/* * QEMU e1000 emulation * * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. * Copyright (c) 2008 Qumranet * Based on work done by: * Copyright (c) 2007 Dan Aloni * Copyright (c) 2004 Antony T Curtis * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA */ #include "hw.h" #include "pci.h" #include "net.h" #include "e1000_hw.h" #define DEBUG #ifdef DEBUG enum { DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT, DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM, DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR, DEBUG_RXFILTER, DEBUG_NOTYET, }; #define DBGBIT(x) (1<>2) enum { defreg(CTRL), defreg(EECD), defreg(EERD), defreg(GPRC), defreg(GPTC), defreg(ICR), defreg(ICS), defreg(IMC), defreg(IMS), defreg(LEDCTL), defreg(MANC), defreg(MDIC), defreg(MPC), defreg(PBA), defreg(RCTL), defreg(RDBAH), defreg(RDBAL), defreg(RDH), defreg(RDLEN), defreg(RDT), defreg(STATUS), defreg(SWSM), defreg(TCTL), defreg(TDBAH), defreg(TDBAL), defreg(TDH), defreg(TDLEN), defreg(TDT), defreg(TORH), defreg(TORL), defreg(TOTH), defreg(TOTL), defreg(TPR), defreg(TPT), defreg(TXDCTL), defreg(WUFC), defreg(RA), defreg(MTA), defreg(CRCERRS),defreg(VFTA), defreg(VET), }; enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W }; static const char phy_regcap[0x20] = { [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW, [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW, [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW, [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R, [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R, [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R }; static void ioport_map(PCIDevice *pci_dev, int region_num, uint32_t addr, uint32_t size, int type) { DBGOUT(IO, "e1000_ioport_map addr=0x%04x size=0x%08x\n", addr, size); } static void set_interrupt_cause(E1000State *s, int index, uint32_t val) { if (val) val |= E1000_ICR_INT_ASSERTED; s->mac_reg[ICR] = val; qemu_set_irq(s->dev.irq[0], (s->mac_reg[IMS] & s->mac_reg[ICR]) != 0); } static void set_ics(E1000State *s, int index, uint32_t val) { DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR], s->mac_reg[IMS]); set_interrupt_cause(s, 0, val | s->mac_reg[ICR]); } static int rxbufsize(uint32_t v) { v &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 | E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 | E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256; switch (v) { case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384: return 16384; case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192: return 8192; case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096: return 4096; case E1000_RCTL_SZ_1024: return 1024; case E1000_RCTL_SZ_512: return 512; case E1000_RCTL_SZ_256: return 256; } return 2048; } static void set_rx_control(E1000State *s, int index, uint32_t val) { s->mac_reg[RCTL] = val; s->rxbuf_size = rxbufsize(val); s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1; DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT], s->mac_reg[RCTL]); } static void set_mdic(E1000State *s, int index, uint32_t val) { uint32_t data = val & E1000_MDIC_DATA_MASK; uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy # val = s->mac_reg[MDIC] | E1000_MDIC_ERROR; else if (val & E1000_MDIC_OP_READ) { DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr); if (!(phy_regcap[addr] & PHY_R)) { DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr); val |= E1000_MDIC_ERROR; } else val = (val ^ data) | s->phy_reg[addr]; } else if (val & E1000_MDIC_OP_WRITE) { DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data); if (!(phy_regcap[addr] & PHY_W)) { DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr); val |= E1000_MDIC_ERROR; } else s->phy_reg[addr] = data; } s->mac_reg[MDIC] = val | E1000_MDIC_READY; set_ics(s, 0, E1000_ICR_MDAC); } static uint32_t get_eecd(E1000State *s, int index) { uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd; DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n", s->eecd_state.bitnum_out, s->eecd_state.reading); if (!s->eecd_state.reading || ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >> ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1) ret |= E1000_EECD_DO; return ret; } static void set_eecd(E1000State *s, int index, uint32_t val) { uint32_t oldval = s->eecd_state.old_eecd; s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS | E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ); if (!(E1000_EECD_SK & (val ^ oldval))) // no clock edge return; if (!(E1000_EECD_SK & val)) { // falling edge s->eecd_state.bitnum_out++; return; } if (!(val & E1000_EECD_CS)) { // rising, no CS (EEPROM reset) memset(&s->eecd_state, 0, sizeof s->eecd_state); return; } s->eecd_state.val_in <<= 1; if (val & E1000_EECD_DI) s->eecd_state.val_in |= 1; if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) { s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1; s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) == EEPROM_READ_OPCODE_MICROWIRE); } DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n", s->eecd_state.bitnum_in, s->eecd_state.bitnum_out, s->eecd_state.reading); } static uint32_t flash_eerd_read(E1000State *s, int x) { unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START; if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG) return 0; return (s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) | E1000_EEPROM_RW_REG_DONE | r; } static void putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse) { uint32_t sum; if (cse && cse < n) n = cse + 1; if (sloc < n-1) { sum = net_checksum_add(n-css, data+css); cpu_to_be16wu((uint16_t *)(data + sloc), net_checksum_finish(sum)); } } static inline int vlan_enabled(E1000State *s) { return ((s->mac_reg[CTRL] & E1000_CTRL_VME) != 0); } static inline int vlan_rx_filter_enabled(E1000State *s) { return ((s->mac_reg[RCTL] & E1000_RCTL_VFE) != 0); } static inline int is_vlan_packet(E1000State *s, const uint8_t *buf) { return (be16_to_cpup((uint16_t *)(buf + 12)) == le16_to_cpup((uint16_t *)(s->mac_reg + VET))); } static inline int is_vlan_txd(uint32_t txd_lower) { return ((txd_lower & E1000_TXD_CMD_VLE) != 0); } static void xmit_seg(E1000State *s) { uint16_t len, *sp; unsigned int frames = s->tx.tso_frames, css, sofar, n; struct e1000_tx *tp = &s->tx; if (tp->tse && tp->cptse) { css = tp->ipcss; DBGOUT(TXSUM, "frames %d size %d ipcss %d\n", frames, tp->size, css); if (tp->ip) { // IPv4 cpu_to_be16wu((uint16_t *)(tp->data+css+2), tp->size - css); cpu_to_be16wu((uint16_t *)(tp->data+css+4), be16_to_cpup((uint16_t *)(tp->data+css+4))+frames); } else // IPv6 cpu_to_be16wu((uint16_t *)(tp->data+css+4), tp->size - css); css = tp->tucss; len = tp->size - css; DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->tcp, css, len); if (tp->tcp) { sofar = frames * tp->mss; cpu_to_be32wu((uint32_t *)(tp->data+css+4), // seq be32_to_cpupu((uint32_t *)(tp->data+css+4))+sofar); if (tp->paylen - sofar > tp->mss) tp->data[css + 13] &= ~9; // PSH, FIN } else // UDP cpu_to_be16wu((uint16_t *)(tp->data+css+4), len); if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { // add pseudo-header length before checksum calculation sp = (uint16_t *)(tp->data + tp->tucso); cpu_to_be16wu(sp, be16_to_cpup(sp) + len); } tp->tso_frames++; } if (tp->sum_needed & E1000_TXD_POPTS_TXSM) putsum(tp->data, tp->size, tp->tucso, tp->tucss, tp->tucse); if (tp->sum_needed & E1000_TXD_POPTS_IXSM) putsum(tp->data, tp->size, tp->ipcso, tp->ipcss, tp->ipcse); if (tp->vlan_needed) { memmove(tp->vlan, tp->data, 12); memcpy(tp->data + 8, tp->vlan_header, 4); qemu_send_packet(s->vc, tp->vlan, tp->size + 4); } else qemu_send_packet(s->vc, tp->data, tp->size); s->mac_reg[TPT]++; s->mac_reg[GPTC]++; n = s->mac_reg[TOTL]; if ((s->mac_reg[TOTL] += s->tx.size) < n) s->mac_reg[TOTH]++; } static void process_tx_desc(E1000State *s, struct e1000_tx_desc *dp) { uint32_t txd_lower = le32_to_cpu(dp->lower.data); uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); unsigned int split_size = txd_lower & 0xffff, bytes, sz, op; unsigned int msh = 0xfffff, hdr = 0; uint64_t addr; struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; struct e1000_tx *tp = &s->tx; if (dtype == E1000_TXD_CMD_DEXT) { // context descriptor op = le32_to_cpu(xp->cmd_and_length); tp->ipcss = xp->lower_setup.ip_fields.ipcss; tp->ipcso = xp->lower_setup.ip_fields.ipcso; tp->ipcse = le16_to_cpu(xp->lower_setup.ip_fields.ipcse); tp->tucss = xp->upper_setup.tcp_fields.tucss; tp->tucso = xp->upper_setup.tcp_fields.tucso; tp->tucse = le16_to_cpu(xp->upper_setup.tcp_fields.tucse); tp->paylen = op & 0xfffff; tp->hdr_len = xp->tcp_seg_setup.fields.hdr_len; tp->mss = le16_to_cpu(xp->tcp_seg_setup.fields.mss); tp->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0; tp->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0; tp->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0; tp->tso_frames = 0; if (tp->tucso == 0) { // this is probably wrong DBGOUT(TXSUM, "TCP/UDP: cso 0!\n"); tp->tucso = tp->tucss + (tp->tcp ? 16 : 6); } return; } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { // data descriptor tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8; tp->cptse = ( txd_lower & E1000_TXD_CMD_TSE ) ? 1 : 0; } else // legacy descriptor tp->cptse = 0; if (vlan_enabled(s) && is_vlan_txd(txd_lower) && (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) { tp->vlan_needed = 1; cpu_to_be16wu((uint16_t *)(tp->vlan_header), le16_to_cpup((uint16_t *)(s->mac_reg + VET))); cpu_to_be16wu((uint16_t *)(tp->vlan_header + 2), le16_to_cpu(dp->upper.fields.special)); } addr = le64_to_cpu(dp->buffer_addr); if (tp->tse && tp->cptse) { hdr = tp->hdr_len; msh = hdr + tp->mss; do { bytes = split_size; if (tp->size + bytes > msh) bytes = msh - tp->size; cpu_physical_memory_read(addr, tp->data + tp->size, bytes); if ((sz = tp->size + bytes) >= hdr && tp->size < hdr) memmove(tp->header, tp->data, hdr); tp->size = sz; addr += bytes; if (sz == msh) { xmit_seg(s); memmove(tp->data, tp->header, hdr); tp->size = hdr; } } while (split_size -= bytes); } else if (!tp->tse && tp->cptse) { // context descriptor TSE is not set, while data descriptor TSE is set DBGOUT(TXERR, "TCP segmentaion Error\n"); } else { cpu_physical_memory_read(addr, tp->data + tp->size, split_size); tp->size += split_size; } if (!(txd_lower & E1000_TXD_CMD_EOP)) return; if (!(tp->tse && tp->cptse && tp->size < hdr)) xmit_seg(s); tp->tso_frames = 0; tp->sum_needed = 0; tp->vlan_needed = 0; tp->size = 0; tp->cptse = 0; } static uint32_t txdesc_writeback(target_phys_addr_t base, struct e1000_tx_desc *dp) { uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS))) return 0; txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) & ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU); dp->upper.data = cpu_to_le32(txd_upper); cpu_physical_memory_write(base + ((char *)&dp->upper - (char *)dp), (void *)&dp->upper, sizeof(dp->upper)); return E1000_ICR_TXDW; } static void start_xmit(E1000State *s) { target_phys_addr_t base; struct e1000_tx_desc desc; uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE; if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) { DBGOUT(TX, "tx disabled\n"); return; } while (s->mac_reg[TDH] != s->mac_reg[TDT]) { base = ((uint64_t)s->mac_reg[TDBAH] << 32) + s->mac_reg[TDBAL] + sizeof(struct e1000_tx_desc) * s->mac_reg[TDH]; cpu_physical_memory_read(base, (void *)&desc, sizeof(desc)); DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH], (void *)(intptr_t)desc.buffer_addr, desc.lower.data, desc.upper.data); process_tx_desc(s, &desc); cause |= txdesc_writeback(base, &desc); if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN]) s->mac_reg[TDH] = 0; /* * the following could happen only if guest sw assigns * bogus values to TDT/TDLEN. * there's nothing too intelligent we could do about this. */ if (s->mac_reg[TDH] == tdh_start) { DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n", tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]); break; } } set_ics(s, 0, cause); } static int receive_filter(E1000State *s, const uint8_t *buf, int size) { static uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; static int mta_shift[] = {4, 3, 2, 0}; uint32_t f, rctl = s->mac_reg[RCTL], ra[2], *rp; if (is_vlan_packet(s, buf) && vlan_rx_filter_enabled(s)) { uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14)); uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) + ((vid >> 5) & 0x7f)); if ((vfta & (1 << (vid & 0x1f))) == 0) return 0; } if (rctl & E1000_RCTL_UPE) // promiscuous return 1; if ((buf[0] & 1) && (rctl & E1000_RCTL_MPE)) // promiscuous mcast return 1; if ((rctl & E1000_RCTL_BAM) && !memcmp(buf, bcast, sizeof bcast)) return 1; for (rp = s->mac_reg + RA; rp < s->mac_reg + RA + 32; rp += 2) { if (!(rp[1] & E1000_RAH_AV)) continue; ra[0] = cpu_to_le32(rp[0]); ra[1] = cpu_to_le32(rp[1]); if (!memcmp(buf, (uint8_t *)ra, 6)) { DBGOUT(RXFILTER, "unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n", (int)(rp - s->mac_reg - RA)/2, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]); return 1; } } DBGOUT(RXFILTER, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]); f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3]; f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff; if (s->mac_reg[MTA + (f >> 5)] & (1 << (f & 0x1f))) return 1; DBGOUT(RXFILTER, "dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], (rctl >> E1000_RCTL_MO_SHIFT) & 3, f >> 5, s->mac_reg[MTA + (f >> 5)]); return 0; } static int e1000_can_receive(void *opaque) { E1000State *s = opaque; return (s->mac_reg[RCTL] & E1000_RCTL_EN); } static void e1000_receive(void *opaque, const uint8_t *buf, int size) { E1000State *s = opaque; struct e1000_rx_desc desc; target_phys_addr_t base; unsigned int n, rdt; uint32_t rdh_start; uint16_t vlan_special = 0; uint8_t vlan_status = 0, vlan_offset = 0; if (!(s->mac_reg[RCTL] & E1000_RCTL_EN)) return; if (size > s->rxbuf_size) { DBGOUT(RX, "packet too large for buffers (%d > %d)\n", size, s->rxbuf_size); return; } if (!receive_filter(s, buf, size)) return; if (vlan_enabled(s) && is_vlan_packet(s, buf)) { vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(buf + 14))); memmove((void *)(buf + 4), buf, 12); vlan_status = E1000_RXD_STAT_VP; vlan_offset = 4; size -= 4; } rdh_start = s->mac_reg[RDH]; size += 4; // for the header do { if (s->mac_reg[RDH] == s->mac_reg[RDT] && s->check_rxov) { set_ics(s, 0, E1000_ICS_RXO); return; } base = ((uint64_t)s->mac_reg[RDBAH] << 32) + s->mac_reg[RDBAL] + sizeof(desc) * s->mac_reg[RDH]; cpu_physical_memory_read(base, (void *)&desc, sizeof(desc)); desc.special = vlan_special; desc.status |= (vlan_status | E1000_RXD_STAT_DD); if (desc.buffer_addr) { cpu_physical_memory_write(le64_to_cpu(desc.buffer_addr), (void *)(buf + vlan_offset), size); desc.length = cpu_to_le16(size); desc.status |= E1000_RXD_STAT_EOP|E1000_RXD_STAT_IXSM; } else // as per intel docs; skip descriptors with null buf addr DBGOUT(RX, "Null RX descriptor!!\n"); cpu_physical_memory_write(base, (void *)&desc, sizeof(desc)); if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN]) s->mac_reg[RDH] = 0; s->check_rxov = 1; /* see comment in start_xmit; same here */ if (s->mac_reg[RDH] == rdh_start) { DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n", rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]); set_ics(s, 0, E1000_ICS_RXO); return; } } while (desc.buffer_addr == 0); s->mac_reg[GPRC]++; s->mac_reg[TPR]++; n = s->mac_reg[TORL]; if ((s->mac_reg[TORL] += size) < n) s->mac_reg[TORH]++; n = E1000_ICS_RXT0; if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH]) rdt += s->mac_reg[RDLEN] / sizeof(desc); if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) << s->rxbuf_min_shift >= s->mac_reg[RDLEN]) n |= E1000_ICS_RXDMT0; set_ics(s, 0, n); } static uint32_t mac_readreg(E1000State *s, int index) { return s->mac_reg[index]; } static uint32_t mac_icr_read(E1000State *s, int index) { uint32_t ret = s->mac_reg[ICR]; DBGOUT(INTERRUPT, "ICR read: %x\n", ret); set_interrupt_cause(s, 0, 0); return ret; } static uint32_t mac_read_clr4(E1000State *s, int index) { uint32_t ret = s->mac_reg[index]; s->mac_reg[index] = 0; return ret; } static uint32_t mac_read_clr8(E1000State *s, int index) { uint32_t ret = s->mac_reg[index]; s->mac_reg[index] = 0; s->mac_reg[index-1] = 0; return ret; } static void mac_writereg(E1000State *s, int index, uint32_t val) { s->mac_reg[index] = val; } static void set_rdt(E1000State *s, int index, uint32_t val) { s->check_rxov = 0; s->mac_reg[index] = val & 0xffff; } static void set_16bit(E1000State *s, int index, uint32_t val) { s->mac_reg[index] = val & 0xffff; } static void set_dlen(E1000State *s, int index, uint32_t val) { s->mac_reg[index] = val & 0xfff80; } static void set_tctl(E1000State *s, int index, uint32_t val) { s->mac_reg[index] = val; s->mac_reg[TDT] &= 0xffff; start_xmit(s); } static void set_icr(E1000State *s, int index, uint32_t val) { DBGOUT(INTERRUPT, "set_icr %x\n", val); set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val); } static void set_imc(E1000State *s, int index, uint32_t val) { s->mac_reg[IMS] &= ~val; set_ics(s, 0, 0); } static void set_ims(E1000State *s, int index, uint32_t val) { s->mac_reg[IMS] |= val; set_ics(s, 0, 0); } #define getreg(x) [x] = mac_readreg static uint32_t (*macreg_readops[])(E1000State *, int) = { getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL), getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL), getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS), getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL), getreg(RDH), getreg(RDT), getreg(VET), [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, [GPRC] = mac_read_clr4, [GPTC] = mac_read_clr4, [TPR] = mac_read_clr4, [TPT] = mac_read_clr4, [ICR] = mac_icr_read, [EECD] = get_eecd, [EERD] = flash_eerd_read, [CRCERRS ... MPC] = &mac_readreg, [RA ... RA+31] = &mac_readreg, [MTA ... MTA+127] = &mac_readreg, [VFTA ... VFTA+127] = &mac_readreg, }; enum { NREADOPS = ARRAY_SIZE(macreg_readops) }; #define putreg(x) [x] = mac_writereg static void (*macreg_writeops[])(E1000State *, int, uint32_t) = { putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC), putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH), putreg(RDBAL), putreg(LEDCTL), putreg(CTRL), putreg(VET), [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl, [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics, [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt, [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr, [EECD] = set_eecd, [RCTL] = set_rx_control, [RA ... RA+31] = &mac_writereg, [MTA ... MTA+127] = &mac_writereg, [VFTA ... VFTA+127] = &mac_writereg, }; enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) }; static void e1000_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { E1000State *s = opaque; unsigned int index = (addr & 0x1ffff) >> 2; #ifdef TARGET_WORDS_BIGENDIAN val = bswap32(val); #endif if (index < NWRITEOPS && macreg_writeops[index]) macreg_writeops[index](s, index, val); else if (index < NREADOPS && macreg_readops[index]) DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04x\n", index<<2, val); else DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08x\n", index<<2, val); } static void e1000_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val) { // emulate hw without byte enables: no RMW e1000_mmio_writel(opaque, addr & ~3, (val & 0xffff) << (8*(addr & 3))); } static void e1000_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { // emulate hw without byte enables: no RMW e1000_mmio_writel(opaque, addr & ~3, (val & 0xff) << (8*(addr & 3))); } static uint32_t e1000_mmio_readl(void *opaque, target_phys_addr_t addr) { E1000State *s = opaque; unsigned int index = (addr & 0x1ffff) >> 2; if (index < NREADOPS && macreg_readops[index]) { uint32_t val = macreg_readops[index](s, index); #ifdef TARGET_WORDS_BIGENDIAN val = bswap32(val); #endif return val; } DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2); return 0; } static uint32_t e1000_mmio_readb(void *opaque, target_phys_addr_t addr) { return ((e1000_mmio_readl(opaque, addr & ~3)) >> (8 * (addr & 3))) & 0xff; } static uint32_t e1000_mmio_readw(void *opaque, target_phys_addr_t addr) { return ((e1000_mmio_readl(opaque, addr & ~3)) >> (8 * (addr & 3))) & 0xffff; } static const int mac_regtosave[] = { CTRL, EECD, EERD, GPRC, GPTC, ICR, ICS, IMC, IMS, LEDCTL, MANC, MDIC, MPC, PBA, RCTL, RDBAH, RDBAL, RDH, RDLEN, RDT, STATUS, SWSM, TCTL, TDBAH, TDBAL, TDH, TDLEN, TDT, TORH, TORL, TOTH, TOTL, TPR, TPT, TXDCTL, WUFC, VET, }; enum { MAC_NSAVE = ARRAY_SIZE(mac_regtosave) }; static const struct { int size; int array0; } mac_regarraystosave[] = { {32, RA}, {128, MTA}, {128, VFTA} }; enum { MAC_NARRAYS = ARRAY_SIZE(mac_regarraystosave) }; static void nic_save(QEMUFile *f, void *opaque) { E1000State *s = (E1000State *)opaque; int i, j; pci_device_save(&s->dev, f); qemu_put_be32(f, 0); qemu_put_be32s(f, &s->rxbuf_size); qemu_put_be32s(f, &s->rxbuf_min_shift); qemu_put_be32s(f, &s->eecd_state.val_in); qemu_put_be16s(f, &s->eecd_state.bitnum_in); qemu_put_be16s(f, &s->eecd_state.bitnum_out); qemu_put_be16s(f, &s->eecd_state.reading); qemu_put_be32s(f, &s->eecd_state.old_eecd); qemu_put_8s(f, &s->tx.ipcss); qemu_put_8s(f, &s->tx.ipcso); qemu_put_be16s(f, &s->tx.ipcse); qemu_put_8s(f, &s->tx.tucss); qemu_put_8s(f, &s->tx.tucso); qemu_put_be16s(f, &s->tx.tucse); qemu_put_be32s(f, &s->tx.paylen); qemu_put_8s(f, &s->tx.hdr_len); qemu_put_be16s(f, &s->tx.mss); qemu_put_be16s(f, &s->tx.size); qemu_put_be16s(f, &s->tx.tso_frames); qemu_put_8s(f, &s->tx.sum_needed); qemu_put_s8s(f, &s->tx.ip); qemu_put_s8s(f, &s->tx.tcp); qemu_put_buffer(f, s->tx.header, sizeof s->tx.header); qemu_put_buffer(f, s->tx.data, sizeof s->tx.data); for (i = 0; i < 64; i++) qemu_put_be16s(f, s->eeprom_data + i); for (i = 0; i < 0x20; i++) qemu_put_be16s(f, s->phy_reg + i); for (i = 0; i < MAC_NSAVE; i++) qemu_put_be32s(f, s->mac_reg + mac_regtosave[i]); for (i = 0; i < MAC_NARRAYS; i++) for (j = 0; j < mac_regarraystosave[i].size; j++) qemu_put_be32s(f, s->mac_reg + mac_regarraystosave[i].array0 + j); } static int nic_load(QEMUFile *f, void *opaque, int version_id) { E1000State *s = (E1000State *)opaque; int i, j, ret; if ((ret = pci_device_load(&s->dev, f)) < 0) return ret; if (version_id == 1) qemu_get_sbe32s(f, &i); /* once some unused instance id */ qemu_get_be32(f); /* Ignored. Was mmio_base. */ qemu_get_be32s(f, &s->rxbuf_size); qemu_get_be32s(f, &s->rxbuf_min_shift); qemu_get_be32s(f, &s->eecd_state.val_in); qemu_get_be16s(f, &s->eecd_state.bitnum_in); qemu_get_be16s(f, &s->eecd_state.bitnum_out); qemu_get_be16s(f, &s->eecd_state.reading); qemu_get_be32s(f, &s->eecd_state.old_eecd); qemu_get_8s(f, &s->tx.ipcss); qemu_get_8s(f, &s->tx.ipcso); qemu_get_be16s(f, &s->tx.ipcse); qemu_get_8s(f, &s->tx.tucss); qemu_get_8s(f, &s->tx.tucso); qemu_get_be16s(f, &s->tx.tucse); qemu_get_be32s(f, &s->tx.paylen); qemu_get_8s(f, &s->tx.hdr_len); qemu_get_be16s(f, &s->tx.mss); qemu_get_be16s(f, &s->tx.size); qemu_get_be16s(f, &s->tx.tso_frames); qemu_get_8s(f, &s->tx.sum_needed); qemu_get_s8s(f, &s->tx.ip); qemu_get_s8s(f, &s->tx.tcp); qemu_get_buffer(f, s->tx.header, sizeof s->tx.header); qemu_get_buffer(f, s->tx.data, sizeof s->tx.data); for (i = 0; i < 64; i++) qemu_get_be16s(f, s->eeprom_data + i); for (i = 0; i < 0x20; i++) qemu_get_be16s(f, s->phy_reg + i); for (i = 0; i < MAC_NSAVE; i++) qemu_get_be32s(f, s->mac_reg + mac_regtosave[i]); for (i = 0; i < MAC_NARRAYS; i++) for (j = 0; j < mac_regarraystosave[i].size; j++) qemu_get_be32s(f, s->mac_reg + mac_regarraystosave[i].array0 + j); return 0; } static const uint16_t e1000_eeprom_template[64] = { 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000, 0x3000, 0x1000, 0x6403, E1000_DEVID, 0x8086, E1000_DEVID, 0x8086, 0x3040, 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700, 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706, 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, }; static const uint16_t phy_reg_init[] = { [PHY_CTRL] = 0x1140, [PHY_STATUS] = 0x796d, // link initially up [PHY_ID1] = 0x141, [PHY_ID2] = PHY_ID2_INIT, [PHY_1000T_CTRL] = 0x0e00, [M88E1000_PHY_SPEC_CTRL] = 0x360, [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, [PHY_AUTONEG_ADV] = 0xde1, [PHY_LP_ABILITY] = 0x1e0, [PHY_1000T_STATUS] = 0x3c00, [M88E1000_PHY_SPEC_STATUS] = 0xac00, }; static const uint32_t mac_reg_init[] = { [PBA] = 0x00100030, [LEDCTL] = 0x602, [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | E1000_CTRL_SPD_1000 | E1000_CTRL_SLU, [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE | E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK | E1000_STATUS_SPEED_1000 | E1000_STATUS_FD | E1000_STATUS_LU, [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN | E1000_MANC_ARP_EN | E1000_MANC_0298_EN | E1000_MANC_RMCP_EN, }; /* PCI interface */ static CPUWriteMemoryFunc *e1000_mmio_write[] = { e1000_mmio_writeb, e1000_mmio_writew, e1000_mmio_writel }; static CPUReadMemoryFunc *e1000_mmio_read[] = { e1000_mmio_readb, e1000_mmio_readw, e1000_mmio_readl }; static void e1000_mmio_map(PCIDevice *pci_dev, int region_num, uint32_t addr, uint32_t size, int type) { E1000State *d = (E1000State *)pci_dev; int i; const uint32_t excluded_regs[] = { E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS, E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE }; DBGOUT(MMIO, "e1000_mmio_map addr=0x%08x 0x%08x\n", addr, size); cpu_register_physical_memory(addr, PNPMMIO_SIZE, d->mmio_index); qemu_register_coalesced_mmio(addr, excluded_regs[0]); for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++) qemu_register_coalesced_mmio(addr + excluded_regs[i] + 4, excluded_regs[i + 1] - excluded_regs[i] - 4); } void pci_e1000_init(PCIBus *bus, NICInfo *nd, int devfn) { E1000State *d; uint8_t *pci_conf; uint16_t checksum = 0; static const char info_str[] = "e1000"; int i; d = (E1000State *)pci_register_device(bus, "e1000", sizeof(E1000State), devfn, NULL, NULL); pci_conf = d->dev.config; memset(pci_conf, 0, 256); *(uint16_t *)(pci_conf+0x00) = cpu_to_le16(0x8086); *(uint16_t *)(pci_conf+0x02) = cpu_to_le16(E1000_DEVID); *(uint16_t *)(pci_conf+0x04) = cpu_to_le16(0x0407); *(uint16_t *)(pci_conf+0x06) = cpu_to_le16(0x0010); pci_conf[0x08] = 0x03; pci_conf[0x0a] = 0x00; // ethernet network controller pci_conf[0x0b] = 0x02; pci_conf[0x0c] = 0x10; pci_conf[0x3d] = 1; // interrupt pin 0 d->mmio_index = cpu_register_io_memory(0, e1000_mmio_read, e1000_mmio_write, d); pci_register_io_region((PCIDevice *)d, 0, PNPMMIO_SIZE, PCI_ADDRESS_SPACE_MEM, e1000_mmio_map); pci_register_io_region((PCIDevice *)d, 1, IOPORT_SIZE, PCI_ADDRESS_SPACE_IO, ioport_map); d->nd = nd; memmove(d->eeprom_data, e1000_eeprom_template, sizeof e1000_eeprom_template); for (i = 0; i < 3; i++) d->eeprom_data[i] = (nd->macaddr[2*i+1]<<8) | nd->macaddr[2*i]; for (i = 0; i < EEPROM_CHECKSUM_REG; i++) checksum += d->eeprom_data[i]; checksum = (uint16_t) EEPROM_SUM - checksum; d->eeprom_data[EEPROM_CHECKSUM_REG] = checksum; memset(d->phy_reg, 0, sizeof d->phy_reg); memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init); memset(d->mac_reg, 0, sizeof d->mac_reg); memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init); d->rxbuf_min_shift = 1; memset(&d->tx, 0, sizeof d->tx); d->vc = qemu_new_vlan_client(nd->vlan, e1000_receive, e1000_can_receive, d); snprintf(d->vc->info_str, sizeof(d->vc->info_str), "%s macaddr=%02x:%02x:%02x:%02x:%02x:%02x", info_str, d->nd->macaddr[0], d->nd->macaddr[1], d->nd->macaddr[2], d->nd->macaddr[3], d->nd->macaddr[4], d->nd->macaddr[5]); register_savevm(info_str, -1, 2, nic_save, nic_load, d); }