregs[ESP_TCLO] = 0; s->rregs[ESP_TCMID] = 0; s->rregs[ESP_TCHI] = 0; esp_raise_irq(s); } static void esp_do_dma(ESPState *s) { uint32_t len; int to_device; to_device = (s->ti_size < 0); len = s->dma_left; if (s->do_cmd) { trace_esp_do_dma(s->cmdlen, len); s->dma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len); s->ti_size = 0; s->cmdlen = 0; s->do_cmd = 0; do_cmd(s, s->cmdbuf); return; } if (s->async_len == 0) { /* Defer until data is available. */ return; } if (len > s->async_len) { len = s->async_len; } if (to_device) { s->dma_memory_read(s->dma_opaque, s->async_buf, len); } else { s->dma_memory_write(s->dma_opaque, s->async_buf, len); } s->dma_left -= len; s->async_buf += len; s->async_len -= len; if (to_device) s->ti_size += len; else s->ti_size -= len; if (s->async_len == 0) { scsi_req_continue(s->current_req); /* If there is still data to be read from the device then complete the DMA operation immediately. Otherwise defer until the scsi layer has completed. */ if (to_device || s->dma_left != 0 || s->ti_size == 0) { return; } } /* Partially filled a scsi buffer. Complete immediately. */ esp_dma_done(s); } void esp_command_complete(SCSIRequest *req, uint32_t status, size_t resid) { ESPState *s = req->hba_private; trace_esp_command_complete(); if (s->ti_size != 0) { trace_esp_command_complete_unexpected(); } s->ti_size = 0; s->dma_left = 0; s->async_len = 0; if (status) { trace_esp_command_complete_fail(); } s->status = status; s->rregs[ESP_RSTAT] = STAT_ST; esp_dma_done(s); if (s->current_req) { scsi_req_unref(s->current_req); s->current_req = NULL; s->current_dev = NULL; } } void esp_transfer_data(SCSIRequest *req, uint32_t len) { ESPState *s = req->hba_private; trace_esp_transfer_data(s->dma_left, s->ti_size); s->async_len = len; s->async_buf = scsi_req_get_buf(req); if (s->dma_left) { esp_do_dma(s); } else if (s->dma_counter != 0 && s->ti_size <= 0) { /* If this was the last part of a DMA transfer then the completion interrupt is deferred to here. */ esp_dma_done(s); } } static void handle_ti(ESPState *s) { uint32_t dmalen, minlen; if (s->dma && !s->dma_enabled) { s->dma_cb = handle_ti; return; } dmalen = s->rregs[ESP_TCLO]; dmalen |= s->rregs[ESP_TCMID] << 8; dmalen |= s->rregs[ESP_TCHI] << 16; if (dmalen==0) { dmalen=0x10000; } s->dma_counter = dmalen; if (s->do_cmd) minlen = (dmalen < 32) ? dmalen : 32; else if (s->ti_size < 0) minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size; else minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size; trace_esp_handle_ti(minlen); if (s->dma) { s->dma_left = minlen; s->rregs[ESP_RSTAT] &= ~STAT_TC; esp_do_dma(s); } else if (s->do_cmd) { trace_esp_handle_ti_cmd(s->cmdlen); s->ti_size = 0; s->cmdlen = 0; s->do_cmd = 0; do_cmd(s, s->cmdbuf); return; } } void esp_hard_reset(ESPState *s) { memset(s->rregs, 0, ESP_REGS); memset(s->wregs, 0, ESP_REGS); s->rregs[ESP_TCHI] = s->chip_id; s->ti_size = 0; s->ti_rptr = 0; s->ti_wptr = 0; s->dma = 0; s->do_cmd = 0; s->dma_cb = NULL; s->rregs[ESP_CFG1] = 7; } static void esp_soft_reset(ESPState *s) { qemu_irq_lower(s->irq); esp_hard_reset(s); } static void parent_esp_reset(ESPState *s, int irq, int level) { if (level) { esp_soft_reset(s); } } uint64_t esp_reg_read(ESPState *s, uint32_t saddr) { uint32_t old_val; trace_esp_mem_readb(saddr, s->rregs[saddr]); switch (saddr) { case ESP_FIFO: if (s->ti_size > 0) { s->ti_size--; if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) { /* Data out. */ qemu_log_mask(LOG_UNIMP, "esp: PIO data read not implemented\n"); s->rregs[ESP_FIFO] = 0; } else { s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++]; } esp_raise_irq(s); } if (s->ti_size == 0) { s->ti_rptr = 0; s->ti_wptr = 0; } break; case ESP_RINTR: /* Clear sequence step, interrupt register and all status bits except TC */ old_val = s->rregs[ESP_RINTR]; s->rregs[ESP_RINTR] = 0; s->rregs[ESP_RSTAT] &= ~STAT_TC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_lower_irq(s); return old_val; default: break; } return s->rregs[saddr]; } void esp_reg_write(ESPState *s, uint32_t saddr, uint64_t val) { trace_esp_mem_writeb(saddr, s->wregs[saddr], val); switch (saddr) { case ESP_TCLO: case ESP_TCMID: case ESP_TCHI: s->rregs[ESP_RSTAT] &= ~STAT_TC; break; case ESP_FIFO: if (s->do_cmd) { s->cmdbuf[s->cmdlen++] = val & 0xff; } else if (s->ti_size == TI_BUFSZ - 1) { trace_esp_error_fifo_overrun(); } else { s->ti_size++; s->ti_buf[s->ti_wptr++] = val & 0xff; } break; case ESP_CMD: s->rregs[saddr] = val; if (val & CMD_DMA) { s->dma = 1; /* Reload DMA counter. */ s->rregs[ESP_TCLO] = s->wregs[ESP_TCLO]; s->rregs[ESP_TCMID] = s->wregs[ESP_TCMID]; s->rregs[ESP_TCHI] = s->wregs[ESP_TCHI]; } else { s->dma = 0; } switch(val & CMD_CMD) { case CMD_NOP: trace_esp_mem_writeb_cmd_nop(val); break; case CMD_FLUSH: trace_esp_mem_writeb_cmd_flush(val); //s->ti_size = 0; s->rregs[ESP_RINTR] = INTR_FC; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; break; case CMD_RESET: trace_esp_mem_writeb_cmd_reset(val); esp_soft_reset(s); break; case CMD_BUSRESET: trace_esp_mem_writeb_cmd_bus_reset(val); s->rregs[ESP_RINTR] = INTR_RST; if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) { esp_raise_irq(s); } break; case CMD_TI: handle_ti(s); break; case CMD_ICCS: trace_esp_mem_writeb_cmd_iccs(val); write_response(s); s->rregs[ESP_RINTR] = INTR_FC; s->rregs[ESP_RSTAT] |= STAT_MI; break; case CMD_MSGACC: trace_esp_mem_writeb_cmd_msgacc(val); s->rregs[ESP_RINTR] = INTR_DC; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; esp_raise_irq(s); break; case CMD_PAD: trace_esp_mem_writeb_cmd_pad(val); s->rregs[ESP_RSTAT] = STAT_TC; s->rregs[ESP_RINTR] = INTR_FC; s->rregs[ESP_RSEQ] = 0; break; case CMD_SATN: trace_esp_mem_writeb_cmd_satn(val); break; case CMD_RSTATN: trace_esp_mem_writeb_cmd_rstatn(val); break; case CMD_SEL: trace_esp_mem_writeb_cmd_sel(val); handle_s_without_atn(s); break; case CMD_SELATN: trace_esp_mem_writeb_cmd_selatn(val); handle_satn(s); break; case CMD_SELATNS: trace_esp_mem_writeb_cmd_selatns(val); handle_satn_stop(s); break; case CMD_ENSEL: trace_esp_mem_writeb_cmd_ensel(val); s->rregs[ESP_RINTR] = 0; break; case CMD_DISSEL: trace_esp_mem_writeb_cmd_dissel(val); s->rregs[ESP_RINTR] = 0; esp_raise_irq(s); break; default: trace_esp_error_unhandled_command(val); break; } break; case ESP_WBUSID ... ESP_WSYNO: break; case ESP_CFG1: case ESP_CFG2: case ESP_CFG3: case ESP_RES3: case ESP_RES4: s->rregs[saddr] = val; break; case ESP_WCCF ... ESP_WTEST: break; default: trace_esp_error_invalid_write(val, saddr); return; } s->wregs[saddr] = val; } static bool esp_mem_accepts(void *opaque, hwaddr addr, unsigned size, bool is_write) { return (size == 1) || (is_write && size == 4); } const VMStateDescription vmstate_esp = { .name ="esp", .version_id = 3, .minimum_version_id = 3, .minimum_version_id_old = 3, .fields = (VMStateField []) { VMSTATE_BUFFER(rregs, ESPState), VMSTATE_BUFFER(wregs, ESPState), VMSTATE_INT32(ti_size, ESPState), VMSTATE_UINT32(ti_rptr, ESPState), VMSTATE_UINT32(ti_wptr, ESPState), VMSTATE_BUFFER(ti_buf, ESPState), VMSTATE_UINT32(status, ESPState), VMSTATE_UINT32(dma, ESPState), VMSTATE_BUFFER(cmdbuf, ESPState), VMSTATE_UINT32(cmdlen, ESPState), VMSTATE_UINT32(do_cmd, ESPState), VMSTATE_UINT32(dma_left, ESPState), VMSTATE_END_OF_LIST() } }; typedef struct { SysBusDevice busdev; MemoryRegion iomem; uint32_t it_shift; ESPState esp; } SysBusESPState; static void sysbus_esp_mem_write(void *opaque, hwaddr addr, uint64_t val, unsigned int size) { SysBusESPState *sysbus = opaque; uint32_t saddr; saddr = addr >> sysbus->it_shift; esp_reg_write(&sysbus->esp, saddr, val); } static uint64_t sysbus_esp_mem_read(void *opaque, hwaddr addr, unsigned int size) { SysBusESPState *sysbus = opaque; uint32_t saddr; saddr = addr >> sysbus->it_shift; return esp_reg_read(&sysbus->esp, saddr); } static const MemoryRegionOps sysbus_esp_mem_ops = { .read = sysbus_esp_mem_read, .write = sysbus_esp_mem_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid.accepts = esp_mem_accepts, }; void esp_init(hwaddr espaddr, int it_shift, ESPDMAMemoryReadWriteFunc dma_memory_read, ESPDMAMemoryReadWriteFunc dma_memory_write, void *dma_opaque, qemu_irq irq, qemu_irq *reset, qemu_irq *dma_enable) { DeviceState *dev; SysBusDevice *s; SysBusESPState *sysbus; ESPState *esp; dev = qdev_create(NULL, "esp"); sysbus = DO_UPCAST(SysBusESPState, busdev.qdev, dev); esp = &sysbus->esp; esp->dma_memory_read = dma_memory_read; esp->dma_memory_write = dma_memory_write; esp->dma_opaque = dma_opaque; sysbus->it_shift = it_shift; /* XXX for now until rc4030 has been changed to use DMA enable signal */ esp->dma_enabled = 1; qdev_init_nofail(dev); s = SYS_BUS_DEVICE(dev); sysbus_connect_irq(s, 0, irq); sysbus_mmio_map(s, 0, espaddr); *reset = qdev_get_gpio_in(dev, 0); *dma_enable = qdev_get_gpio_in(dev, 1); } static const struct SCSIBusInfo esp_scsi_info = { .tcq = false, .max_target = ESP_MAX_DEVS, .max_lun = 7, .transfer_data = esp_transfer_data, .complete = esp_command_complete, .cancel = esp_request_cancelled }; static void sysbus_esp_gpio_demux(void *opaque, int irq, int level) { DeviceState *d = opaque; SysBusESPState *sysbus = container_of(d, SysBusESPState, busdev.qdev); ESPState *s = &sysbus->esp; switch (irq) { case 0: parent_esp_reset(s, irq, level); break; case 1: esp_dma_enable(opaque, irq, level); break; } } static int sysbus_esp_init(SysBusDevice *dev) { SysBusESPState *sysbus = FROM_SYSBUS(SysBusESPState, dev); ESPState *s = &sysbus->esp; sysbus_init_irq(dev, &s->irq); assert(sysbus->it_shift != -1); s->chip_id = TCHI_FAS100A; memory_region_init_io(&sysbus->iomem, NULL, &sysbus_esp_mem_ops, sysbus, "esp", ESP_REGS << sysbus->it_shift); sysbus_init_mmio(dev, &sysbus->iomem); qdev_init_gpio_in(&dev->qdev, sysbus_esp_gpio_demux, 2); scsi_bus_new(&s->bus, &dev->qdev, &esp_scsi_info, NULL); return scsi_bus_legacy_handle_cmdline(&s->bus); } static void sysbus_esp_hard_reset(DeviceState *dev) { SysBusESPState *sysbus = DO_UPCAST(SysBusESPState, busdev.qdev, dev); esp_hard_reset(&sysbus->esp); } static const VMStateDescription vmstate_sysbus_esp_scsi = { .name = "sysbusespscsi", .version_id = 0, .minimum_version_id = 0, .minimum_version_id_old = 0, .fields = (VMStateField[]) { VMSTATE_STRUCT(esp, SysBusESPState, 0, vmstate_esp, ESPState), VMSTATE_END_OF_LIST() } }; static void sysbus_esp_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); k->init = sysbus_esp_init; dc->reset = sysbus_esp_hard_reset; dc->vmsd = &vmstate_sysbus_esp_scsi; } static const TypeInfo sysbus_esp_info = { .name = "esp", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(SysBusESPState), .class_init = sysbus_esp_class_init, }; static void esp_register_types(void) { type_register_static(&sysbus_esp_info); } type_init(esp_register_types)