Age | Commit message (Collapse) | Author | Files | Lines |
|
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Split the configure test that checks for valgrind into two, one
part checking whether we have the gcc pragma to disable unused-but-set
variables, and the other part checking for the existence of valgrind.h.
The first of these has to be compiled with -Werror and the second
does not and shouldn't generate any warnings.
This (a) allows us to enable "make errors in configure tests be
build failures" and (b) enables use of valgrind on systems with
a gcc which doesn't know about -Wunused-but-set-varibale, like
Debian squeeze.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
|
|
valgrind tends to get confused and report false positives when you
switch stacks and don't tell it about it.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
QSLIST can be used for a free list, do it.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
|
|
ucontext-based coroutines use a free pool to reduce allocations and
deallocations of coroutine objects. The pool is per-thread, presumably
to improve locality. However, as coroutines are usually allocated in
a vcpu thread and freed in the I/O thread, the pool accounting gets
screwed up and we end allocating and freeing a coroutine for every I/O
request. This is expensive since large objects are allocated via the
kernel, and are not cached by the C runtime.
Fix by switching to a global pool. This is safe since we're protected
by the global mutex.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
qemu_malloc/qemu_free no longer exist after this commit.
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
|
|
Signed-off-by: malc <av1474@comtv.ru>
|
|
Asynchronous code is becoming very complex. At the same time
synchronous code is growing because it is convenient to write.
Sometimes duplicate code paths are even added, one synchronous and the
other asynchronous. This patch introduces coroutines which allow code
that looks synchronous but is asynchronous under the covers.
A coroutine has its own stack and is therefore able to preserve state
across blocking operations, which traditionally require callback
functions and manual marshalling of parameters.
Creating and starting a coroutine is easy:
coroutine = qemu_coroutine_create(my_coroutine);
qemu_coroutine_enter(coroutine, my_data);
The coroutine then executes until it returns or yields:
void coroutine_fn my_coroutine(void *opaque) {
MyData *my_data = opaque;
/* do some work */
qemu_coroutine_yield();
/* do some more work */
}
Yielding switches control back to the caller of qemu_coroutine_enter().
This is typically used to switch back to the main thread's event loop
after issuing an asynchronous I/O request. The request callback will
then invoke qemu_coroutine_enter() once more to switch back to the
coroutine.
Note that if coroutines are used only from threads which hold the global
mutex they will never execute concurrently. This makes programming with
coroutines easier than with threads. Race conditions cannot occur since
only one coroutine may be active at any time. Other coroutines can only
run across yield.
This coroutines implementation is based on the gtk-vnc implementation
written by Anthony Liguori <anthony@codemonkey.ws> but it has been
significantly rewritten by Kevin Wolf <kwolf@redhat.com> to use
setjmp()/longjmp() instead of the more expensive swapcontext() and by
Paolo Bonzini <pbonzini@redhat.com> for Windows Fibers support.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
|