diff options
Diffstat (limited to 'disas/libvixl/a64')
-rw-r--r-- | disas/libvixl/a64/assembler-a64.h | 1784 | ||||
-rw-r--r-- | disas/libvixl/a64/constants-a64.h | 1104 | ||||
-rw-r--r-- | disas/libvixl/a64/cpu-a64.h | 56 | ||||
-rw-r--r-- | disas/libvixl/a64/decoder-a64.cc | 712 | ||||
-rw-r--r-- | disas/libvixl/a64/decoder-a64.h | 198 | ||||
-rw-r--r-- | disas/libvixl/a64/disasm-a64.cc | 1678 | ||||
-rw-r--r-- | disas/libvixl/a64/disasm-a64.h | 109 | ||||
-rw-r--r-- | disas/libvixl/a64/instructions-a64.cc | 238 | ||||
-rw-r--r-- | disas/libvixl/a64/instructions-a64.h | 344 |
9 files changed, 6223 insertions, 0 deletions
diff --git a/disas/libvixl/a64/assembler-a64.h b/disas/libvixl/a64/assembler-a64.h new file mode 100644 index 0000000000..93b3011868 --- /dev/null +++ b/disas/libvixl/a64/assembler-a64.h @@ -0,0 +1,1784 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef VIXL_A64_ASSEMBLER_A64_H_ +#define VIXL_A64_ASSEMBLER_A64_H_ + +#include <list> + +#include "globals.h" +#include "utils.h" +#include "a64/instructions-a64.h" + +namespace vixl { + +typedef uint64_t RegList; +static const int kRegListSizeInBits = sizeof(RegList) * 8; + +// Registers. + +// Some CPURegister methods can return Register and FPRegister types, so we +// need to declare them in advance. +class Register; +class FPRegister; + + +class CPURegister { + public: + enum RegisterType { + // The kInvalid value is used to detect uninitialized static instances, + // which are always zero-initialized before any constructors are called. + kInvalid = 0, + kRegister, + kFPRegister, + kNoRegister + }; + + CPURegister() : code_(0), size_(0), type_(kNoRegister) { + ASSERT(!IsValid()); + ASSERT(IsNone()); + } + + CPURegister(unsigned code, unsigned size, RegisterType type) + : code_(code), size_(size), type_(type) { + ASSERT(IsValidOrNone()); + } + + unsigned code() const { + ASSERT(IsValid()); + return code_; + } + + RegisterType type() const { + ASSERT(IsValidOrNone()); + return type_; + } + + RegList Bit() const { + ASSERT(code_ < (sizeof(RegList) * 8)); + return IsValid() ? (static_cast<RegList>(1) << code_) : 0; + } + + unsigned size() const { + ASSERT(IsValid()); + return size_; + } + + int SizeInBytes() const { + ASSERT(IsValid()); + ASSERT(size() % 8 == 0); + return size_ / 8; + } + + int SizeInBits() const { + ASSERT(IsValid()); + return size_; + } + + bool Is32Bits() const { + ASSERT(IsValid()); + return size_ == 32; + } + + bool Is64Bits() const { + ASSERT(IsValid()); + return size_ == 64; + } + + bool IsValid() const { + if (IsValidRegister() || IsValidFPRegister()) { + ASSERT(!IsNone()); + return true; + } else { + ASSERT(IsNone()); + return false; + } + } + + bool IsValidRegister() const { + return IsRegister() && + ((size_ == kWRegSize) || (size_ == kXRegSize)) && + ((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode)); + } + + bool IsValidFPRegister() const { + return IsFPRegister() && + ((size_ == kSRegSize) || (size_ == kDRegSize)) && + (code_ < kNumberOfFPRegisters); + } + + bool IsNone() const { + // kNoRegister types should always have size 0 and code 0. + ASSERT((type_ != kNoRegister) || (code_ == 0)); + ASSERT((type_ != kNoRegister) || (size_ == 0)); + + return type_ == kNoRegister; + } + + bool Is(const CPURegister& other) const { + ASSERT(IsValidOrNone() && other.IsValidOrNone()); + return (code_ == other.code_) && (size_ == other.size_) && + (type_ == other.type_); + } + + inline bool IsZero() const { + ASSERT(IsValid()); + return IsRegister() && (code_ == kZeroRegCode); + } + + inline bool IsSP() const { + ASSERT(IsValid()); + return IsRegister() && (code_ == kSPRegInternalCode); + } + + inline bool IsRegister() const { + return type_ == kRegister; + } + + inline bool IsFPRegister() const { + return type_ == kFPRegister; + } + + const Register& W() const; + const Register& X() const; + const FPRegister& S() const; + const FPRegister& D() const; + + inline bool IsSameSizeAndType(const CPURegister& other) const { + return (size_ == other.size_) && (type_ == other.type_); + } + + protected: + unsigned code_; + unsigned size_; + RegisterType type_; + + private: + bool IsValidOrNone() const { + return IsValid() || IsNone(); + } +}; + + +class Register : public CPURegister { + public: + explicit Register() : CPURegister() {} + inline explicit Register(const CPURegister& other) + : CPURegister(other.code(), other.size(), other.type()) { + ASSERT(IsValidRegister()); + } + explicit Register(unsigned code, unsigned size) + : CPURegister(code, size, kRegister) {} + + bool IsValid() const { + ASSERT(IsRegister() || IsNone()); + return IsValidRegister(); + } + + static const Register& WRegFromCode(unsigned code); + static const Register& XRegFromCode(unsigned code); + + // V8 compatibility. + static const int kNumRegisters = kNumberOfRegisters; + static const int kNumAllocatableRegisters = kNumberOfRegisters - 1; + + private: + static const Register wregisters[]; + static const Register xregisters[]; +}; + + +class FPRegister : public CPURegister { + public: + inline FPRegister() : CPURegister() {} + inline explicit FPRegister(const CPURegister& other) + : CPURegister(other.code(), other.size(), other.type()) { + ASSERT(IsValidFPRegister()); + } + inline FPRegister(unsigned code, unsigned size) + : CPURegister(code, size, kFPRegister) {} + + bool IsValid() const { + ASSERT(IsFPRegister() || IsNone()); + return IsValidFPRegister(); + } + + static const FPRegister& SRegFromCode(unsigned code); + static const FPRegister& DRegFromCode(unsigned code); + + // V8 compatibility. + static const int kNumRegisters = kNumberOfFPRegisters; + static const int kNumAllocatableRegisters = kNumberOfFPRegisters - 1; + + private: + static const FPRegister sregisters[]; + static const FPRegister dregisters[]; +}; + + +// No*Reg is used to indicate an unused argument, or an error case. Note that +// these all compare equal (using the Is() method). The Register and FPRegister +// variants are provided for convenience. +const Register NoReg; +const FPRegister NoFPReg; +const CPURegister NoCPUReg; + + +#define DEFINE_REGISTERS(N) \ +const Register w##N(N, kWRegSize); \ +const Register x##N(N, kXRegSize); +REGISTER_CODE_LIST(DEFINE_REGISTERS) +#undef DEFINE_REGISTERS +const Register wsp(kSPRegInternalCode, kWRegSize); +const Register sp(kSPRegInternalCode, kXRegSize); + + +#define DEFINE_FPREGISTERS(N) \ +const FPRegister s##N(N, kSRegSize); \ +const FPRegister d##N(N, kDRegSize); +REGISTER_CODE_LIST(DEFINE_FPREGISTERS) +#undef DEFINE_FPREGISTERS + + +// Registers aliases. +const Register ip0 = x16; +const Register ip1 = x17; +const Register lr = x30; +const Register xzr = x31; +const Register wzr = w31; + + +// AreAliased returns true if any of the named registers overlap. Arguments +// set to NoReg are ignored. The system stack pointer may be specified. +bool AreAliased(const CPURegister& reg1, + const CPURegister& reg2, + const CPURegister& reg3 = NoReg, + const CPURegister& reg4 = NoReg, + const CPURegister& reg5 = NoReg, + const CPURegister& reg6 = NoReg, + const CPURegister& reg7 = NoReg, + const CPURegister& reg8 = NoReg); + + +// AreSameSizeAndType returns true if all of the specified registers have the +// same size, and are of the same type. The system stack pointer may be +// specified. Arguments set to NoReg are ignored, as are any subsequent +// arguments. At least one argument (reg1) must be valid (not NoCPUReg). +bool AreSameSizeAndType(const CPURegister& reg1, + const CPURegister& reg2, + const CPURegister& reg3 = NoCPUReg, + const CPURegister& reg4 = NoCPUReg, + const CPURegister& reg5 = NoCPUReg, + const CPURegister& reg6 = NoCPUReg, + const CPURegister& reg7 = NoCPUReg, + const CPURegister& reg8 = NoCPUReg); + + +// Lists of registers. +class CPURegList { + public: + inline explicit CPURegList(CPURegister reg1, + CPURegister reg2 = NoCPUReg, + CPURegister reg3 = NoCPUReg, + CPURegister reg4 = NoCPUReg) + : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()), + size_(reg1.size()), type_(reg1.type()) { + ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4)); + ASSERT(IsValid()); + } + + inline CPURegList(CPURegister::RegisterType type, unsigned size, RegList list) + : list_(list), size_(size), type_(type) { + ASSERT(IsValid()); + } + + inline CPURegList(CPURegister::RegisterType type, unsigned size, + unsigned first_reg, unsigned last_reg) + : size_(size), type_(type) { + ASSERT(((type == CPURegister::kRegister) && + (last_reg < kNumberOfRegisters)) || + ((type == CPURegister::kFPRegister) && + (last_reg < kNumberOfFPRegisters))); + ASSERT(last_reg >= first_reg); + list_ = (1UL << (last_reg + 1)) - 1; + list_ &= ~((1UL << first_reg) - 1); + ASSERT(IsValid()); + } + + inline CPURegister::RegisterType type() const { + ASSERT(IsValid()); + return type_; + } + + // Combine another CPURegList into this one. Registers that already exist in + // this list are left unchanged. The type and size of the registers in the + // 'other' list must match those in this list. + void Combine(const CPURegList& other) { + ASSERT(IsValid()); + ASSERT(other.type() == type_); + ASSERT(other.RegisterSizeInBits() == size_); + list_ |= other.list(); + } + + // Remove every register in the other CPURegList from this one. Registers that + // do not exist in this list are ignored. The type and size of the registers + // in the 'other' list must match those in this list. + void Remove(const CPURegList& other) { + ASSERT(IsValid()); + ASSERT(other.type() == type_); + ASSERT(other.RegisterSizeInBits() == size_); + list_ &= ~other.list(); + } + + // Variants of Combine and Remove which take a single register. + inline void Combine(const CPURegister& other) { + ASSERT(other.type() == type_); + ASSERT(other.size() == size_); + Combine(other.code()); + } + + inline void Remove(const CPURegister& other) { + ASSERT(other.type() == type_); + ASSERT(other.size() == size_); + Remove(other.code()); + } + + // Variants of Combine and Remove which take a single register by its code; + // the type and size of the register is inferred from this list. + inline void Combine(int code) { + ASSERT(IsValid()); + ASSERT(CPURegister(code, size_, type_).IsValid()); + list_ |= (1UL << code); + } + + inline void Remove(int code) { + ASSERT(IsValid()); + ASSERT(CPURegister(code, size_, type_).IsValid()); + list_ &= ~(1UL << code); + } + + inline RegList list() const { + ASSERT(IsValid()); + return list_; + } + + // Remove all callee-saved registers from the list. This can be useful when + // preparing registers for an AAPCS64 function call, for example. + void RemoveCalleeSaved(); + + CPURegister PopLowestIndex(); + CPURegister PopHighestIndex(); + + // AAPCS64 callee-saved registers. + static CPURegList GetCalleeSaved(unsigned size = kXRegSize); + static CPURegList GetCalleeSavedFP(unsigned size = kDRegSize); + + // AAPCS64 caller-saved registers. Note that this includes lr. + static CPURegList GetCallerSaved(unsigned size = kXRegSize); + static CPURegList GetCallerSavedFP(unsigned size = kDRegSize); + + inline bool IsEmpty() const { + ASSERT(IsValid()); + return list_ == 0; + } + + inline bool IncludesAliasOf(const CPURegister& other) const { + ASSERT(IsValid()); + return (type_ == other.type()) && (other.Bit() & list_); + } + + inline int Count() const { + ASSERT(IsValid()); + return CountSetBits(list_, kRegListSizeInBits); + } + + inline unsigned RegisterSizeInBits() const { + ASSERT(IsValid()); + return size_; + } + + inline unsigned RegisterSizeInBytes() const { + int size_in_bits = RegisterSizeInBits(); + ASSERT((size_in_bits % 8) == 0); + return size_in_bits / 8; + } + + private: + RegList list_; + unsigned size_; + CPURegister::RegisterType type_; + + bool IsValid() const; +}; + + +// AAPCS64 callee-saved registers. +extern const CPURegList kCalleeSaved; +extern const CPURegList kCalleeSavedFP; + + +// AAPCS64 caller-saved registers. Note that this includes lr. +extern const CPURegList kCallerSaved; +extern const CPURegList kCallerSavedFP; + + +// Operand. +class Operand { + public: + // #<immediate> + // where <immediate> is int64_t. + // This is allowed to be an implicit constructor because Operand is + // a wrapper class that doesn't normally perform any type conversion. + Operand(int64_t immediate); // NOLINT(runtime/explicit) + + // rm, {<shift> #<shift_amount>} + // where <shift> is one of {LSL, LSR, ASR, ROR}. + // <shift_amount> is uint6_t. + // This is allowed to be an implicit constructor because Operand is + // a wrapper class that doesn't normally perform any type conversion. + Operand(Register reg, + Shift shift = LSL, + unsigned shift_amount = 0); // NOLINT(runtime/explicit) + + // rm, {<extend> {#<shift_amount>}} + // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}. + // <shift_amount> is uint2_t. + explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0); + + bool IsImmediate() const; + bool IsShiftedRegister() const; + bool IsExtendedRegister() const; + + // This returns an LSL shift (<= 4) operand as an equivalent extend operand, + // which helps in the encoding of instructions that use the stack pointer. + Operand ToExtendedRegister() const; + + int64_t immediate() const { + ASSERT(IsImmediate()); + return immediate_; + } + + Register reg() const { + ASSERT(IsShiftedRegister() || IsExtendedRegister()); + return reg_; + } + + Shift shift() const { + ASSERT(IsShiftedRegister()); + return shift_; + } + + Extend extend() const { + ASSERT(IsExtendedRegister()); + return extend_; + } + + unsigned shift_amount() const { + ASSERT(IsShiftedRegister() || IsExtendedRegister()); + return shift_amount_; + } + + private: + int64_t immediate_; + Register reg_; + Shift shift_; + Extend extend_; + unsigned shift_amount_; +}; + + +// MemOperand represents the addressing mode of a load or store instruction. +class MemOperand { + public: + explicit MemOperand(Register base, + ptrdiff_t offset = 0, + AddrMode addrmode = Offset); + explicit MemOperand(Register base, + Register regoffset, + Shift shift = LSL, + unsigned shift_amount = 0); + explicit MemOperand(Register base, + Register regoffset, + Extend extend, + unsigned shift_amount = 0); + explicit MemOperand(Register base, + const Operand& offset, + AddrMode addrmode = Offset); + + const Register& base() const { return base_; } + const Register& regoffset() const { return regoffset_; } + ptrdiff_t offset() const { return offset_; } + AddrMode addrmode() const { return addrmode_; } + Shift shift() const { return shift_; } + Extend extend() const { return extend_; } + unsigned shift_amount() const { return shift_amount_; } + bool IsImmediateOffset() const; + bool IsRegisterOffset() const; + bool IsPreIndex() const; + bool IsPostIndex() const; + + private: + Register base_; + Register regoffset_; + ptrdiff_t offset_; + AddrMode addrmode_; + Shift shift_; + Extend extend_; + unsigned shift_amount_; +}; + + +class Label { + public: + Label() : is_bound_(false), link_(NULL), target_(NULL) {} + ~Label() { + // If the label has been linked to, it needs to be bound to a target. + ASSERT(!IsLinked() || IsBound()); + } + + inline Instruction* link() const { return link_; } + inline Instruction* target() const { return target_; } + + inline bool IsBound() const { return is_bound_; } + inline bool IsLinked() const { return link_ != NULL; } + + inline void set_link(Instruction* new_link) { link_ = new_link; } + + static const int kEndOfChain = 0; + + private: + // Indicates if the label has been bound, ie its location is fixed. + bool is_bound_; + // Branches instructions branching to this label form a chained list, with + // their offset indicating where the next instruction is located. + // link_ points to the latest branch instruction generated branching to this + // branch. + // If link_ is not NULL, the label has been linked to. + Instruction* link_; + // The label location. + Instruction* target_; + + friend class Assembler; +}; + + +// TODO: Obtain better values for these, based on real-world data. +const int kLiteralPoolCheckInterval = 4 * KBytes; +const int kRecommendedLiteralPoolRange = 2 * kLiteralPoolCheckInterval; + + +// Control whether a branch over the literal pool should also be emitted. This +// is needed if the literal pool has to be emitted in the middle of the JITted +// code. +enum LiteralPoolEmitOption { + JumpRequired, + NoJumpRequired +}; + + +// Literal pool entry. +class Literal { + public: + Literal(Instruction* pc, uint64_t imm, unsigned size) + : pc_(pc), value_(imm), size_(size) {} + + private: + Instruction* pc_; + int64_t value_; + unsigned size_; + + friend class Assembler; +}; + + +// Assembler. +class Assembler { + public: + Assembler(byte* buffer, unsigned buffer_size); + + // The destructor asserts that one of the following is true: + // * The Assembler object has not been used. + // * Nothing has been emitted since the last Reset() call. + // * Nothing has been emitted since the last FinalizeCode() call. + ~Assembler(); + + // System functions. + + // Start generating code from the beginning of the buffer, discarding any code + // and data that has already been emitted into the buffer. + // + // In order to avoid any accidental transfer of state, Reset ASSERTs that the + // constant pool is not blocked. + void Reset(); + + // Finalize a code buffer of generated instructions. This function must be + // called before executing or copying code from the buffer. + void FinalizeCode(); + + // Label. + // Bind a label to the current PC. + void bind(Label* label); + int UpdateAndGetByteOffsetTo(Label* label); + inline int UpdateAndGetInstructionOffsetTo(Label* label) { + ASSERT(Label::kEndOfChain == 0); + return UpdateAndGetByteOffsetTo(label) >> kInstructionSizeLog2; + } + + + // Instruction set functions. + + // Branch / Jump instructions. + // Branch to register. + void br(const Register& xn); + + // Branch with link to register. + void blr(const Register& xn); + + // Branch to register with return hint. + void ret(const Register& xn = lr); + + // Unconditional branch to label. + void b(Label* label); + + // Conditional branch to label. + void b(Label* label, Condition cond); + + // Unconditional branch to PC offset. + void b(int imm26); + + // Conditional branch to PC offset. + void b(int imm19, Condition cond); + + // Branch with link to label. + void bl(Label* label); + + // Branch with link to PC offset. + void bl(int imm26); + + // Compare and branch to label if zero. + void cbz(const Register& rt, Label* label); + + // Compare and branch to PC offset if zero. + void cbz(const Register& rt, int imm19); + + // Compare and branch to label if not zero. + void cbnz(const Register& rt, Label* label); + + // Compare and branch to PC offset if not zero. + void cbnz(const Register& rt, int imm19); + + // Test bit and branch to label if zero. + void tbz(const Register& rt, unsigned bit_pos, Label* label); + + // Test bit and branch to PC offset if zero. + void tbz(const Register& rt, unsigned bit_pos, int imm14); + + // Test bit and branch to label if not zero. + void tbnz(const Register& rt, unsigned bit_pos, Label* label); + + // Test bit and branch to PC offset if not zero. + void tbnz(const Register& rt, unsigned bit_pos, int imm14); + + // Address calculation instructions. + // Calculate a PC-relative address. Unlike for branches the offset in adr is + // unscaled (i.e. the result can be unaligned). + + // Calculate the address of a label. + void adr(const Register& rd, Label* label); + + // Calculate the address of a PC offset. + void adr(const Register& rd, int imm21); + + // Data Processing instructions. + // Add. + void add(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Compare negative. + void cmn(const Register& rn, const Operand& operand); + + // Subtract. + void sub(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Compare. + void cmp(const Register& rn, const Operand& operand); + + // Negate. + void neg(const Register& rd, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Add with carry bit. + void adc(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Subtract with carry bit. + void sbc(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Negate with carry bit. + void ngc(const Register& rd, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Logical instructions. + // Bitwise and (A & B). + void and_(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Bit test and set flags. + void tst(const Register& rn, const Operand& operand); + + // Bit clear (A & ~B). + void bic(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Bitwise or (A | B). + void orr(const Register& rd, const Register& rn, const Operand& operand); + + // Bitwise nor (A | ~B). + void orn(const Register& rd, const Register& rn, const Operand& operand); + + // Bitwise eor/xor (A ^ B). + void eor(const Register& rd, const Register& rn, const Operand& operand); + + // Bitwise enor/xnor (A ^ ~B). + void eon(const Register& rd, const Register& rn, const Operand& operand); + + // Logical shift left by variable. + void lslv(const Register& rd, const Register& rn, const Register& rm); + + // Logical shift right by variable. + void lsrv(const Register& rd, const Register& rn, const Register& rm); + + // Arithmetic shift right by variable. + void asrv(const Register& rd, const Register& rn, const Register& rm); + + // Rotate right by variable. + void rorv(const Register& rd, const Register& rn, const Register& rm); + + // Bitfield instructions. + // Bitfield move. + void bfm(const Register& rd, + const Register& rn, + unsigned immr, + unsigned imms); + + // Signed bitfield move. + void sbfm(const Register& rd, + const Register& rn, + unsigned immr, + unsigned imms); + + // Unsigned bitfield move. + void ubfm(const Register& rd, + const Register& rn, + unsigned immr, + unsigned imms); + + // Bfm aliases. + // Bitfield insert. + inline void bfi(const Register& rd, + const Register& rn, + unsigned lsb, + unsigned width) { + ASSERT(width >= 1); + ASSERT(lsb + width <= rn.size()); + bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1); + } + + // Bitfield extract and insert low. + inline void bfxil(const Register& rd, + const Register& rn, + unsigned lsb, + unsigned width) { + ASSERT(width >= 1); + ASSERT(lsb + width <= rn.size()); + bfm(rd, rn, lsb, lsb + width - 1); + } + + // Sbfm aliases. + // Arithmetic shift right. + inline void asr(const Register& rd, const Register& rn, unsigned shift) { + ASSERT(shift < rd.size()); + sbfm(rd, rn, shift, rd.size() - 1); + } + + // Signed bitfield insert with zero at right. + inline void sbfiz(const Register& rd, + const Register& rn, + unsigned lsb, + unsigned width) { + ASSERT(width >= 1); + ASSERT(lsb + width <= rn.size()); + sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1); + } + + // Signed bitfield extract. + inline void sbfx(const Register& rd, + const Register& rn, + unsigned lsb, + unsigned width) { + ASSERT(width >= 1); + ASSERT(lsb + width <= rn.size()); + sbfm(rd, rn, lsb, lsb + width - 1); + } + + // Signed extend byte. + inline void sxtb(const Register& rd, const Register& rn) { + sbfm(rd, rn, 0, 7); + } + + // Signed extend halfword. + inline void sxth(const Register& rd, const Register& rn) { + sbfm(rd, rn, 0, 15); + } + + // Signed extend word. + inline void sxtw(const Register& rd, const Register& rn) { + sbfm(rd, rn, 0, 31); + } + + // Ubfm aliases. + // Logical shift left. + inline void lsl(const Register& rd, const Register& rn, unsigned shift) { + unsigned reg_size = rd.size(); + ASSERT(shift < reg_size); + ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1); + } + + // Logical shift right. + inline void lsr(const Register& rd, const Register& rn, unsigned shift) { + ASSERT(shift < rd.size()); + ubfm(rd, rn, shift, rd.size() - 1); + } + + // Unsigned bitfield insert with zero at right. + inline void ubfiz(const Register& rd, + const Register& rn, + unsigned lsb, + unsigned width) { + ASSERT(width >= 1); + ASSERT(lsb + width <= rn.size()); + ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1); + } + + // Unsigned bitfield extract. + inline void ubfx(const Register& rd, + const Register& rn, + unsigned lsb, + unsigned width) { + ASSERT(width >= 1); + ASSERT(lsb + width <= rn.size()); + ubfm(rd, rn, lsb, lsb + width - 1); + } + + // Unsigned extend byte. + inline void uxtb(const Register& rd, const Register& rn) { + ubfm(rd, rn, 0, 7); + } + + // Unsigned extend halfword. + inline void uxth(const Register& rd, const Register& rn) { + ubfm(rd, rn, 0, 15); + } + + // Unsigned extend word. + inline void uxtw(const Register& rd, const Register& rn) { + ubfm(rd, rn, 0, 31); + } + + // Extract. + void extr(const Register& rd, + const Register& rn, + const Register& rm, + unsigned lsb); + + // Conditional select: rd = cond ? rn : rm. + void csel(const Register& rd, + const Register& rn, + const Register& rm, + Condition cond); + + // Conditional select increment: rd = cond ? rn : rm + 1. + void csinc(const Register& rd, + const Register& rn, + const Register& rm, + Condition cond); + + // Conditional select inversion: rd = cond ? rn : ~rm. + void csinv(const Register& rd, + const Register& rn, + const Register& rm, + Condition cond); + + // Conditional select negation: rd = cond ? rn : -rm. + void csneg(const Register& rd, + const Register& rn, + const Register& rm, + Condition cond); + + // Conditional set: rd = cond ? 1 : 0. + void cset(const Register& rd, Condition cond); + + // Conditional set mask: rd = cond ? -1 : 0. + void csetm(const Register& rd, Condition cond); + + // Conditional increment: rd = cond ? rn + 1 : rn. + void cinc(const Register& rd, const Register& rn, Condition cond); + + // Conditional invert: rd = cond ? ~rn : rn. + void cinv(const Register& rd, const Register& rn, Condition cond); + + // Conditional negate: rd = cond ? -rn : rn. + void cneg(const Register& rd, const Register& rn, Condition cond); + + // Rotate right. + inline void ror(const Register& rd, const Register& rs, unsigned shift) { + extr(rd, rs, rs, shift); + } + + // Conditional comparison. + // Conditional compare negative. + void ccmn(const Register& rn, + const Operand& operand, + StatusFlags nzcv, + Condition cond); + + // Conditional compare. + void ccmp(const Register& rn, + const Operand& operand, + StatusFlags nzcv, + Condition cond); + + // Multiply. + void mul(const Register& rd, const Register& rn, const Register& rm); + + // Negated multiply. + void mneg(const Register& rd, const Register& rn, const Register& rm); + + // Signed long multiply: 32 x 32 -> 64-bit. + void smull(const Register& rd, const Register& rn, const Register& rm); + + // Signed multiply high: 64 x 64 -> 64-bit <127:64>. + void smulh(const Register& xd, const Register& xn, const Register& xm); + + // Multiply and accumulate. + void madd(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra); + + // Multiply and subtract. + void msub(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra); + + // Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit. + void smaddl(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra); + + // Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit. + void umaddl(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra); + + // Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit. + void smsubl(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra); + + // Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit. + void umsubl(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra); + + // Signed integer divide. + void sdiv(const Register& rd, const Register& rn, const Register& rm); + + // Unsigned integer divide. + void udiv(const Register& rd, const Register& rn, const Register& rm); + + // Bit reverse. + void rbit(const Register& rd, const Register& rn); + + // Reverse bytes in 16-bit half words. + void rev16(const Register& rd, const Register& rn); + + // Reverse bytes in 32-bit words. + void rev32(const Register& rd, const Register& rn); + + // Reverse bytes. + void rev(const Register& rd, const Register& rn); + + // Count leading zeroes. + void clz(const Register& rd, const Register& rn); + + // Count leading sign bits. + void cls(const Register& rd, const Register& rn); + + // Memory instructions. + // Load integer or FP register. + void ldr(const CPURegister& rt, const MemOperand& src); + + // Store integer or FP register. + void str(const CPURegister& rt, const MemOperand& dst); + + // Load word with sign extension. + void ldrsw(const Register& rt, const MemOperand& src); + + // Load byte. + void ldrb(const Register& rt, const MemOperand& src); + + // Store byte. + void strb(const Register& rt, const MemOperand& dst); + + // Load byte with sign extension. + void ldrsb(const Register& rt, const MemOperand& src); + + // Load half-word. + void ldrh(const Register& rt, const MemOperand& src); + + // Store half-word. + void strh(const Register& rt, const MemOperand& dst); + + // Load half-word with sign extension. + void ldrsh(const Register& rt, const MemOperand& src); + + // Load integer or FP register pair. + void ldp(const CPURegister& rt, const CPURegister& rt2, + const MemOperand& src); + + // Store integer or FP register pair. + void stp(const CPURegister& rt, const CPURegister& rt2, + const MemOperand& dst); + + // Load word pair with sign extension. + void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src); + + // Load integer or FP register pair, non-temporal. + void ldnp(const CPURegister& rt, const CPURegister& rt2, + const MemOperand& src); + + // Store integer or FP register pair, non-temporal. + void stnp(const CPURegister& rt, const CPURegister& rt2, + const MemOperand& dst); + + // Load literal to register. + void ldr(const Register& rt, uint64_t imm); + + // Load literal to FP register. + void ldr(const FPRegister& ft, double imm); + + // Move instructions. The default shift of -1 indicates that the move + // instruction will calculate an appropriate 16-bit immediate and left shift + // that is equal to the 64-bit immediate argument. If an explicit left shift + // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value. + // + // For movk, an explicit shift can be used to indicate which half word should + // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant + // half word with zero, whereas movk(x0, 0, 48) will overwrite the + // most-significant. + + // Move immediate and keep. + void movk(const Register& rd, uint64_t imm, int shift = -1) { + MoveWide(rd, imm, shift, MOVK); + } + + // Move inverted immediate. + void movn(const Register& rd, uint64_t imm, int shift = -1) { + MoveWide(rd, imm, shift, MOVN); + } + + // Move immediate. + void movz(const Register& rd, uint64_t imm, int shift = -1) { + MoveWide(rd, imm, shift, MOVZ); + } + + // Misc instructions. + // Monitor debug-mode breakpoint. + void brk(int code); + + // Halting debug-mode breakpoint. + void hlt(int code); + + // Move register to register. + void mov(const Register& rd, const Register& rn); + + // Move inverted operand to register. + void mvn(const Register& rd, const Operand& operand); + + // System instructions. + // Move to register from system register. + void mrs(const Register& rt, SystemRegister sysreg); + + // Move from register to system register. + void msr(SystemRegister sysreg, const Register& rt); + + // System hint. + void hint(SystemHint code); + + // Alias for system instructions. + // No-op. + void nop() { + hint(NOP); + } + + // FP instructions. + // Move immediate to FP register. + void fmov(FPRegister fd, double imm); + + // Move FP register to register. + void fmov(Register rd, FPRegister fn); + + // Move register to FP register. + void fmov(FPRegister fd, Register rn); + + // Move FP register to FP register. + void fmov(FPRegister fd, FPRegister fn); + + // FP add. + void fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm); + + // FP subtract. + void fsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm); + + // FP multiply. + void fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm); + + // FP multiply and subtract. + void fmsub(const FPRegister& fd, + const FPRegister& fn, + const FPRegister& fm, + const FPRegister& fa); + + // FP divide. + void fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm); + + // FP maximum. + void fmax(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm); + + // FP minimum. + void fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm); + + // FP absolute. + void fabs(const FPRegister& fd, const FPRegister& fn); + + // FP negate. + void fneg(const FPRegister& fd, const FPRegister& fn); + + // FP square root. + void fsqrt(const FPRegister& fd, const FPRegister& fn); + + // FP round to integer (nearest with ties to even). + void frintn(const FPRegister& fd, const FPRegister& fn); + + // FP round to integer (towards zero). + void frintz(const FPRegister& fd, const FPRegister& fn); + + // FP compare registers. + void fcmp(const FPRegister& fn, const FPRegister& fm); + + // FP compare immediate. + void fcmp(const FPRegister& fn, double value); + + // FP conditional compare. + void fccmp(const FPRegister& fn, + const FPRegister& fm, + StatusFlags nzcv, + Condition cond); + + // FP conditional select. + void fcsel(const FPRegister& fd, + const FPRegister& fn, + const FPRegister& fm, + Condition cond); + + // Common FP Convert function. + void FPConvertToInt(const Register& rd, + const FPRegister& fn, + FPIntegerConvertOp op); + + // FP convert between single and double precision. + void fcvt(const FPRegister& fd, const FPRegister& fn); + + // Convert FP to unsigned integer (round towards -infinity). + void fcvtmu(const Register& rd, const FPRegister& fn); + + // Convert FP to signed integer (round towards -infinity). + void fcvtms(const Register& rd, const FPRegister& fn); + + // Convert FP to unsigned integer (nearest with ties to even). + void fcvtnu(const Register& rd, const FPRegister& fn); + + // Convert FP to signed integer (nearest with ties to even). + void fcvtns(const Register& rd, const FPRegister& fn); + + // Convert FP to unsigned integer (round towards zero). + void fcvtzu(const Register& rd, const FPRegister& fn); + + // Convert FP to signed integer (round towards zero). + void fcvtzs(const Register& rd, const FPRegister& fn); + + // Convert signed integer or fixed point to FP. + void scvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0); + + // Convert unsigned integer or fixed point to FP. + void ucvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0); + + // Emit generic instructions. + // Emit raw instructions into the instruction stream. + inline void dci(Instr raw_inst) { Emit(raw_inst); } + + // Emit 32 bits of data into the instruction stream. + inline void dc32(uint32_t data) { EmitData(&data, sizeof(data)); } + + // Emit 64 bits of data into the instruction stream. + inline void dc64(uint64_t data) { EmitData(&data, sizeof(data)); } + + // Copy a string into the instruction stream, including the terminating NULL + // character. The instruction pointer (pc_) is then aligned correctly for + // subsequent instructions. + void EmitStringData(const char * string) { + ASSERT(string != NULL); + + size_t len = strlen(string) + 1; + EmitData(string, len); + + // Pad with NULL characters until pc_ is aligned. + const char pad[] = {'\0', '\0', '\0', '\0'}; + ASSERT(sizeof(pad) == kInstructionSize); + Instruction* next_pc = AlignUp(pc_, kInstructionSize); + EmitData(&pad, next_pc - pc_); + } + + // Code generation helpers. + + // Register encoding. + static Instr Rd(CPURegister rd) { + ASSERT(rd.code() != kSPRegInternalCode); + return rd.code() << Rd_offset; + } + + static Instr Rn(CPURegister rn) { + ASSERT(rn.code() != kSPRegInternalCode); + return rn.code() << Rn_offset; + } + + static Instr Rm(CPURegister rm) { + ASSERT(rm.code() != kSPRegInternalCode); + return rm.code() << Rm_offset; + } + + static Instr Ra(CPURegister ra) { + ASSERT(ra.code() != kSPRegInternalCode); + return ra.code() << Ra_offset; + } + + static Instr Rt(CPURegister rt) { + ASSERT(rt.code() != kSPRegInternalCode); + return rt.code() << Rt_offset; + } + + static Instr Rt2(CPURegister rt2) { + ASSERT(rt2.code() != kSPRegInternalCode); + return rt2.code() << Rt2_offset; + } + + // These encoding functions allow the stack pointer to be encoded, and + // disallow the zero register. + static Instr RdSP(Register rd) { + ASSERT(!rd.IsZero()); + return (rd.code() & kRegCodeMask) << Rd_offset; + } + + static Instr RnSP(Register rn) { + ASSERT(!rn.IsZero()); + return (rn.code() & kRegCodeMask) << Rn_offset; + } + + // Flags encoding. + static Instr Flags(FlagsUpdate S) { + if (S == SetFlags) { + return 1 << FlagsUpdate_offset; + } else if (S == LeaveFlags) { + return 0 << FlagsUpdate_offset; + } + UNREACHABLE(); + return 0; + } + + static Instr Cond(Condition cond) { + return cond << Condition_offset; + } + + // PC-relative address encoding. + static Instr ImmPCRelAddress(int imm21) { + ASSERT(is_int21(imm21)); + Instr imm = static_cast<Instr>(truncate_to_int21(imm21)); + Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset; + Instr immlo = imm << ImmPCRelLo_offset; + return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask); + } + + // Branch encoding. + static Instr ImmUncondBranch(int imm26) { + ASSERT(is_int26(imm26)); + return truncate_to_int26(imm26) << ImmUncondBranch_offset; + } + + static Instr ImmCondBranch(int imm19) { + ASSERT(is_int19(imm19)); + return truncate_to_int19(imm19) << ImmCondBranch_offset; + } + + static Instr ImmCmpBranch(int imm19) { + ASSERT(is_int19(imm19)); + return truncate_to_int19(imm19) << ImmCmpBranch_offset; + } + + static Instr ImmTestBranch(int imm14) { + ASSERT(is_int14(imm14)); + return truncate_to_int14(imm14) << ImmTestBranch_offset; + } + + static Instr ImmTestBranchBit(unsigned bit_pos) { + ASSERT(is_uint6(bit_pos)); + // Subtract five from the shift offset, as we need bit 5 from bit_pos. + unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5); + unsigned b40 = bit_pos << ImmTestBranchBit40_offset; + b5 &= ImmTestBranchBit5_mask; + b40 &= ImmTestBranchBit40_mask; + return b5 | b40; + } + + // Data Processing encoding. + static Instr SF(Register rd) { + return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits; + } + + static Instr ImmAddSub(int64_t imm) { + ASSERT(IsImmAddSub(imm)); + if (is_uint12(imm)) { // No shift required. + return imm << ImmAddSub_offset; + } else { + return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset); + } + } + + static inline Instr ImmS(unsigned imms, unsigned reg_size) { + ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) || + ((reg_size == kWRegSize) && is_uint5(imms))); + USE(reg_size); + return imms << ImmS_offset; + } + + static inline Instr ImmR(unsigned immr, unsigned reg_size) { + ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) || + ((reg_size == kWRegSize) && is_uint5(immr))); + USE(reg_size); + ASSERT(is_uint6(immr)); + return immr << ImmR_offset; + } + + static inline Instr ImmSetBits(unsigned imms, unsigned reg_size) { + ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize)); + ASSERT(is_uint6(imms)); + ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3)); + USE(reg_size); + return imms << ImmSetBits_offset; + } + + static inline Instr ImmRotate(unsigned immr, unsigned reg_size) { + ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize)); + ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) || + ((reg_size == kWRegSize) && is_uint5(immr))); + USE(reg_size); + return immr << ImmRotate_offset; + } + + static inline Instr ImmLLiteral(int imm19) { + ASSERT(is_int19(imm19)); + return truncate_to_int19(imm19) << ImmLLiteral_offset; + } + + static inline Instr BitN(unsigned bitn, unsigned reg_size) { + ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize)); + ASSERT((reg_size == kXRegSize) || (bitn == 0)); + USE(reg_size); + return bitn << BitN_offset; + } + + static Instr ShiftDP(Shift shift) { + ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR); + return shift << ShiftDP_offset; + } + + static Instr ImmDPShift(unsigned amount) { + ASSERT(is_uint6(amount)); + return amount << ImmDPShift_offset; + } + + static Instr ExtendMode(Extend extend) { + return extend << ExtendMode_offset; + } + + static Instr ImmExtendShift(unsigned left_shift) { + ASSERT(left_shift <= 4); + return left_shift << ImmExtendShift_offset; + } + + static Instr ImmCondCmp(unsigned imm) { + ASSERT(is_uint5(imm)); + return imm << ImmCondCmp_offset; + } + + static Instr Nzcv(StatusFlags nzcv) { + return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset; + } + + // MemOperand offset encoding. + static Instr ImmLSUnsigned(int imm12) { + ASSERT(is_uint12(imm12)); + return imm12 << ImmLSUnsigned_offset; + } + + static Instr ImmLS(int imm9) { + ASSERT(is_int9(imm9)); + return truncate_to_int9(imm9) << ImmLS_offset; + } + + static Instr ImmLSPair(int imm7, LSDataSize size) { + ASSERT(((imm7 >> size) << size) == imm7); + int scaled_imm7 = imm7 >> size; + ASSERT(is_int7(scaled_imm7)); + return truncate_to_int7(scaled_imm7) << ImmLSPair_offset; + } + + static Instr ImmShiftLS(unsigned shift_amount) { + ASSERT(is_uint1(shift_amount)); + return shift_amount << ImmShiftLS_offset; + } + + static Instr ImmException(int imm16) { + ASSERT(is_uint16(imm16)); + return imm16 << ImmException_offset; + } + + static Instr ImmSystemRegister(int imm15) { + ASSERT(is_uint15(imm15)); + return imm15 << ImmSystemRegister_offset; + } + + static Instr ImmHint(int imm7) { + ASSERT(is_uint7(imm7)); + return imm7 << ImmHint_offset; + } + + static LSDataSize CalcLSDataSize(LoadStoreOp op) { + ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8)); + return static_cast<LSDataSize>(op >> SizeLS_offset); + } + + // Move immediates encoding. + static Instr ImmMoveWide(uint64_t imm) { + ASSERT(is_uint16(imm)); + return imm << ImmMoveWide_offset; + } + + static Instr ShiftMoveWide(int64_t shift) { + ASSERT(is_uint2(shift)); + return shift << ShiftMoveWide_offset; + } + + // FP Immediates. + static Instr ImmFP32(float imm); + static Instr ImmFP64(double imm); + + // FP register type. + static Instr FPType(FPRegister fd) { + return fd.Is64Bits() ? FP64 : FP32; + } + + static Instr FPScale(unsigned scale) { + ASSERT(is_uint6(scale)); + return scale << FPScale_offset; + } + + // Size of the code generated in bytes + uint64_t SizeOfCodeGenerated() const { + ASSERT((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_))); + return pc_ - buffer_; + } + + // Size of the code generated since label to the current position. + uint64_t SizeOfCodeGeneratedSince(Label* label) const { + ASSERT(label->IsBound()); + ASSERT((pc_ >= label->target()) && (pc_ < (buffer_ + buffer_size_))); + return pc_ - label->target(); + } + + + inline void BlockLiteralPool() { + literal_pool_monitor_++; + } + + inline void ReleaseLiteralPool() { + if (--literal_pool_monitor_ == 0) { + // Has the literal pool been blocked for too long? + ASSERT(literals_.empty() || + (pc_ < (literals_.back()->pc_ + kMaxLoadLiteralRange))); + } + } + + inline bool IsLiteralPoolBlocked() { + return literal_pool_monitor_ != 0; + } + + void CheckLiteralPool(LiteralPoolEmitOption option = JumpRequired); + void EmitLiteralPool(LiteralPoolEmitOption option = NoJumpRequired); + size_t LiteralPoolSize(); + + protected: + inline const Register& AppropriateZeroRegFor(const CPURegister& reg) const { + return reg.Is64Bits() ? xzr : wzr; + } + + + void LoadStore(const CPURegister& rt, + const MemOperand& addr, + LoadStoreOp op); + static bool IsImmLSUnscaled(ptrdiff_t offset); + static bool IsImmLSScaled(ptrdiff_t offset, LSDataSize size); + + void Logical(const Register& rd, + const Register& rn, + const Operand& operand, + LogicalOp op); + void LogicalImmediate(const Register& rd, + const Register& rn, + unsigned n, + unsigned imm_s, + unsigned imm_r, + LogicalOp op); + static bool IsImmLogical(uint64_t value, + unsigned width, + unsigned* n, + unsigned* imm_s, + unsigned* imm_r); + + void ConditionalCompare(const Register& rn, + const Operand& operand, + StatusFlags nzcv, + Condition cond, + ConditionalCompareOp op); + static bool IsImmConditionalCompare(int64_t immediate); + + void AddSubWithCarry(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S, + AddSubWithCarryOp op); + + // Functions for emulating operands not directly supported by the instruction + // set. + void EmitShift(const Register& rd, + const Register& rn, + Shift shift, + unsigned amount); + void EmitExtendShift(const Register& rd, + const Register& rn, + Extend extend, + unsigned left_shift); + + void AddSub(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S, + AddSubOp op); + static bool IsImmAddSub(int64_t immediate); + + // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified + // registers. Only simple loads are supported; sign- and zero-extension (such + // as in LDPSW_x or LDRB_w) are not supported. + static LoadStoreOp LoadOpFor(const CPURegister& rt); + static LoadStorePairOp LoadPairOpFor(const CPURegister& rt, + const CPURegister& rt2); + static LoadStoreOp StoreOpFor(const CPURegister& rt); + static LoadStorePairOp StorePairOpFor(const CPURegister& rt, + const CPURegister& rt2); + static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor( + const CPURegister& rt, const CPURegister& rt2); + static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor( + const CPURegister& rt, const CPURegister& rt2); + + + private: + // Instruction helpers. + void MoveWide(const Register& rd, + uint64_t imm, + int shift, + MoveWideImmediateOp mov_op); + void DataProcShiftedRegister(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S, + Instr op); + void DataProcExtendedRegister(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S, + Instr op); + void LoadStorePair(const CPURegister& rt, + const CPURegister& rt2, + const MemOperand& addr, + LoadStorePairOp op); + void LoadStorePairNonTemporal(const CPURegister& rt, + const CPURegister& rt2, + const MemOperand& addr, + LoadStorePairNonTemporalOp op); + void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op); + void ConditionalSelect(const Register& rd, + const Register& rn, + const Register& rm, + Condition cond, + ConditionalSelectOp op); + void DataProcessing1Source(const Register& rd, + const Register& rn, + DataProcessing1SourceOp op); + void DataProcessing3Source(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra, + DataProcessing3SourceOp op); + void FPDataProcessing1Source(const FPRegister& fd, + const FPRegister& fn, + FPDataProcessing1SourceOp op); + void FPDataProcessing2Source(const FPRegister& fd, + const FPRegister& fn, + const FPRegister& fm, + FPDataProcessing2SourceOp op); + void FPDataProcessing3Source(const FPRegister& fd, + const FPRegister& fn, + const FPRegister& fm, + const FPRegister& fa, + FPDataProcessing3SourceOp op); + + // Encoding helpers. + static bool IsImmFP32(float imm); + static bool IsImmFP64(double imm); + + void RecordLiteral(int64_t imm, unsigned size); + + // Emit the instruction at pc_. + void Emit(Instr instruction) { + ASSERT(sizeof(*pc_) == 1); + ASSERT(sizeof(instruction) == kInstructionSize); + ASSERT((pc_ + sizeof(instruction)) <= (buffer_ + buffer_size_)); + +#ifdef DEBUG + finalized_ = false; +#endif + + memcpy(pc_, &instruction, sizeof(instruction)); + pc_ += sizeof(instruction); + CheckBufferSpace(); + } + + // Emit data inline in the instruction stream. + void EmitData(void const * data, unsigned size) { + ASSERT(sizeof(*pc_) == 1); + ASSERT((pc_ + size) <= (buffer_ + buffer_size_)); + +#ifdef DEBUG + finalized_ = false; +#endif + + // TODO: Record this 'instruction' as data, so that it can be disassembled + // correctly. + memcpy(pc_, data, size); + pc_ += size; + CheckBufferSpace(); + } + + inline void CheckBufferSpace() { + ASSERT(pc_ < (buffer_ + buffer_size_)); + if (pc_ > next_literal_pool_check_) { + CheckLiteralPool(); + } + } + + // The buffer into which code and relocation info are generated. + Instruction* buffer_; + // Buffer size, in bytes. + unsigned buffer_size_; + Instruction* pc_; + std::list<Literal*> literals_; + Instruction* next_literal_pool_check_; + unsigned literal_pool_monitor_; + + friend class BlockLiteralPoolScope; + +#ifdef DEBUG + bool finalized_; +#endif +}; + +class BlockLiteralPoolScope { + public: + explicit BlockLiteralPoolScope(Assembler* assm) : assm_(assm) { + assm_->BlockLiteralPool(); + } + + ~BlockLiteralPoolScope() { + assm_->ReleaseLiteralPool(); + } + + private: + Assembler* assm_; +}; +} // namespace vixl + +#endif // VIXL_A64_ASSEMBLER_A64_H_ diff --git a/disas/libvixl/a64/constants-a64.h b/disas/libvixl/a64/constants-a64.h new file mode 100644 index 0000000000..2e0336dd0f --- /dev/null +++ b/disas/libvixl/a64/constants-a64.h @@ -0,0 +1,1104 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef VIXL_A64_CONSTANTS_A64_H_ +#define VIXL_A64_CONSTANTS_A64_H_ + +namespace vixl { + +const unsigned kNumberOfRegisters = 32; +const unsigned kNumberOfFPRegisters = 32; +// Callee saved registers are x21-x30(lr). +const int kNumberOfCalleeSavedRegisters = 10; +const int kFirstCalleeSavedRegisterIndex = 21; +// Callee saved FP registers are d8-d15. +const int kNumberOfCalleeSavedFPRegisters = 8; +const int kFirstCalleeSavedFPRegisterIndex = 8; + +#define REGISTER_CODE_LIST(R) \ +R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) \ +R(8) R(9) R(10) R(11) R(12) R(13) R(14) R(15) \ +R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23) \ +R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31) + +#define INSTRUCTION_FIELDS_LIST(V_) \ +/* Register fields */ \ +V_(Rd, 4, 0, Bits) /* Destination register. */ \ +V_(Rn, 9, 5, Bits) /* First source register. */ \ +V_(Rm, 20, 16, Bits) /* Second source register. */ \ +V_(Ra, 14, 10, Bits) /* Third source register. */ \ +V_(Rt, 4, 0, Bits) /* Load dest / store source. */ \ +V_(Rt2, 14, 10, Bits) /* Load second dest / */ \ + /* store second source. */ \ +V_(PrefetchMode, 4, 0, Bits) \ + \ +/* Common bits */ \ +V_(SixtyFourBits, 31, 31, Bits) \ +V_(FlagsUpdate, 29, 29, Bits) \ + \ +/* PC relative addressing */ \ +V_(ImmPCRelHi, 23, 5, SignedBits) \ +V_(ImmPCRelLo, 30, 29, Bits) \ + \ +/* Add/subtract/logical shift register */ \ +V_(ShiftDP, 23, 22, Bits) \ +V_(ImmDPShift, 15, 10, Bits) \ + \ +/* Add/subtract immediate */ \ +V_(ImmAddSub, 21, 10, Bits) \ +V_(ShiftAddSub, 23, 22, Bits) \ + \ +/* Add/substract extend */ \ +V_(ImmExtendShift, 12, 10, Bits) \ +V_(ExtendMode, 15, 13, Bits) \ + \ +/* Move wide */ \ +V_(ImmMoveWide, 20, 5, Bits) \ +V_(ShiftMoveWide, 22, 21, Bits) \ + \ +/* Logical immediate, bitfield and extract */ \ +V_(BitN, 22, 22, Bits) \ +V_(ImmRotate, 21, 16, Bits) \ +V_(ImmSetBits, 15, 10, Bits) \ +V_(ImmR, 21, 16, Bits) \ +V_(ImmS, 15, 10, Bits) \ + \ +/* Test and branch immediate */ \ +V_(ImmTestBranch, 18, 5, SignedBits) \ +V_(ImmTestBranchBit40, 23, 19, Bits) \ +V_(ImmTestBranchBit5, 31, 31, Bits) \ + \ +/* Conditionals */ \ +V_(Condition, 15, 12, Bits) \ +V_(ConditionBranch, 3, 0, Bits) \ +V_(Nzcv, 3, 0, Bits) \ +V_(ImmCondCmp, 20, 16, Bits) \ +V_(ImmCondBranch, 23, 5, SignedBits) \ + \ +/* Floating point */ \ +V_(FPType, 23, 22, Bits) \ +V_(ImmFP, 20, 13, Bits) \ +V_(FPScale, 15, 10, Bits) \ + \ +/* Load Store */ \ +V_(ImmLS, 20, 12, SignedBits) \ +V_(ImmLSUnsigned, 21, 10, Bits) \ +V_(ImmLSPair, 21, 15, SignedBits) \ +V_(SizeLS, 31, 30, Bits) \ +V_(ImmShiftLS, 12, 12, Bits) \ + \ +/* Other immediates */ \ +V_(ImmUncondBranch, 25, 0, SignedBits) \ +V_(ImmCmpBranch, 23, 5, SignedBits) \ +V_(ImmLLiteral, 23, 5, SignedBits) \ +V_(ImmException, 20, 5, Bits) \ +V_(ImmHint, 11, 5, Bits) \ + \ +/* System (MRS, MSR) */ \ +V_(ImmSystemRegister, 19, 5, Bits) \ +V_(SysO0, 19, 19, Bits) \ +V_(SysOp1, 18, 16, Bits) \ +V_(SysOp2, 7, 5, Bits) \ +V_(CRn, 15, 12, Bits) \ +V_(CRm, 11, 8, Bits) \ + + +#define SYSTEM_REGISTER_FIELDS_LIST(V_, M_) \ +/* NZCV */ \ +V_(Flags, 31, 28, Bits) \ +V_(N, 31, 31, Bits) \ +V_(Z, 30, 30, Bits) \ +V_(C, 29, 29, Bits) \ +V_(V, 28, 28, Bits) \ +M_(NZCV, Flags_mask) \ + \ +/* FPCR */ \ +V_(AHP, 26, 26, Bits) \ +V_(DN, 25, 25, Bits) \ +V_(FZ, 24, 24, Bits) \ +V_(RMode, 23, 22, Bits) \ +M_(FPCR, AHP_mask | DN_mask | FZ_mask | RMode_mask) + + +// Fields offsets. +#define DECLARE_FIELDS_OFFSETS(Name, HighBit, LowBit, X) \ +const int Name##_offset = LowBit; \ +const int Name##_width = HighBit - LowBit + 1; \ +const uint32_t Name##_mask = ((1 << Name##_width) - 1) << LowBit; +#define NOTHING(A, B) +INSTRUCTION_FIELDS_LIST(DECLARE_FIELDS_OFFSETS) +SYSTEM_REGISTER_FIELDS_LIST(DECLARE_FIELDS_OFFSETS, NOTHING) +#undef NOTHING +#undef DECLARE_FIELDS_BITS + +// ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST), formed +// from ImmPCRelLo and ImmPCRelHi. +const int ImmPCRel_mask = ImmPCRelLo_mask | ImmPCRelHi_mask; + +// Condition codes. +enum Condition { + eq = 0, + ne = 1, + hs = 2, + lo = 3, + mi = 4, + pl = 5, + vs = 6, + vc = 7, + hi = 8, + ls = 9, + ge = 10, + lt = 11, + gt = 12, + le = 13, + al = 14, + nv = 15 // Behaves as always/al. +}; + +inline Condition InvertCondition(Condition cond) { + // Conditions al and nv behave identically, as "always true". They can't be + // inverted, because there is no "always false" condition. + ASSERT((cond != al) && (cond != nv)); + return static_cast<Condition>(cond ^ 1); +} + +enum FlagsUpdate { + SetFlags = 1, + LeaveFlags = 0 +}; + +enum StatusFlags { + NoFlag = 0, + + // Derive the flag combinations from the system register bit descriptions. + NFlag = N_mask, + ZFlag = Z_mask, + CFlag = C_mask, + VFlag = V_mask, + NZFlag = NFlag | ZFlag, + NCFlag = NFlag | CFlag, + NVFlag = NFlag | VFlag, + ZCFlag = ZFlag | CFlag, + ZVFlag = ZFlag | VFlag, + CVFlag = CFlag | VFlag, + NZCFlag = NFlag | ZFlag | CFlag, + NZVFlag = NFlag | ZFlag | VFlag, + NCVFlag = NFlag | CFlag | VFlag, + ZCVFlag = ZFlag | CFlag | VFlag, + NZCVFlag = NFlag | ZFlag | CFlag | VFlag, + + // Floating-point comparison results. + FPEqualFlag = ZCFlag, + FPLessThanFlag = NFlag, + FPGreaterThanFlag = CFlag, + FPUnorderedFlag = CVFlag +}; + +enum Shift { + NO_SHIFT = -1, + LSL = 0x0, + LSR = 0x1, + ASR = 0x2, + ROR = 0x3 +}; + +enum Extend { + NO_EXTEND = -1, + UXTB = 0, + UXTH = 1, + UXTW = 2, + UXTX = 3, + SXTB = 4, + SXTH = 5, + SXTW = 6, + SXTX = 7 +}; + +enum SystemHint { + NOP = 0, + YIELD = 1, + WFE = 2, + WFI = 3, + SEV = 4, + SEVL = 5 +}; + +// System/special register names. +// This information is not encoded as one field but as the concatenation of +// multiple fields (Op0<0>, Op1, Crn, Crm, Op2). +enum SystemRegister { + NZCV = ((0x1 << SysO0_offset) | + (0x3 << SysOp1_offset) | + (0x4 << CRn_offset) | + (0x2 << CRm_offset) | + (0x0 << SysOp2_offset)) >> ImmSystemRegister_offset, + FPCR = ((0x1 << SysO0_offset) | + (0x3 << SysOp1_offset) | + (0x4 << CRn_offset) | + (0x4 << CRm_offset) | + (0x0 << SysOp2_offset)) >> ImmSystemRegister_offset +}; + +// Instruction enumerations. +// +// These are the masks that define a class of instructions, and the list of +// instructions within each class. Each enumeration has a Fixed, FMask and +// Mask value. +// +// Fixed: The fixed bits in this instruction class. +// FMask: The mask used to extract the fixed bits in the class. +// Mask: The mask used to identify the instructions within a class. +// +// The enumerations can be used like this: +// +// ASSERT(instr->Mask(PCRelAddressingFMask) == PCRelAddressingFixed); +// switch(instr->Mask(PCRelAddressingMask)) { +// case ADR: Format("adr 'Xd, 'AddrPCRelByte"); break; +// case ADRP: Format("adrp 'Xd, 'AddrPCRelPage"); break; +// default: printf("Unknown instruction\n"); +// } + + +// Generic fields. +enum GenericInstrField { + SixtyFourBits = 0x80000000, + ThirtyTwoBits = 0x00000000, + FP32 = 0x00000000, + FP64 = 0x00400000 +}; + +// PC relative addressing. +enum PCRelAddressingOp { + PCRelAddressingFixed = 0x10000000, + PCRelAddressingFMask = 0x1F000000, + PCRelAddressingMask = 0x9F000000, + ADR = PCRelAddressingFixed | 0x00000000, + ADRP = PCRelAddressingFixed | 0x80000000 +}; + +// Add/sub (immediate, shifted and extended.) +const int kSFOffset = 31; +enum AddSubOp { + AddSubOpMask = 0x60000000, + AddSubSetFlagsBit = 0x20000000, + ADD = 0x00000000, + ADDS = ADD | AddSubSetFlagsBit, + SUB = 0x40000000, + SUBS = SUB | AddSubSetFlagsBit +}; + +#define ADD_SUB_OP_LIST(V) \ + V(ADD), \ + V(ADDS), \ + V(SUB), \ + V(SUBS) + +enum AddSubImmediateOp { + AddSubImmediateFixed = 0x11000000, + AddSubImmediateFMask = 0x1F000000, + AddSubImmediateMask = 0xFF000000, + #define ADD_SUB_IMMEDIATE(A) \ + A##_w_imm = AddSubImmediateFixed | A, \ + A##_x_imm = AddSubImmediateFixed | A | SixtyFourBits + ADD_SUB_OP_LIST(ADD_SUB_IMMEDIATE) + #undef ADD_SUB_IMMEDIATE +}; + +enum AddSubShiftedOp { + AddSubShiftedFixed = 0x0B000000, + AddSubShiftedFMask = 0x1F200000, + AddSubShiftedMask = 0xFF200000, + #define ADD_SUB_SHIFTED(A) \ + A##_w_shift = AddSubShiftedFixed | A, \ + A##_x_shift = AddSubShiftedFixed | A | SixtyFourBits + ADD_SUB_OP_LIST(ADD_SUB_SHIFTED) + #undef ADD_SUB_SHIFTED +}; + +enum AddSubExtendedOp { + AddSubExtendedFixed = 0x0B200000, + AddSubExtendedFMask = 0x1F200000, + AddSubExtendedMask = 0xFFE00000, + #define ADD_SUB_EXTENDED(A) \ + A##_w_ext = AddSubExtendedFixed | A, \ + A##_x_ext = AddSubExtendedFixed | A | SixtyFourBits + ADD_SUB_OP_LIST(ADD_SUB_EXTENDED) + #undef ADD_SUB_EXTENDED +}; + +// Add/sub with carry. +enum AddSubWithCarryOp { + AddSubWithCarryFixed = 0x1A000000, + AddSubWithCarryFMask = 0x1FE00000, + AddSubWithCarryMask = 0xFFE0FC00, + ADC_w = AddSubWithCarryFixed | ADD, + ADC_x = AddSubWithCarryFixed | ADD | SixtyFourBits, + ADC = ADC_w, + ADCS_w = AddSubWithCarryFixed | ADDS, + ADCS_x = AddSubWithCarryFixed | ADDS | SixtyFourBits, + SBC_w = AddSubWithCarryFixed | SUB, + SBC_x = AddSubWithCarryFixed | SUB | SixtyFourBits, + SBC = SBC_w, + SBCS_w = AddSubWithCarryFixed | SUBS, + SBCS_x = AddSubWithCarryFixed | SUBS | SixtyFourBits +}; + + +// Logical (immediate and shifted register). +enum LogicalOp { + LogicalOpMask = 0x60200000, + NOT = 0x00200000, + AND = 0x00000000, + BIC = AND | NOT, + ORR = 0x20000000, + ORN = ORR | NOT, + EOR = 0x40000000, + EON = EOR | NOT, + ANDS = 0x60000000, + BICS = ANDS | NOT +}; + +// Logical immediate. +enum LogicalImmediateOp { + LogicalImmediateFixed = 0x12000000, + LogicalImmediateFMask = 0x1F800000, + LogicalImmediateMask = 0xFF800000, + AND_w_imm = LogicalImmediateFixed | AND, + AND_x_imm = LogicalImmediateFixed | AND | SixtyFourBits, + ORR_w_imm = LogicalImmediateFixed | ORR, + ORR_x_imm = LogicalImmediateFixed | ORR | SixtyFourBits, + EOR_w_imm = LogicalImmediateFixed | EOR, + EOR_x_imm = LogicalImmediateFixed | EOR | SixtyFourBits, + ANDS_w_imm = LogicalImmediateFixed | ANDS, + ANDS_x_imm = LogicalImmediateFixed | ANDS | SixtyFourBits +}; + +// Logical shifted register. +enum LogicalShiftedOp { + LogicalShiftedFixed = 0x0A000000, + LogicalShiftedFMask = 0x1F000000, + LogicalShiftedMask = 0xFF200000, + AND_w = LogicalShiftedFixed | AND, + AND_x = LogicalShiftedFixed | AND | SixtyFourBits, + AND_shift = AND_w, + BIC_w = LogicalShiftedFixed | BIC, + BIC_x = LogicalShiftedFixed | BIC | SixtyFourBits, + BIC_shift = BIC_w, + ORR_w = LogicalShiftedFixed | ORR, + ORR_x = LogicalShiftedFixed | ORR | SixtyFourBits, + ORR_shift = ORR_w, + ORN_w = LogicalShiftedFixed | ORN, + ORN_x = LogicalShiftedFixed | ORN | SixtyFourBits, + ORN_shift = ORN_w, + EOR_w = LogicalShiftedFixed | EOR, + EOR_x = LogicalShiftedFixed | EOR | SixtyFourBits, + EOR_shift = EOR_w, + EON_w = LogicalShiftedFixed | EON, + EON_x = LogicalShiftedFixed | EON | SixtyFourBits, + EON_shift = EON_w, + ANDS_w = LogicalShiftedFixed | ANDS, + ANDS_x = LogicalShiftedFixed | ANDS | SixtyFourBits, + ANDS_shift = ANDS_w, + BICS_w = LogicalShiftedFixed | BICS, + BICS_x = LogicalShiftedFixed | BICS | SixtyFourBits, + BICS_shift = BICS_w +}; + +// Move wide immediate. +enum MoveWideImmediateOp { + MoveWideImmediateFixed = 0x12800000, + MoveWideImmediateFMask = 0x1F800000, + MoveWideImmediateMask = 0xFF800000, + MOVN = 0x00000000, + MOVZ = 0x40000000, + MOVK = 0x60000000, + MOVN_w = MoveWideImmediateFixed | MOVN, + MOVN_x = MoveWideImmediateFixed | MOVN | SixtyFourBits, + MOVZ_w = MoveWideImmediateFixed | MOVZ, + MOVZ_x = MoveWideImmediateFixed | MOVZ | SixtyFourBits, + MOVK_w = MoveWideImmediateFixed | MOVK, + MOVK_x = MoveWideImmediateFixed | MOVK | SixtyFourBits +}; + +// Bitfield. +const int kBitfieldNOffset = 22; +enum BitfieldOp { + BitfieldFixed = 0x13000000, + BitfieldFMask = 0x1F800000, + BitfieldMask = 0xFF800000, + SBFM_w = BitfieldFixed | 0x00000000, + SBFM_x = BitfieldFixed | 0x80000000, + SBFM = SBFM_w, + BFM_w = BitfieldFixed | 0x20000000, + BFM_x = BitfieldFixed | 0xA0000000, + BFM = BFM_w, + UBFM_w = BitfieldFixed | 0x40000000, + UBFM_x = BitfieldFixed | 0xC0000000, + UBFM = UBFM_w + // Bitfield N field. +}; + +// Extract. +enum ExtractOp { + ExtractFixed = 0x13800000, + ExtractFMask = 0x1F800000, + ExtractMask = 0xFFA00000, + EXTR_w = ExtractFixed | 0x00000000, + EXTR_x = ExtractFixed | 0x80000000, + EXTR = EXTR_w +}; + +// Unconditional branch. +enum UnconditionalBranchOp { + UnconditionalBranchFixed = 0x14000000, + UnconditionalBranchFMask = 0x7C000000, + UnconditionalBranchMask = 0xFC000000, + B = UnconditionalBranchFixed | 0x00000000, + BL = UnconditionalBranchFixed | 0x80000000 +}; + +// Unconditional branch to register. +enum UnconditionalBranchToRegisterOp { + UnconditionalBranchToRegisterFixed = 0xD6000000, + UnconditionalBranchToRegisterFMask = 0xFE000000, + UnconditionalBranchToRegisterMask = 0xFFFFFC1F, + BR = UnconditionalBranchToRegisterFixed | 0x001F0000, + BLR = UnconditionalBranchToRegisterFixed | 0x003F0000, + RET = UnconditionalBranchToRegisterFixed | 0x005F0000 +}; + +// Compare and branch. +enum CompareBranchOp { + CompareBranchFixed = 0x34000000, + CompareBranchFMask = 0x7E000000, + CompareBranchMask = 0xFF000000, + CBZ_w = CompareBranchFixed | 0x00000000, + CBZ_x = CompareBranchFixed | 0x80000000, + CBZ = CBZ_w, + CBNZ_w = CompareBranchFixed | 0x01000000, + CBNZ_x = CompareBranchFixed | 0x81000000, + CBNZ = CBNZ_w +}; + +// Test and branch. +enum TestBranchOp { + TestBranchFixed = 0x36000000, + TestBranchFMask = 0x7E000000, + TestBranchMask = 0x7F000000, + TBZ = TestBranchFixed | 0x00000000, + TBNZ = TestBranchFixed | 0x01000000 +}; + +// Conditional branch. +enum ConditionalBranchOp { + ConditionalBranchFixed = 0x54000000, + ConditionalBranchFMask = 0xFE000000, + ConditionalBranchMask = 0xFF000010, + B_cond = ConditionalBranchFixed | 0x00000000 +}; + +// System. +// System instruction encoding is complicated because some instructions use op +// and CR fields to encode parameters. To handle this cleanly, the system +// instructions are split into more than one enum. + +enum SystemOp { + SystemFixed = 0xD5000000, + SystemFMask = 0xFFC00000 +}; + +enum SystemSysRegOp { + SystemSysRegFixed = 0xD5100000, + SystemSysRegFMask = 0xFFD00000, + SystemSysRegMask = 0xFFF00000, + MRS = SystemSysRegFixed | 0x00200000, + MSR = SystemSysRegFixed | 0x00000000 +}; + +enum SystemHintOp { + SystemHintFixed = 0xD503201F, + SystemHintFMask = 0xFFFFF01F, + SystemHintMask = 0xFFFFF01F, + HINT = SystemHintFixed | 0x00000000 +}; + +// Exception. +enum ExceptionOp { + ExceptionFixed = 0xD4000000, + ExceptionFMask = 0xFF000000, + ExceptionMask = 0xFFE0001F, + HLT = ExceptionFixed | 0x00400000, + BRK = ExceptionFixed | 0x00200000, + SVC = ExceptionFixed | 0x00000001, + HVC = ExceptionFixed | 0x00000002, + SMC = ExceptionFixed | 0x00000003, + DCPS1 = ExceptionFixed | 0x00A00001, + DCPS2 = ExceptionFixed | 0x00A00002, + DCPS3 = ExceptionFixed | 0x00A00003 +}; + +// Any load or store. +enum LoadStoreAnyOp { + LoadStoreAnyFMask = 0x0a000000, + LoadStoreAnyFixed = 0x08000000 +}; + +#define LOAD_STORE_PAIR_OP_LIST(V) \ + V(STP, w, 0x00000000), \ + V(LDP, w, 0x00400000), \ + V(LDPSW, x, 0x40400000), \ + V(STP, x, 0x80000000), \ + V(LDP, x, 0x80400000), \ + V(STP, s, 0x04000000), \ + V(LDP, s, 0x04400000), \ + V(STP, d, 0x44000000), \ + V(LDP, d, 0x44400000) + +// Load/store pair (post, pre and offset.) +enum LoadStorePairOp { + LoadStorePairMask = 0xC4400000, + LoadStorePairLBit = 1 << 22, + #define LOAD_STORE_PAIR(A, B, C) \ + A##_##B = C + LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR) + #undef LOAD_STORE_PAIR +}; + +enum LoadStorePairPostIndexOp { + LoadStorePairPostIndexFixed = 0x28800000, + LoadStorePairPostIndexFMask = 0x3B800000, + LoadStorePairPostIndexMask = 0xFFC00000, + #define LOAD_STORE_PAIR_POST_INDEX(A, B, C) \ + A##_##B##_post = LoadStorePairPostIndexFixed | A##_##B + LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_POST_INDEX) + #undef LOAD_STORE_PAIR_POST_INDEX +}; + +enum LoadStorePairPreIndexOp { + LoadStorePairPreIndexFixed = 0x29800000, + LoadStorePairPreIndexFMask = 0x3B800000, + LoadStorePairPreIndexMask = 0xFFC00000, + #define LOAD_STORE_PAIR_PRE_INDEX(A, B, C) \ + A##_##B##_pre = LoadStorePairPreIndexFixed | A##_##B + LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_PRE_INDEX) + #undef LOAD_STORE_PAIR_PRE_INDEX +}; + +enum LoadStorePairOffsetOp { + LoadStorePairOffsetFixed = 0x29000000, + LoadStorePairOffsetFMask = 0x3B800000, + LoadStorePairOffsetMask = 0xFFC00000, + #define LOAD_STORE_PAIR_OFFSET(A, B, C) \ + A##_##B##_off = LoadStorePairOffsetFixed | A##_##B + LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_OFFSET) + #undef LOAD_STORE_PAIR_OFFSET +}; + +enum LoadStorePairNonTemporalOp { + LoadStorePairNonTemporalFixed = 0x28000000, + LoadStorePairNonTemporalFMask = 0x3B800000, + LoadStorePairNonTemporalMask = 0xFFC00000, + STNP_w = LoadStorePairNonTemporalFixed | STP_w, + LDNP_w = LoadStorePairNonTemporalFixed | LDP_w, + STNP_x = LoadStorePairNonTemporalFixed | STP_x, + LDNP_x = LoadStorePairNonTemporalFixed | LDP_x, + STNP_s = LoadStorePairNonTemporalFixed | STP_s, + LDNP_s = LoadStorePairNonTemporalFixed | LDP_s, + STNP_d = LoadStorePairNonTemporalFixed | STP_d, + LDNP_d = LoadStorePairNonTemporalFixed | LDP_d +}; + +// Load literal. +enum LoadLiteralOp { + LoadLiteralFixed = 0x18000000, + LoadLiteralFMask = 0x3B000000, + LoadLiteralMask = 0xFF000000, + LDR_w_lit = LoadLiteralFixed | 0x00000000, + LDR_x_lit = LoadLiteralFixed | 0x40000000, + LDRSW_x_lit = LoadLiteralFixed | 0x80000000, + PRFM_lit = LoadLiteralFixed | 0xC0000000, + LDR_s_lit = LoadLiteralFixed | 0x04000000, + LDR_d_lit = LoadLiteralFixed | 0x44000000 +}; + +#define LOAD_STORE_OP_LIST(V) \ + V(ST, RB, w, 0x00000000), \ + V(ST, RH, w, 0x40000000), \ + V(ST, R, w, 0x80000000), \ + V(ST, R, x, 0xC0000000), \ + V(LD, RB, w, 0x00400000), \ + V(LD, RH, w, 0x40400000), \ + V(LD, R, w, 0x80400000), \ + V(LD, R, x, 0xC0400000), \ + V(LD, RSB, x, 0x00800000), \ + V(LD, RSH, x, 0x40800000), \ + V(LD, RSW, x, 0x80800000), \ + V(LD, RSB, w, 0x00C00000), \ + V(LD, RSH, w, 0x40C00000), \ + V(ST, R, s, 0x84000000), \ + V(ST, R, d, 0xC4000000), \ + V(LD, R, s, 0x84400000), \ + V(LD, R, d, 0xC4400000) + + +// Load/store unscaled offset. +enum LoadStoreUnscaledOffsetOp { + LoadStoreUnscaledOffsetFixed = 0x38000000, + LoadStoreUnscaledOffsetFMask = 0x3B200C00, + LoadStoreUnscaledOffsetMask = 0xFFE00C00, + #define LOAD_STORE_UNSCALED(A, B, C, D) \ + A##U##B##_##C = LoadStoreUnscaledOffsetFixed | D + LOAD_STORE_OP_LIST(LOAD_STORE_UNSCALED) + #undef LOAD_STORE_UNSCALED +}; + +// Load/store (post, pre, offset and unsigned.) +enum LoadStoreOp { + LoadStoreOpMask = 0xC4C00000, + #define LOAD_STORE(A, B, C, D) \ + A##B##_##C = D + LOAD_STORE_OP_LIST(LOAD_STORE), + #undef LOAD_STORE + PRFM = 0xC0800000 +}; + +// Load/store post index. +enum LoadStorePostIndex { + LoadStorePostIndexFixed = 0x38000400, + LoadStorePostIndexFMask = 0x3B200C00, + LoadStorePostIndexMask = 0xFFE00C00, + #define LOAD_STORE_POST_INDEX(A, B, C, D) \ + A##B##_##C##_post = LoadStorePostIndexFixed | D + LOAD_STORE_OP_LIST(LOAD_STORE_POST_INDEX) + #undef LOAD_STORE_POST_INDEX +}; + +// Load/store pre index. +enum LoadStorePreIndex { + LoadStorePreIndexFixed = 0x38000C00, + LoadStorePreIndexFMask = 0x3B200C00, + LoadStorePreIndexMask = 0xFFE00C00, + #define LOAD_STORE_PRE_INDEX(A, B, C, D) \ + A##B##_##C##_pre = LoadStorePreIndexFixed | D + LOAD_STORE_OP_LIST(LOAD_STORE_PRE_INDEX) + #undef LOAD_STORE_PRE_INDEX +}; + +// Load/store unsigned offset. +enum LoadStoreUnsignedOffset { + LoadStoreUnsignedOffsetFixed = 0x39000000, + LoadStoreUnsignedOffsetFMask = 0x3B000000, + LoadStoreUnsignedOffsetMask = 0xFFC00000, + PRFM_unsigned = LoadStoreUnsignedOffsetFixed | PRFM, + #define LOAD_STORE_UNSIGNED_OFFSET(A, B, C, D) \ + A##B##_##C##_unsigned = LoadStoreUnsignedOffsetFixed | D + LOAD_STORE_OP_LIST(LOAD_STORE_UNSIGNED_OFFSET) + #undef LOAD_STORE_UNSIGNED_OFFSET +}; + +// Load/store register offset. +enum LoadStoreRegisterOffset { + LoadStoreRegisterOffsetFixed = 0x38200800, + LoadStoreRegisterOffsetFMask = 0x3B200C00, + LoadStoreRegisterOffsetMask = 0xFFE00C00, + PRFM_reg = LoadStoreRegisterOffsetFixed | PRFM, + #define LOAD_STORE_REGISTER_OFFSET(A, B, C, D) \ + A##B##_##C##_reg = LoadStoreRegisterOffsetFixed | D + LOAD_STORE_OP_LIST(LOAD_STORE_REGISTER_OFFSET) + #undef LOAD_STORE_REGISTER_OFFSET +}; + +// Conditional compare. +enum ConditionalCompareOp { + ConditionalCompareMask = 0x60000000, + CCMN = 0x20000000, + CCMP = 0x60000000 +}; + +// Conditional compare register. +enum ConditionalCompareRegisterOp { + ConditionalCompareRegisterFixed = 0x1A400000, + ConditionalCompareRegisterFMask = 0x1FE00800, + ConditionalCompareRegisterMask = 0xFFE00C10, + CCMN_w = ConditionalCompareRegisterFixed | CCMN, + CCMN_x = ConditionalCompareRegisterFixed | SixtyFourBits | CCMN, + CCMP_w = ConditionalCompareRegisterFixed | CCMP, + CCMP_x = ConditionalCompareRegisterFixed | SixtyFourBits | CCMP +}; + +// Conditional compare immediate. +enum ConditionalCompareImmediateOp { + ConditionalCompareImmediateFixed = 0x1A400800, + ConditionalCompareImmediateFMask = 0x1FE00800, + ConditionalCompareImmediateMask = 0xFFE00C10, + CCMN_w_imm = ConditionalCompareImmediateFixed | CCMN, + CCMN_x_imm = ConditionalCompareImmediateFixed | SixtyFourBits | CCMN, + CCMP_w_imm = ConditionalCompareImmediateFixed | CCMP, + CCMP_x_imm = ConditionalCompareImmediateFixed | SixtyFourBits | CCMP +}; + +// Conditional select. +enum ConditionalSelectOp { + ConditionalSelectFixed = 0x1A800000, + ConditionalSelectFMask = 0x1FE00000, + ConditionalSelectMask = 0xFFE00C00, + CSEL_w = ConditionalSelectFixed | 0x00000000, + CSEL_x = ConditionalSelectFixed | 0x80000000, + CSEL = CSEL_w, + CSINC_w = ConditionalSelectFixed | 0x00000400, + CSINC_x = ConditionalSelectFixed | 0x80000400, + CSINC = CSINC_w, + CSINV_w = ConditionalSelectFixed | 0x40000000, + CSINV_x = ConditionalSelectFixed | 0xC0000000, + CSINV = CSINV_w, + CSNEG_w = ConditionalSelectFixed | 0x40000400, + CSNEG_x = ConditionalSelectFixed | 0xC0000400, + CSNEG = CSNEG_w +}; + +// Data processing 1 source. +enum DataProcessing1SourceOp { + DataProcessing1SourceFixed = 0x5AC00000, + DataProcessing1SourceFMask = 0x5FE00000, + DataProcessing1SourceMask = 0xFFFFFC00, + RBIT = DataProcessing1SourceFixed | 0x00000000, + RBIT_w = RBIT, + RBIT_x = RBIT | SixtyFourBits, + REV16 = DataProcessing1SourceFixed | 0x00000400, + REV16_w = REV16, + REV16_x = REV16 | SixtyFourBits, + REV = DataProcessing1SourceFixed | 0x00000800, + REV_w = REV, + REV32_x = REV | SixtyFourBits, + REV_x = DataProcessing1SourceFixed | SixtyFourBits | 0x00000C00, + CLZ = DataProcessing1SourceFixed | 0x00001000, + CLZ_w = CLZ, + CLZ_x = CLZ | SixtyFourBits, + CLS = DataProcessing1SourceFixed | 0x00001400, + CLS_w = CLS, + CLS_x = CLS | SixtyFourBits +}; + +// Data processing 2 source. +enum DataProcessing2SourceOp { + DataProcessing2SourceFixed = 0x1AC00000, + DataProcessing2SourceFMask = 0x5FE00000, + DataProcessing2SourceMask = 0xFFE0FC00, + UDIV_w = DataProcessing2SourceFixed | 0x00000800, + UDIV_x = DataProcessing2SourceFixed | 0x80000800, + UDIV = UDIV_w, + SDIV_w = DataProcessing2SourceFixed | 0x00000C00, + SDIV_x = DataProcessing2SourceFixed | 0x80000C00, + SDIV = SDIV_w, + LSLV_w = DataProcessing2SourceFixed | 0x00002000, + LSLV_x = DataProcessing2SourceFixed | 0x80002000, + LSLV = LSLV_w, + LSRV_w = DataProcessing2SourceFixed | 0x00002400, + LSRV_x = DataProcessing2SourceFixed | 0x80002400, + LSRV = LSRV_w, + ASRV_w = DataProcessing2SourceFixed | 0x00002800, + ASRV_x = DataProcessing2SourceFixed | 0x80002800, + ASRV = ASRV_w, + RORV_w = DataProcessing2SourceFixed | 0x00002C00, + RORV_x = DataProcessing2SourceFixed | 0x80002C00, + RORV = RORV_w, + CRC32B = DataProcessing2SourceFixed | 0x00004000, + CRC32H = DataProcessing2SourceFixed | 0x00004400, + CRC32W = DataProcessing2SourceFixed | 0x00004800, + CRC32X = DataProcessing2SourceFixed | SixtyFourBits | 0x00004C00, + CRC32CB = DataProcessing2SourceFixed | 0x00005000, + CRC32CH = DataProcessing2SourceFixed | 0x00005400, + CRC32CW = DataProcessing2SourceFixed | 0x00005800, + CRC32CX = DataProcessing2SourceFixed | SixtyFourBits | 0x00005C00 +}; + +// Data processing 3 source. +enum DataProcessing3SourceOp { + DataProcessing3SourceFixed = 0x1B000000, + DataProcessing3SourceFMask = 0x1F000000, + DataProcessing3SourceMask = 0xFFE08000, + MADD_w = DataProcessing3SourceFixed | 0x00000000, + MADD_x = DataProcessing3SourceFixed | 0x80000000, + MADD = MADD_w, + MSUB_w = DataProcessing3SourceFixed | 0x00008000, + MSUB_x = DataProcessing3SourceFixed | 0x80008000, + MSUB = MSUB_w, + SMADDL_x = DataProcessing3SourceFixed | 0x80200000, + SMSUBL_x = DataProcessing3SourceFixed | 0x80208000, + SMULH_x = DataProcessing3SourceFixed | 0x80400000, + UMADDL_x = DataProcessing3SourceFixed | 0x80A00000, + UMSUBL_x = DataProcessing3SourceFixed | 0x80A08000, + UMULH_x = DataProcessing3SourceFixed | 0x80C00000 +}; + +// Floating point compare. +enum FPCompareOp { + FPCompareFixed = 0x1E202000, + FPCompareFMask = 0x5F203C00, + FPCompareMask = 0xFFE0FC1F, + FCMP_s = FPCompareFixed | 0x00000000, + FCMP_d = FPCompareFixed | FP64 | 0x00000000, + FCMP = FCMP_s, + FCMP_s_zero = FPCompareFixed | 0x00000008, + FCMP_d_zero = FPCompareFixed | FP64 | 0x00000008, + FCMP_zero = FCMP_s_zero, + FCMPE_s = FPCompareFixed | 0x00000010, + FCMPE_d = FPCompareFixed | FP64 | 0x00000010, + FCMPE_s_zero = FPCompareFixed | 0x00000018, + FCMPE_d_zero = FPCompareFixed | FP64 | 0x00000018 +}; + +// Floating point conditional compare. +enum FPConditionalCompareOp { + FPConditionalCompareFixed = 0x1E200400, + FPConditionalCompareFMask = 0x5F200C00, + FPConditionalCompareMask = 0xFFE00C10, + FCCMP_s = FPConditionalCompareFixed | 0x00000000, + FCCMP_d = FPConditionalCompareFixed | FP64 | 0x00000000, + FCCMP = FCCMP_s, + FCCMPE_s = FPConditionalCompareFixed | 0x00000010, + FCCMPE_d = FPConditionalCompareFixed | FP64 | 0x00000010, + FCCMPE = FCCMPE_s +}; + +// Floating point conditional select. +enum FPConditionalSelectOp { + FPConditionalSelectFixed = 0x1E200C00, + FPConditionalSelectFMask = 0x5F200C00, + FPConditionalSelectMask = 0xFFE00C00, + FCSEL_s = FPConditionalSelectFixed | 0x00000000, + FCSEL_d = FPConditionalSelectFixed | FP64 | 0x00000000, + FCSEL = FCSEL_s +}; + +// Floating point immediate. +enum FPImmediateOp { + FPImmediateFixed = 0x1E201000, + FPImmediateFMask = 0x5F201C00, + FPImmediateMask = 0xFFE01C00, + FMOV_s_imm = FPImmediateFixed | 0x00000000, + FMOV_d_imm = FPImmediateFixed | FP64 | 0x00000000 +}; + +// Floating point data processing 1 source. +enum FPDataProcessing1SourceOp { + FPDataProcessing1SourceFixed = 0x1E204000, + FPDataProcessing1SourceFMask = 0x5F207C00, + FPDataProcessing1SourceMask = 0xFFFFFC00, + FMOV_s = FPDataProcessing1SourceFixed | 0x00000000, + FMOV_d = FPDataProcessing1SourceFixed | FP64 | 0x00000000, + FMOV = FMOV_s, + FABS_s = FPDataProcessing1SourceFixed | 0x00008000, + FABS_d = FPDataProcessing1SourceFixed | FP64 | 0x00008000, + FABS = FABS_s, + FNEG_s = FPDataProcessing1SourceFixed | 0x00010000, + FNEG_d = FPDataProcessing1SourceFixed | FP64 | 0x00010000, + FNEG = FNEG_s, + FSQRT_s = FPDataProcessing1SourceFixed | 0x00018000, + FSQRT_d = FPDataProcessing1SourceFixed | FP64 | 0x00018000, + FSQRT = FSQRT_s, + FCVT_ds = FPDataProcessing1SourceFixed | 0x00028000, + FCVT_sd = FPDataProcessing1SourceFixed | FP64 | 0x00020000, + FRINTN_s = FPDataProcessing1SourceFixed | 0x00040000, + FRINTN_d = FPDataProcessing1SourceFixed | FP64 | 0x00040000, + FRINTN = FRINTN_s, + FRINTP_s = FPDataProcessing1SourceFixed | 0x00048000, + FRINTP_d = FPDataProcessing1SourceFixed | FP64 | 0x00048000, + FRINTM_s = FPDataProcessing1SourceFixed | 0x00050000, + FRINTM_d = FPDataProcessing1SourceFixed | FP64 | 0x00050000, + FRINTZ_s = FPDataProcessing1SourceFixed | 0x00058000, + FRINTZ_d = FPDataProcessing1SourceFixed | FP64 | 0x00058000, + FRINTZ = FRINTZ_s, + FRINTA_s = FPDataProcessing1SourceFixed | 0x00060000, + FRINTA_d = FPDataProcessing1SourceFixed | FP64 | 0x00060000, + FRINTX_s = FPDataProcessing1SourceFixed | 0x00070000, + FRINTX_d = FPDataProcessing1SourceFixed | FP64 | 0x00070000, + FRINTI_s = FPDataProcessing1SourceFixed | 0x00078000, + FRINTI_d = FPDataProcessing1SourceFixed | FP64 | 0x00078000 +}; + +// Floating point data processing 2 source. +enum FPDataProcessing2SourceOp { + FPDataProcessing2SourceFixed = 0x1E200800, + FPDataProcessing2SourceFMask = 0x5F200C00, + FPDataProcessing2SourceMask = 0xFFE0FC00, + FMUL = FPDataProcessing2SourceFixed | 0x00000000, + FMUL_s = FMUL, + FMUL_d = FMUL | FP64, + FDIV = FPDataProcessing2SourceFixed | 0x00001000, + FDIV_s = FDIV, + FDIV_d = FDIV | FP64, + FADD = FPDataProcessing2SourceFixed | 0x00002000, + FADD_s = FADD, + FADD_d = FADD | FP64, + FSUB = FPDataProcessing2SourceFixed | 0x00003000, + FSUB_s = FSUB, + FSUB_d = FSUB | FP64, + FMAX = FPDataProcessing2SourceFixed | 0x00004000, + FMAX_s = FMAX, + FMAX_d = FMAX | FP64, + FMIN = FPDataProcessing2SourceFixed | 0x00005000, + FMIN_s = FMIN, + FMIN_d = FMIN | FP64, + FMAXNM = FPDataProcessing2SourceFixed | 0x00006000, + FMAXNM_s = FMAXNM, + FMAXNM_d = FMAXNM | FP64, + FMINNM = FPDataProcessing2SourceFixed | 0x00007000, + FMINNM_s = FMINNM, + FMINNM_d = FMINNM | FP64, + FNMUL = FPDataProcessing2SourceFixed | 0x00008000, + FNMUL_s = FNMUL, + FNMUL_d = FNMUL | FP64 +}; + +// Floating point data processing 3 source. +enum FPDataProcessing3SourceOp { + FPDataProcessing3SourceFixed = 0x1F000000, + FPDataProcessing3SourceFMask = 0x5F000000, + FPDataProcessing3SourceMask = 0xFFE08000, + FMADD_s = FPDataProcessing3SourceFixed | 0x00000000, + FMSUB_s = FPDataProcessing3SourceFixed | 0x00008000, + FNMADD_s = FPDataProcessing3SourceFixed | 0x00200000, + FNMSUB_s = FPDataProcessing3SourceFixed | 0x00208000, + FMADD_d = FPDataProcessing3SourceFixed | 0x00400000, + FMSUB_d = FPDataProcessing3SourceFixed | 0x00408000, + FNMADD_d = FPDataProcessing3SourceFixed | 0x00600000, + FNMSUB_d = FPDataProcessing3SourceFixed | 0x00608000 +}; + +// Conversion between floating point and integer. +enum FPIntegerConvertOp { + FPIntegerConvertFixed = 0x1E200000, + FPIntegerConvertFMask = 0x5F20FC00, + FPIntegerConvertMask = 0xFFFFFC00, + FCVTNS = FPIntegerConvertFixed | 0x00000000, + FCVTNS_ws = FCVTNS, + FCVTNS_xs = FCVTNS | SixtyFourBits, + FCVTNS_wd = FCVTNS | FP64, + FCVTNS_xd = FCVTNS | SixtyFourBits | FP64, + FCVTNU = FPIntegerConvertFixed | 0x00010000, + FCVTNU_ws = FCVTNU, + FCVTNU_xs = FCVTNU | SixtyFourBits, + FCVTNU_wd = FCVTNU | FP64, + FCVTNU_xd = FCVTNU | SixtyFourBits | FP64, + FCVTPS = FPIntegerConvertFixed | 0x00080000, + FCVTPS_ws = FCVTPS, + FCVTPS_xs = FCVTPS | SixtyFourBits, + FCVTPS_wd = FCVTPS | FP64, + FCVTPS_xd = FCVTPS | SixtyFourBits | FP64, + FCVTPU = FPIntegerConvertFixed | 0x00090000, + FCVTPU_ws = FCVTPU, + FCVTPU_xs = FCVTPU | SixtyFourBits, + FCVTPU_wd = FCVTPU | FP64, + FCVTPU_xd = FCVTPU | SixtyFourBits | FP64, + FCVTMS = FPIntegerConvertFixed | 0x00100000, + FCVTMS_ws = FCVTMS, + FCVTMS_xs = FCVTMS | SixtyFourBits, + FCVTMS_wd = FCVTMS | FP64, + FCVTMS_xd = FCVTMS | SixtyFourBits | FP64, + FCVTMU = FPIntegerConvertFixed | 0x00110000, + FCVTMU_ws = FCVTMU, + FCVTMU_xs = FCVTMU | SixtyFourBits, + FCVTMU_wd = FCVTMU | FP64, + FCVTMU_xd = FCVTMU | SixtyFourBits | FP64, + FCVTZS = FPIntegerConvertFixed | 0x00180000, + FCVTZS_ws = FCVTZS, + FCVTZS_xs = FCVTZS | SixtyFourBits, + FCVTZS_wd = FCVTZS | FP64, + FCVTZS_xd = FCVTZS | SixtyFourBits | FP64, + FCVTZU = FPIntegerConvertFixed | 0x00190000, + FCVTZU_ws = FCVTZU, + FCVTZU_xs = FCVTZU | SixtyFourBits, + FCVTZU_wd = FCVTZU | FP64, + FCVTZU_xd = FCVTZU | SixtyFourBits | FP64, + SCVTF = FPIntegerConvertFixed | 0x00020000, + SCVTF_sw = SCVTF, + SCVTF_sx = SCVTF | SixtyFourBits, + SCVTF_dw = SCVTF | FP64, + SCVTF_dx = SCVTF | SixtyFourBits | FP64, + UCVTF = FPIntegerConvertFixed | 0x00030000, + UCVTF_sw = UCVTF, + UCVTF_sx = UCVTF | SixtyFourBits, + UCVTF_dw = UCVTF | FP64, + UCVTF_dx = UCVTF | SixtyFourBits | FP64, + FCVTAS = FPIntegerConvertFixed | 0x00040000, + FCVTAS_ws = FCVTAS, + FCVTAS_xs = FCVTAS | SixtyFourBits, + FCVTAS_wd = FCVTAS | FP64, + FCVTAS_xd = FCVTAS | SixtyFourBits | FP64, + FCVTAU = FPIntegerConvertFixed | 0x00050000, + FCVTAU_ws = FCVTAU, + FCVTAU_xs = FCVTAU | SixtyFourBits, + FCVTAU_wd = FCVTAU | FP64, + FCVTAU_xd = FCVTAU | SixtyFourBits | FP64, + FMOV_ws = FPIntegerConvertFixed | 0x00060000, + FMOV_sw = FPIntegerConvertFixed | 0x00070000, + FMOV_xd = FMOV_ws | SixtyFourBits | FP64, + FMOV_dx = FMOV_sw | SixtyFourBits | FP64 +}; + +// Conversion between fixed point and floating point. +enum FPFixedPointConvertOp { + FPFixedPointConvertFixed = 0x1E000000, + FPFixedPointConvertFMask = 0x5F200000, + FPFixedPointConvertMask = 0xFFFF0000, + FCVTZS_fixed = FPFixedPointConvertFixed | 0x00180000, + FCVTZS_ws_fixed = FCVTZS_fixed, + FCVTZS_xs_fixed = FCVTZS_fixed | SixtyFourBits, + FCVTZS_wd_fixed = FCVTZS_fixed | FP64, + FCVTZS_xd_fixed = FCVTZS_fixed | SixtyFourBits | FP64, + FCVTZU_fixed = FPFixedPointConvertFixed | 0x00190000, + FCVTZU_ws_fixed = FCVTZU_fixed, + FCVTZU_xs_fixed = FCVTZU_fixed | SixtyFourBits, + FCVTZU_wd_fixed = FCVTZU_fixed | FP64, + FCVTZU_xd_fixed = FCVTZU_fixed | SixtyFourBits | FP64, + SCVTF_fixed = FPFixedPointConvertFixed | 0x00020000, + SCVTF_sw_fixed = SCVTF_fixed, + SCVTF_sx_fixed = SCVTF_fixed | SixtyFourBits, + SCVTF_dw_fixed = SCVTF_fixed | FP64, + SCVTF_dx_fixed = SCVTF_fixed | SixtyFourBits | FP64, + UCVTF_fixed = FPFixedPointConvertFixed | 0x00030000, + UCVTF_sw_fixed = UCVTF_fixed, + UCVTF_sx_fixed = UCVTF_fixed | SixtyFourBits, + UCVTF_dw_fixed = UCVTF_fixed | FP64, + UCVTF_dx_fixed = UCVTF_fixed | SixtyFourBits | FP64 +}; + +// Unimplemented and unallocated instructions. These are defined to make fixed +// bit assertion easier. +enum UnimplementedOp { + UnimplementedFixed = 0x00000000, + UnimplementedFMask = 0x00000000 +}; + +enum UnallocatedOp { + UnallocatedFixed = 0x00000000, + UnallocatedFMask = 0x00000000 +}; + +} // namespace vixl + +#endif // VIXL_A64_CONSTANTS_A64_H_ diff --git a/disas/libvixl/a64/cpu-a64.h b/disas/libvixl/a64/cpu-a64.h new file mode 100644 index 0000000000..dfd8f015cf --- /dev/null +++ b/disas/libvixl/a64/cpu-a64.h @@ -0,0 +1,56 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef VIXL_CPU_A64_H +#define VIXL_CPU_A64_H + +#include "globals.h" + +namespace vixl { + +class CPU { + public: + // Initialise CPU support. + static void SetUp(); + + // Ensures the data at a given address and with a given size is the same for + // the I and D caches. I and D caches are not automatically coherent on ARM + // so this operation is required before any dynamically generated code can + // safely run. + static void EnsureIAndDCacheCoherency(void *address, size_t length); + + private: + // Return the content of the cache type register. + static uint32_t GetCacheType(); + + // I and D cache line size in bytes. + static unsigned icache_line_size_; + static unsigned dcache_line_size_; +}; + +} // namespace vixl + +#endif // VIXL_CPU_A64_H diff --git a/disas/libvixl/a64/decoder-a64.cc b/disas/libvixl/a64/decoder-a64.cc new file mode 100644 index 0000000000..9e9033c49c --- /dev/null +++ b/disas/libvixl/a64/decoder-a64.cc @@ -0,0 +1,712 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "globals.h" +#include "utils.h" +#include "a64/decoder-a64.h" + +namespace vixl { +// Top-level instruction decode function. +void Decoder::Decode(Instruction *instr) { + if (instr->Bits(28, 27) == 0) { + VisitUnallocated(instr); + } else { + switch (instr->Bits(27, 24)) { + // 0: PC relative addressing. + case 0x0: DecodePCRelAddressing(instr); break; + + // 1: Add/sub immediate. + case 0x1: DecodeAddSubImmediate(instr); break; + + // A: Logical shifted register. + // Add/sub with carry. + // Conditional compare register. + // Conditional compare immediate. + // Conditional select. + // Data processing 1 source. + // Data processing 2 source. + // B: Add/sub shifted register. + // Add/sub extended register. + // Data processing 3 source. + case 0xA: + case 0xB: DecodeDataProcessing(instr); break; + + // 2: Logical immediate. + // Move wide immediate. + case 0x2: DecodeLogical(instr); break; + + // 3: Bitfield. + // Extract. + case 0x3: DecodeBitfieldExtract(instr); break; + + // 4: Unconditional branch immediate. + // Exception generation. + // Compare and branch immediate. + // 5: Compare and branch immediate. + // Conditional branch. + // System. + // 6,7: Unconditional branch. + // Test and branch immediate. + case 0x4: + case 0x5: + case 0x6: + case 0x7: DecodeBranchSystemException(instr); break; + + // 8,9: Load/store register pair post-index. + // Load register literal. + // Load/store register unscaled immediate. + // Load/store register immediate post-index. + // Load/store register immediate pre-index. + // Load/store register offset. + // Load/store exclusive. + // C,D: Load/store register pair offset. + // Load/store register pair pre-index. + // Load/store register unsigned immediate. + // Advanced SIMD. + case 0x8: + case 0x9: + case 0xC: + case 0xD: DecodeLoadStore(instr); break; + + // E: FP fixed point conversion. + // FP integer conversion. + // FP data processing 1 source. + // FP compare. + // FP immediate. + // FP data processing 2 source. + // FP conditional compare. + // FP conditional select. + // Advanced SIMD. + // F: FP data processing 3 source. + // Advanced SIMD. + case 0xE: + case 0xF: DecodeFP(instr); break; + } + } +} + +void Decoder::AppendVisitor(DecoderVisitor* new_visitor) { + visitors_.remove(new_visitor); + visitors_.push_front(new_visitor); +} + + +void Decoder::PrependVisitor(DecoderVisitor* new_visitor) { + visitors_.remove(new_visitor); + visitors_.push_back(new_visitor); +} + + +void Decoder::InsertVisitorBefore(DecoderVisitor* new_visitor, + DecoderVisitor* registered_visitor) { + visitors_.remove(new_visitor); + std::list<DecoderVisitor*>::iterator it; + for (it = visitors_.begin(); it != visitors_.end(); it++) { + if (*it == registered_visitor) { + visitors_.insert(it, new_visitor); + return; + } + } + // We reached the end of the list. The last element must be + // registered_visitor. + ASSERT(*it == registered_visitor); + visitors_.insert(it, new_visitor); +} + + +void Decoder::InsertVisitorAfter(DecoderVisitor* new_visitor, + DecoderVisitor* registered_visitor) { + visitors_.remove(new_visitor); + std::list<DecoderVisitor*>::iterator it; + for (it = visitors_.begin(); it != visitors_.end(); it++) { + if (*it == registered_visitor) { + it++; + visitors_.insert(it, new_visitor); + return; + } + } + // We reached the end of the list. The last element must be + // registered_visitor. + ASSERT(*it == registered_visitor); + visitors_.push_back(new_visitor); +} + + +void Decoder::RemoveVisitor(DecoderVisitor* visitor) { + visitors_.remove(visitor); +} + + +void Decoder::DecodePCRelAddressing(Instruction* instr) { + ASSERT(instr->Bits(27, 24) == 0x0); + // We know bit 28 is set, as <b28:b27> = 0 is filtered out at the top level + // decode. + ASSERT(instr->Bit(28) == 0x1); + VisitPCRelAddressing(instr); +} + + +void Decoder::DecodeBranchSystemException(Instruction* instr) { + ASSERT((instr->Bits(27, 24) == 0x4) || + (instr->Bits(27, 24) == 0x5) || + (instr->Bits(27, 24) == 0x6) || + (instr->Bits(27, 24) == 0x7) ); + + switch (instr->Bits(31, 29)) { + case 0: + case 4: { + VisitUnconditionalBranch(instr); + break; + } + case 1: + case 5: { + if (instr->Bit(25) == 0) { + VisitCompareBranch(instr); + } else { + VisitTestBranch(instr); + } + break; + } + case 2: { + if (instr->Bit(25) == 0) { + if ((instr->Bit(24) == 0x1) || + (instr->Mask(0x01000010) == 0x00000010)) { + VisitUnallocated(instr); + } else { + VisitConditionalBranch(instr); + } + } else { + VisitUnallocated(instr); + } + break; + } + case 6: { + if (instr->Bit(25) == 0) { + if (instr->Bit(24) == 0) { + if ((instr->Bits(4, 2) != 0) || + (instr->Mask(0x00E0001D) == 0x00200001) || + (instr->Mask(0x00E0001D) == 0x00400001) || + (instr->Mask(0x00E0001E) == 0x00200002) || + (instr->Mask(0x00E0001E) == 0x00400002) || + (instr->Mask(0x00E0001C) == 0x00600000) || + (instr->Mask(0x00E0001C) == 0x00800000) || + (instr->Mask(0x00E0001F) == 0x00A00000) || + (instr->Mask(0x00C0001C) == 0x00C00000)) { + VisitUnallocated(instr); + } else { + VisitException(instr); + } + } else { + if (instr->Bits(23, 22) == 0) { + const Instr masked_003FF0E0 = instr->Mask(0x003FF0E0); + if ((instr->Bits(21, 19) == 0x4) || + (masked_003FF0E0 == 0x00033000) || + (masked_003FF0E0 == 0x003FF020) || + (masked_003FF0E0 == 0x003FF060) || + (masked_003FF0E0 == 0x003FF0E0) || + (instr->Mask(0x00388000) == 0x00008000) || + (instr->Mask(0x0038E000) == 0x00000000) || + (instr->Mask(0x0039E000) == 0x00002000) || + (instr->Mask(0x003AE000) == 0x00002000) || + (instr->Mask(0x003CE000) == 0x00042000) || + (instr->Mask(0x003FFFC0) == 0x000320C0) || + (instr->Mask(0x003FF100) == 0x00032100) || + (instr->Mask(0x003FF200) == 0x00032200) || + (instr->Mask(0x003FF400) == 0x00032400) || + (instr->Mask(0x003FF800) == 0x00032800) || + (instr->Mask(0x0038F000) == 0x00005000) || + (instr->Mask(0x0038E000) == 0x00006000)) { + VisitUnallocated(instr); + } else { + VisitSystem(instr); + } + } else { + VisitUnallocated(instr); + } + } + } else { + if ((instr->Bit(24) == 0x1) || + (instr->Bits(20, 16) != 0x1F) || + (instr->Bits(15, 10) != 0) || + (instr->Bits(4, 0) != 0) || + (instr->Bits(24, 21) == 0x3) || + (instr->Bits(24, 22) == 0x3)) { + VisitUnallocated(instr); + } else { + VisitUnconditionalBranchToRegister(instr); + } + } + break; + } + case 3: + case 7: { + VisitUnallocated(instr); + break; + } + } +} + + +void Decoder::DecodeLoadStore(Instruction* instr) { + ASSERT((instr->Bits(27, 24) == 0x8) || + (instr->Bits(27, 24) == 0x9) || + (instr->Bits(27, 24) == 0xC) || + (instr->Bits(27, 24) == 0xD) ); + + if (instr->Bit(24) == 0) { + if (instr->Bit(28) == 0) { + if (instr->Bit(29) == 0) { + if (instr->Bit(26) == 0) { + // TODO: VisitLoadStoreExclusive. + VisitUnimplemented(instr); + } else { + DecodeAdvSIMDLoadStore(instr); + } + } else { + if ((instr->Bits(31, 30) == 0x3) || + (instr->Mask(0xC4400000) == 0x40000000)) { + VisitUnallocated(instr); + } else { + if (instr->Bit(23) == 0) { + if (instr->Mask(0xC4400000) == 0xC0400000) { + VisitUnallocated(instr); + } else { + VisitLoadStorePairNonTemporal(instr); + } + } else { + VisitLoadStorePairPostIndex(instr); + } + } + } + } else { + if (instr->Bit(29) == 0) { + if (instr->Mask(0xC4000000) == 0xC4000000) { + VisitUnallocated(instr); + } else { + VisitLoadLiteral(instr); + } + } else { + if ((instr->Mask(0x84C00000) == 0x80C00000) || + (instr->Mask(0x44800000) == 0x44800000) || + (instr->Mask(0x84800000) == 0x84800000)) { + VisitUnallocated(instr); + } else { + if (instr->Bit(21) == 0) { + switch (instr->Bits(11, 10)) { + case 0: { + VisitLoadStoreUnscaledOffset(instr); + break; + } + case 1: { + if (instr->Mask(0xC4C00000) == 0xC0800000) { + VisitUnallocated(instr); + } else { + VisitLoadStorePostIndex(instr); + } + break; + } + case 2: { + // TODO: VisitLoadStoreRegisterOffsetUnpriv. + VisitUnimplemented(instr); + break; + } + case 3: { + if (instr->Mask(0xC4C00000) == 0xC0800000) { + VisitUnallocated(instr); + } else { + VisitLoadStorePreIndex(instr); + } + break; + } + } + } else { + if (instr->Bits(11, 10) == 0x2) { + if (instr->Bit(14) == 0) { + VisitUnallocated(instr); + } else { + VisitLoadStoreRegisterOffset(instr); + } + } else { + VisitUnallocated(instr); + } + } + } + } + } + } else { + if (instr->Bit(28) == 0) { + if (instr->Bit(29) == 0) { + VisitUnallocated(instr); + } else { + if ((instr->Bits(31, 30) == 0x3) || + (instr->Mask(0xC4400000) == 0x40000000)) { + VisitUnallocated(instr); + } else { + if (instr->Bit(23) == 0) { + VisitLoadStorePairOffset(instr); + } else { + VisitLoadStorePairPreIndex(instr); + } + } + } + } else { + if (instr->Bit(29) == 0) { + VisitUnallocated(instr); + } else { + if ((instr->Mask(0x84C00000) == 0x80C00000) || + (instr->Mask(0x44800000) == 0x44800000) || + (instr->Mask(0x84800000) == 0x84800000)) { + VisitUnallocated(instr); + } else { + VisitLoadStoreUnsignedOffset(instr); + } + } + } + } +} + + +void Decoder::DecodeLogical(Instruction* instr) { + ASSERT(instr->Bits(27, 24) == 0x2); + + if (instr->Mask(0x80400000) == 0x00400000) { + VisitUnallocated(instr); + } else { + if (instr->Bit(23) == 0) { + VisitLogicalImmediate(instr); + } else { + if (instr->Bits(30, 29) == 0x1) { + VisitUnallocated(instr); + } else { + VisitMoveWideImmediate(instr); + } + } + } +} + + +void Decoder::DecodeBitfieldExtract(Instruction* instr) { + ASSERT(instr->Bits(27, 24) == 0x3); + + if ((instr->Mask(0x80400000) == 0x80000000) || + (instr->Mask(0x80400000) == 0x00400000) || + (instr->Mask(0x80008000) == 0x00008000)) { + VisitUnallocated(instr); + } else if (instr->Bit(23) == 0) { + if ((instr->Mask(0x80200000) == 0x00200000) || + (instr->Mask(0x60000000) == 0x60000000)) { + VisitUnallocated(instr); + } else { + VisitBitfield(instr); + } + } else { + if ((instr->Mask(0x60200000) == 0x00200000) || + (instr->Mask(0x60000000) != 0x00000000)) { + VisitUnallocated(instr); + } else { + VisitExtract(instr); + } + } +} + + +void Decoder::DecodeAddSubImmediate(Instruction* instr) { + ASSERT(instr->Bits(27, 24) == 0x1); + if (instr->Bit(23) == 1) { + VisitUnallocated(instr); + } else { + VisitAddSubImmediate(instr); + } +} + + +void Decoder::DecodeDataProcessing(Instruction* instr) { + ASSERT((instr->Bits(27, 24) == 0xA) || + (instr->Bits(27, 24) == 0xB) ); + + if (instr->Bit(24) == 0) { + if (instr->Bit(28) == 0) { + if (instr->Mask(0x80008000) == 0x00008000) { + VisitUnallocated(instr); + } else { + VisitLogicalShifted(instr); + } + } else { + switch (instr->Bits(23, 21)) { + case 0: { + if (instr->Mask(0x0000FC00) != 0) { + VisitUnallocated(instr); + } else { + VisitAddSubWithCarry(instr); + } + break; + } + case 2: { + if ((instr->Bit(29) == 0) || + (instr->Mask(0x00000410) != 0)) { + VisitUnallocated(instr); + } else { + if (instr->Bit(11) == 0) { + VisitConditionalCompareRegister(instr); + } else { + VisitConditionalCompareImmediate(instr); + } + } + break; + } + case 4: { + if (instr->Mask(0x20000800) != 0x00000000) { + VisitUnallocated(instr); + } else { + VisitConditionalSelect(instr); + } + break; + } + case 6: { + if (instr->Bit(29) == 0x1) { + VisitUnallocated(instr); + } else { + if (instr->Bit(30) == 0) { + if ((instr->Bit(15) == 0x1) || + (instr->Bits(15, 11) == 0) || + (instr->Bits(15, 12) == 0x1) || + (instr->Bits(15, 12) == 0x3) || + (instr->Bits(15, 13) == 0x3) || + (instr->Mask(0x8000EC00) == 0x00004C00) || + (instr->Mask(0x8000E800) == 0x80004000) || + (instr->Mask(0x8000E400) == 0x80004000)) { + VisitUnallocated(instr); + } else { + VisitDataProcessing2Source(instr); + } + } else { + if ((instr->Bit(13) == 1) || + (instr->Bits(20, 16) != 0) || + (instr->Bits(15, 14) != 0) || + (instr->Mask(0xA01FFC00) == 0x00000C00) || + (instr->Mask(0x201FF800) == 0x00001800)) { + VisitUnallocated(instr); + } else { + VisitDataProcessing1Source(instr); + } + } + break; + } + } + case 1: + case 3: + case 5: + case 7: VisitUnallocated(instr); break; + } + } + } else { + if (instr->Bit(28) == 0) { + if (instr->Bit(21) == 0) { + if ((instr->Bits(23, 22) == 0x3) || + (instr->Mask(0x80008000) == 0x00008000)) { + VisitUnallocated(instr); + } else { + VisitAddSubShifted(instr); + } + } else { + if ((instr->Mask(0x00C00000) != 0x00000000) || + (instr->Mask(0x00001400) == 0x00001400) || + (instr->Mask(0x00001800) == 0x00001800)) { + VisitUnallocated(instr); + } else { + VisitAddSubExtended(instr); + } + } + } else { + if ((instr->Bit(30) == 0x1) || + (instr->Bits(30, 29) == 0x1) || + (instr->Mask(0xE0600000) == 0x00200000) || + (instr->Mask(0xE0608000) == 0x00400000) || + (instr->Mask(0x60608000) == 0x00408000) || + (instr->Mask(0x60E00000) == 0x00E00000) || + (instr->Mask(0x60E00000) == 0x00800000) || + (instr->Mask(0x60E00000) == 0x00600000)) { + VisitUnallocated(instr); + } else { + VisitDataProcessing3Source(instr); + } + } + } +} + + +void Decoder::DecodeFP(Instruction* instr) { + ASSERT((instr->Bits(27, 24) == 0xE) || + (instr->Bits(27, 24) == 0xF) ); + + if (instr->Bit(28) == 0) { + DecodeAdvSIMDDataProcessing(instr); + } else { + if (instr->Bit(29) == 1) { + VisitUnallocated(instr); + } else { + if (instr->Bits(31, 30) == 0x3) { + VisitUnallocated(instr); + } else if (instr->Bits(31, 30) == 0x1) { + DecodeAdvSIMDDataProcessing(instr); + } else { + if (instr->Bit(24) == 0) { + if (instr->Bit(21) == 0) { + if ((instr->Bit(23) == 1) || + (instr->Bit(18) == 1) || + (instr->Mask(0x80008000) == 0x00000000) || + (instr->Mask(0x000E0000) == 0x00000000) || + (instr->Mask(0x000E0000) == 0x000A0000) || + (instr->Mask(0x00160000) == 0x00000000) || + (instr->Mask(0x00160000) == 0x00120000)) { + VisitUnallocated(instr); + } else { + VisitFPFixedPointConvert(instr); + } + } else { + if (instr->Bits(15, 10) == 32) { + VisitUnallocated(instr); + } else if (instr->Bits(15, 10) == 0) { + if ((instr->Bits(23, 22) == 0x3) || + (instr->Mask(0x000E0000) == 0x000A0000) || + (instr->Mask(0x000E0000) == 0x000C0000) || + (instr->Mask(0x00160000) == 0x00120000) || + (instr->Mask(0x00160000) == 0x00140000) || + (instr->Mask(0x20C40000) == 0x00800000) || + (instr->Mask(0x20C60000) == 0x00840000) || + (instr->Mask(0xA0C60000) == 0x80060000) || + (instr->Mask(0xA0C60000) == 0x00860000) || + (instr->Mask(0xA0C60000) == 0x00460000) || + (instr->Mask(0xA0CE0000) == 0x80860000) || + (instr->Mask(0xA0CE0000) == 0x804E0000) || + (instr->Mask(0xA0CE0000) == 0x000E0000) || + (instr->Mask(0xA0D60000) == 0x00160000) || + (instr->Mask(0xA0D60000) == 0x80560000) || + (instr->Mask(0xA0D60000) == 0x80960000)) { + VisitUnallocated(instr); + } else { + VisitFPIntegerConvert(instr); + } + } else if (instr->Bits(14, 10) == 16) { + const Instr masked_A0DF8000 = instr->Mask(0xA0DF8000); + if ((instr->Mask(0x80180000) != 0) || + (masked_A0DF8000 == 0x00020000) || + (masked_A0DF8000 == 0x00030000) || + (masked_A0DF8000 == 0x00068000) || + (masked_A0DF8000 == 0x00428000) || + (masked_A0DF8000 == 0x00430000) || + (masked_A0DF8000 == 0x00468000) || + (instr->Mask(0xA0D80000) == 0x00800000) || + (instr->Mask(0xA0DE0000) == 0x00C00000) || + (instr->Mask(0xA0DF0000) == 0x00C30000) || + (instr->Mask(0xA0DC0000) == 0x00C40000)) { + VisitUnallocated(instr); + } else { + VisitFPDataProcessing1Source(instr); + } + } else if (instr->Bits(13, 10) == 8) { + if ((instr->Bits(15, 14) != 0) || + (instr->Bits(2, 0) != 0) || + (instr->Mask(0x80800000) != 0x00000000)) { + VisitUnallocated(instr); + } else { + VisitFPCompare(instr); + } + } else if (instr->Bits(12, 10) == 4) { + if ((instr->Bits(9, 5) != 0) || + (instr->Mask(0x80800000) != 0x00000000)) { + VisitUnallocated(instr); + } else { + VisitFPImmediate(instr); + } + } else { + if (instr->Mask(0x80800000) != 0x00000000) { + VisitUnallocated(instr); + } else { + switch (instr->Bits(11, 10)) { + case 1: { + VisitFPConditionalCompare(instr); + break; + } + case 2: { + if ((instr->Bits(15, 14) == 0x3) || + (instr->Mask(0x00009000) == 0x00009000) || + (instr->Mask(0x0000A000) == 0x0000A000)) { + VisitUnallocated(instr); + } else { + VisitFPDataProcessing2Source(instr); + } + break; + } + case 3: { + VisitFPConditionalSelect(instr); + break; + } + default: UNREACHABLE(); + } + } + } + } + } else { + // Bit 30 == 1 has been handled earlier. + ASSERT(instr->Bit(30) == 0); + if (instr->Mask(0xA0800000) != 0) { + VisitUnallocated(instr); + } else { + VisitFPDataProcessing3Source(instr); + } + } + } + } + } +} + + +void Decoder::DecodeAdvSIMDLoadStore(Instruction* instr) { + // TODO: Implement Advanced SIMD load/store instruction decode. + ASSERT(instr->Bits(29, 25) == 0x6); + VisitUnimplemented(instr); +} + + +void Decoder::DecodeAdvSIMDDataProcessing(Instruction* instr) { + // TODO: Implement Advanced SIMD data processing instruction decode. + ASSERT(instr->Bits(27, 25) == 0x7); + VisitUnimplemented(instr); +} + + +#define DEFINE_VISITOR_CALLERS(A) \ + void Decoder::Visit##A(Instruction *instr) { \ + ASSERT(instr->Mask(A##FMask) == A##Fixed); \ + std::list<DecoderVisitor*>::iterator it; \ + for (it = visitors_.begin(); it != visitors_.end(); it++) { \ + (*it)->Visit##A(instr); \ + } \ + } +VISITOR_LIST(DEFINE_VISITOR_CALLERS) +#undef DEFINE_VISITOR_CALLERS +} // namespace vixl diff --git a/disas/libvixl/a64/decoder-a64.h b/disas/libvixl/a64/decoder-a64.h new file mode 100644 index 0000000000..bbbbd81247 --- /dev/null +++ b/disas/libvixl/a64/decoder-a64.h @@ -0,0 +1,198 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef VIXL_A64_DECODER_A64_H_ +#define VIXL_A64_DECODER_A64_H_ + +#include <list> + +#include "globals.h" +#include "a64/instructions-a64.h" + + +// List macro containing all visitors needed by the decoder class. + +#define VISITOR_LIST(V) \ + V(PCRelAddressing) \ + V(AddSubImmediate) \ + V(LogicalImmediate) \ + V(MoveWideImmediate) \ + V(Bitfield) \ + V(Extract) \ + V(UnconditionalBranch) \ + V(UnconditionalBranchToRegister) \ + V(CompareBranch) \ + V(TestBranch) \ + V(ConditionalBranch) \ + V(System) \ + V(Exception) \ + V(LoadStorePairPostIndex) \ + V(LoadStorePairOffset) \ + V(LoadStorePairPreIndex) \ + V(LoadStorePairNonTemporal) \ + V(LoadLiteral) \ + V(LoadStoreUnscaledOffset) \ + V(LoadStorePostIndex) \ + V(LoadStorePreIndex) \ + V(LoadStoreRegisterOffset) \ + V(LoadStoreUnsignedOffset) \ + V(LogicalShifted) \ + V(AddSubShifted) \ + V(AddSubExtended) \ + V(AddSubWithCarry) \ + V(ConditionalCompareRegister) \ + V(ConditionalCompareImmediate) \ + V(ConditionalSelect) \ + V(DataProcessing1Source) \ + V(DataProcessing2Source) \ + V(DataProcessing3Source) \ + V(FPCompare) \ + V(FPConditionalCompare) \ + V(FPConditionalSelect) \ + V(FPImmediate) \ + V(FPDataProcessing1Source) \ + V(FPDataProcessing2Source) \ + V(FPDataProcessing3Source) \ + V(FPIntegerConvert) \ + V(FPFixedPointConvert) \ + V(Unallocated) \ + V(Unimplemented) + +namespace vixl { + +// The Visitor interface. Disassembler and simulator (and other tools) +// must provide implementations for all of these functions. +class DecoderVisitor { + public: + #define DECLARE(A) virtual void Visit##A(Instruction* instr) = 0; + VISITOR_LIST(DECLARE) + #undef DECLARE + + virtual ~DecoderVisitor() {} + + private: + // Visitors are registered in a list. + std::list<DecoderVisitor*> visitors_; + + friend class Decoder; +}; + + +class Decoder: public DecoderVisitor { + public: + Decoder() {} + + // Top-level instruction decoder function. Decodes an instruction and calls + // the visitor functions registered with the Decoder class. + void Decode(Instruction *instr); + + // Register a new visitor class with the decoder. + // Decode() will call the corresponding visitor method from all registered + // visitor classes when decoding reaches the leaf node of the instruction + // decode tree. + // Visitors are called in the order. + // A visitor can only be registered once. + // Registering an already registered visitor will update its position. + // + // d.AppendVisitor(V1); + // d.AppendVisitor(V2); + // d.PrependVisitor(V2); // Move V2 at the start of the list. + // d.InsertVisitorBefore(V3, V2); + // d.AppendVisitor(V4); + // d.AppendVisitor(V4); // No effect. + // + // d.Decode(i); + // + // will call in order visitor methods in V3, V2, V1, V4. + void AppendVisitor(DecoderVisitor* visitor); + void PrependVisitor(DecoderVisitor* visitor); + void InsertVisitorBefore(DecoderVisitor* new_visitor, + DecoderVisitor* registered_visitor); + void InsertVisitorAfter(DecoderVisitor* new_visitor, + DecoderVisitor* registered_visitor); + + // Remove a previously registered visitor class from the list of visitors + // stored by the decoder. + void RemoveVisitor(DecoderVisitor* visitor); + + #define DECLARE(A) void Visit##A(Instruction* instr); + VISITOR_LIST(DECLARE) + #undef DECLARE + + private: + // Decode the PC relative addressing instruction, and call the corresponding + // visitors. + // On entry, instruction bits 27:24 = 0x0. + void DecodePCRelAddressing(Instruction* instr); + + // Decode the add/subtract immediate instruction, and call the correspoding + // visitors. + // On entry, instruction bits 27:24 = 0x1. + void DecodeAddSubImmediate(Instruction* instr); + + // Decode the branch, system command, and exception generation parts of + // the instruction tree, and call the corresponding visitors. + // On entry, instruction bits 27:24 = {0x4, 0x5, 0x6, 0x7}. + void DecodeBranchSystemException(Instruction* instr); + + // Decode the load and store parts of the instruction tree, and call + // the corresponding visitors. + // On entry, instruction bits 27:24 = {0x8, 0x9, 0xC, 0xD}. + void DecodeLoadStore(Instruction* instr); + + // Decode the logical immediate and move wide immediate parts of the + // instruction tree, and call the corresponding visitors. + // On entry, instruction bits 27:24 = 0x2. + void DecodeLogical(Instruction* instr); + + // Decode the bitfield and extraction parts of the instruction tree, + // and call the corresponding visitors. + // On entry, instruction bits 27:24 = 0x3. + void DecodeBitfieldExtract(Instruction* instr); + + // Decode the data processing parts of the instruction tree, and call the + // corresponding visitors. + // On entry, instruction bits 27:24 = {0x1, 0xA, 0xB}. + void DecodeDataProcessing(Instruction* instr); + + // Decode the floating point parts of the instruction tree, and call the + // corresponding visitors. + // On entry, instruction bits 27:24 = {0xE, 0xF}. + void DecodeFP(Instruction* instr); + + // Decode the Advanced SIMD (NEON) load/store part of the instruction tree, + // and call the corresponding visitors. + // On entry, instruction bits 29:25 = 0x6. + void DecodeAdvSIMDLoadStore(Instruction* instr); + + // Decode the Advanced SIMD (NEON) data processing part of the instruction + // tree, and call the corresponding visitors. + // On entry, instruction bits 27:25 = 0x7. + void DecodeAdvSIMDDataProcessing(Instruction* instr); +}; +} // namespace vixl + +#endif // VIXL_A64_DECODER_A64_H_ diff --git a/disas/libvixl/a64/disasm-a64.cc b/disas/libvixl/a64/disasm-a64.cc new file mode 100644 index 0000000000..4a49748095 --- /dev/null +++ b/disas/libvixl/a64/disasm-a64.cc @@ -0,0 +1,1678 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "a64/disasm-a64.h" + +namespace vixl { + +Disassembler::Disassembler() { + buffer_size_ = 256; + buffer_ = reinterpret_cast<char*>(malloc(buffer_size_)); + buffer_pos_ = 0; + own_buffer_ = true; +} + + +Disassembler::Disassembler(char* text_buffer, int buffer_size) { + buffer_size_ = buffer_size; + buffer_ = text_buffer; + buffer_pos_ = 0; + own_buffer_ = false; +} + + +Disassembler::~Disassembler() { + if (own_buffer_) { + free(buffer_); + } +} + + +char* Disassembler::GetOutput() { + return buffer_; +} + + +void Disassembler::VisitAddSubImmediate(Instruction* instr) { + bool rd_is_zr = RdIsZROrSP(instr); + bool stack_op = (rd_is_zr || RnIsZROrSP(instr)) && + (instr->ImmAddSub() == 0) ? true : false; + const char *mnemonic = ""; + const char *form = "'Rds, 'Rns, 'IAddSub"; + const char *form_cmp = "'Rns, 'IAddSub"; + const char *form_mov = "'Rds, 'Rns"; + + switch (instr->Mask(AddSubImmediateMask)) { + case ADD_w_imm: + case ADD_x_imm: { + mnemonic = "add"; + if (stack_op) { + mnemonic = "mov"; + form = form_mov; + } + break; + } + case ADDS_w_imm: + case ADDS_x_imm: { + mnemonic = "adds"; + if (rd_is_zr) { + mnemonic = "cmn"; + form = form_cmp; + } + break; + } + case SUB_w_imm: + case SUB_x_imm: mnemonic = "sub"; break; + case SUBS_w_imm: + case SUBS_x_imm: { + mnemonic = "subs"; + if (rd_is_zr) { + mnemonic = "cmp"; + form = form_cmp; + } + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitAddSubShifted(Instruction* instr) { + bool rd_is_zr = RdIsZROrSP(instr); + bool rn_is_zr = RnIsZROrSP(instr); + const char *mnemonic = ""; + const char *form = "'Rd, 'Rn, 'Rm'HDP"; + const char *form_cmp = "'Rn, 'Rm'HDP"; + const char *form_neg = "'Rd, 'Rm'HDP"; + + switch (instr->Mask(AddSubShiftedMask)) { + case ADD_w_shift: + case ADD_x_shift: mnemonic = "add"; break; + case ADDS_w_shift: + case ADDS_x_shift: { + mnemonic = "adds"; + if (rd_is_zr) { + mnemonic = "cmn"; + form = form_cmp; + } + break; + } + case SUB_w_shift: + case SUB_x_shift: { + mnemonic = "sub"; + if (rn_is_zr) { + mnemonic = "neg"; + form = form_neg; + } + break; + } + case SUBS_w_shift: + case SUBS_x_shift: { + mnemonic = "subs"; + if (rd_is_zr) { + mnemonic = "cmp"; + form = form_cmp; + } else if (rn_is_zr) { + mnemonic = "negs"; + form = form_neg; + } + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitAddSubExtended(Instruction* instr) { + bool rd_is_zr = RdIsZROrSP(instr); + const char *mnemonic = ""; + Extend mode = static_cast<Extend>(instr->ExtendMode()); + const char *form = ((mode == UXTX) || (mode == SXTX)) ? + "'Rds, 'Rns, 'Xm'Ext" : "'Rds, 'Rns, 'Wm'Ext"; + const char *form_cmp = ((mode == UXTX) || (mode == SXTX)) ? + "'Rns, 'Xm'Ext" : "'Rns, 'Wm'Ext"; + + switch (instr->Mask(AddSubExtendedMask)) { + case ADD_w_ext: + case ADD_x_ext: mnemonic = "add"; break; + case ADDS_w_ext: + case ADDS_x_ext: { + mnemonic = "adds"; + if (rd_is_zr) { + mnemonic = "cmn"; + form = form_cmp; + } + break; + } + case SUB_w_ext: + case SUB_x_ext: mnemonic = "sub"; break; + case SUBS_w_ext: + case SUBS_x_ext: { + mnemonic = "subs"; + if (rd_is_zr) { + mnemonic = "cmp"; + form = form_cmp; + } + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitAddSubWithCarry(Instruction* instr) { + bool rn_is_zr = RnIsZROrSP(instr); + const char *mnemonic = ""; + const char *form = "'Rd, 'Rn, 'Rm"; + const char *form_neg = "'Rd, 'Rm"; + + switch (instr->Mask(AddSubWithCarryMask)) { + case ADC_w: + case ADC_x: mnemonic = "adc"; break; + case ADCS_w: + case ADCS_x: mnemonic = "adcs"; break; + case SBC_w: + case SBC_x: { + mnemonic = "sbc"; + if (rn_is_zr) { + mnemonic = "ngc"; + form = form_neg; + } + break; + } + case SBCS_w: + case SBCS_x: { + mnemonic = "sbcs"; + if (rn_is_zr) { + mnemonic = "ngcs"; + form = form_neg; + } + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLogicalImmediate(Instruction* instr) { + bool rd_is_zr = RdIsZROrSP(instr); + bool rn_is_zr = RnIsZROrSP(instr); + const char *mnemonic = ""; + const char *form = "'Rds, 'Rn, 'ITri"; + + if (instr->ImmLogical() == 0) { + // The immediate encoded in the instruction is not in the expected format. + Format(instr, "unallocated", "(LogicalImmediate)"); + return; + } + + switch (instr->Mask(LogicalImmediateMask)) { + case AND_w_imm: + case AND_x_imm: mnemonic = "and"; break; + case ORR_w_imm: + case ORR_x_imm: { + mnemonic = "orr"; + unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize + : kWRegSize; + if (rn_is_zr && !IsMovzMovnImm(reg_size, instr->ImmLogical())) { + mnemonic = "mov"; + form = "'Rds, 'ITri"; + } + break; + } + case EOR_w_imm: + case EOR_x_imm: mnemonic = "eor"; break; + case ANDS_w_imm: + case ANDS_x_imm: { + mnemonic = "ands"; + if (rd_is_zr) { + mnemonic = "tst"; + form = "'Rn, 'ITri"; + } + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +bool Disassembler::IsMovzMovnImm(unsigned reg_size, uint64_t value) { + ASSERT((reg_size == kXRegSize) || + ((reg_size == kWRegSize) && (value <= 0xffffffff))); + + // Test for movz: 16 bits set at positions 0, 16, 32 or 48. + if (((value & 0xffffffffffff0000UL) == 0UL) || + ((value & 0xffffffff0000ffffUL) == 0UL) || + ((value & 0xffff0000ffffffffUL) == 0UL) || + ((value & 0x0000ffffffffffffUL) == 0UL)) { + return true; + } + + // Test for movn: NOT(16 bits set at positions 0, 16, 32 or 48). + if ((reg_size == kXRegSize) && + (((value & 0xffffffffffff0000UL) == 0xffffffffffff0000UL) || + ((value & 0xffffffff0000ffffUL) == 0xffffffff0000ffffUL) || + ((value & 0xffff0000ffffffffUL) == 0xffff0000ffffffffUL) || + ((value & 0x0000ffffffffffffUL) == 0x0000ffffffffffffUL))) { + return true; + } + if ((reg_size == kWRegSize) && + (((value & 0xffff0000) == 0xffff0000) || + ((value & 0x0000ffff) == 0x0000ffff))) { + return true; + } + return false; +} + + +void Disassembler::VisitLogicalShifted(Instruction* instr) { + bool rd_is_zr = RdIsZROrSP(instr); + bool rn_is_zr = RnIsZROrSP(instr); + const char *mnemonic = ""; + const char *form = "'Rd, 'Rn, 'Rm'HLo"; + + switch (instr->Mask(LogicalShiftedMask)) { + case AND_w: + case AND_x: mnemonic = "and"; break; + case BIC_w: + case BIC_x: mnemonic = "bic"; break; + case EOR_w: + case EOR_x: mnemonic = "eor"; break; + case EON_w: + case EON_x: mnemonic = "eon"; break; + case BICS_w: + case BICS_x: mnemonic = "bics"; break; + case ANDS_w: + case ANDS_x: { + mnemonic = "ands"; + if (rd_is_zr) { + mnemonic = "tst"; + form = "'Rn, 'Rm'HLo"; + } + break; + } + case ORR_w: + case ORR_x: { + mnemonic = "orr"; + if (rn_is_zr && (instr->ImmDPShift() == 0) && (instr->ShiftDP() == LSL)) { + mnemonic = "mov"; + form = "'Rd, 'Rm"; + } + break; + } + case ORN_w: + case ORN_x: { + mnemonic = "orn"; + if (rn_is_zr) { + mnemonic = "mvn"; + form = "'Rd, 'Rm'HLo"; + } + break; + } + default: UNREACHABLE(); + } + + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitConditionalCompareRegister(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Rn, 'Rm, 'INzcv, 'Cond"; + + switch (instr->Mask(ConditionalCompareRegisterMask)) { + case CCMN_w: + case CCMN_x: mnemonic = "ccmn"; break; + case CCMP_w: + case CCMP_x: mnemonic = "ccmp"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitConditionalCompareImmediate(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Rn, 'IP, 'INzcv, 'Cond"; + + switch (instr->Mask(ConditionalCompareImmediateMask)) { + case CCMN_w_imm: + case CCMN_x_imm: mnemonic = "ccmn"; break; + case CCMP_w_imm: + case CCMP_x_imm: mnemonic = "ccmp"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitConditionalSelect(Instruction* instr) { + bool rnm_is_zr = (RnIsZROrSP(instr) && RmIsZROrSP(instr)); + bool rn_is_rm = (instr->Rn() == instr->Rm()); + const char *mnemonic = ""; + const char *form = "'Rd, 'Rn, 'Rm, 'Cond"; + const char *form_test = "'Rd, 'CInv"; + const char *form_update = "'Rd, 'Rn, 'CInv"; + + Condition cond = static_cast<Condition>(instr->Condition()); + bool invertible_cond = (cond != al) && (cond != nv); + + switch (instr->Mask(ConditionalSelectMask)) { + case CSEL_w: + case CSEL_x: mnemonic = "csel"; break; + case CSINC_w: + case CSINC_x: { + mnemonic = "csinc"; + if (rnm_is_zr && invertible_cond) { + mnemonic = "cset"; + form = form_test; + } else if (rn_is_rm && invertible_cond) { + mnemonic = "cinc"; + form = form_update; + } + break; + } + case CSINV_w: + case CSINV_x: { + mnemonic = "csinv"; + if (rnm_is_zr && invertible_cond) { + mnemonic = "csetm"; + form = form_test; + } else if (rn_is_rm && invertible_cond) { + mnemonic = "cinv"; + form = form_update; + } + break; + } + case CSNEG_w: + case CSNEG_x: { + mnemonic = "csneg"; + if (rn_is_rm && invertible_cond) { + mnemonic = "cneg"; + form = form_update; + } + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitBitfield(Instruction* instr) { + unsigned s = instr->ImmS(); + unsigned r = instr->ImmR(); + unsigned rd_size_minus_1 = + ((instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize) - 1; + const char *mnemonic = ""; + const char *form = ""; + const char *form_shift_right = "'Rd, 'Rn, 'IBr"; + const char *form_extend = "'Rd, 'Wn"; + const char *form_bfiz = "'Rd, 'Rn, 'IBZ-r, 'IBs+1"; + const char *form_bfx = "'Rd, 'Rn, 'IBr, 'IBs-r+1"; + const char *form_lsl = "'Rd, 'Rn, 'IBZ-r"; + + switch (instr->Mask(BitfieldMask)) { + case SBFM_w: + case SBFM_x: { + mnemonic = "sbfx"; + form = form_bfx; + if (r == 0) { + form = form_extend; + if (s == 7) { + mnemonic = "sxtb"; + } else if (s == 15) { + mnemonic = "sxth"; + } else if ((s == 31) && (instr->SixtyFourBits() == 1)) { + mnemonic = "sxtw"; + } else { + form = form_bfx; + } + } else if (s == rd_size_minus_1) { + mnemonic = "asr"; + form = form_shift_right; + } else if (s < r) { + mnemonic = "sbfiz"; + form = form_bfiz; + } + break; + } + case UBFM_w: + case UBFM_x: { + mnemonic = "ubfx"; + form = form_bfx; + if (r == 0) { + form = form_extend; + if (s == 7) { + mnemonic = "uxtb"; + } else if (s == 15) { + mnemonic = "uxth"; + } else { + form = form_bfx; + } + } + if (s == rd_size_minus_1) { + mnemonic = "lsr"; + form = form_shift_right; + } else if (r == s + 1) { + mnemonic = "lsl"; + form = form_lsl; + } else if (s < r) { + mnemonic = "ubfiz"; + form = form_bfiz; + } + break; + } + case BFM_w: + case BFM_x: { + mnemonic = "bfxil"; + form = form_bfx; + if (s < r) { + mnemonic = "bfi"; + form = form_bfiz; + } + } + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitExtract(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Rd, 'Rn, 'Rm, 'IExtract"; + + switch (instr->Mask(ExtractMask)) { + case EXTR_w: + case EXTR_x: { + if (instr->Rn() == instr->Rm()) { + mnemonic = "ror"; + form = "'Rd, 'Rn, 'IExtract"; + } else { + mnemonic = "extr"; + } + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitPCRelAddressing(Instruction* instr) { + switch (instr->Mask(PCRelAddressingMask)) { + case ADR: Format(instr, "adr", "'Xd, 'AddrPCRelByte"); break; + // ADRP is not implemented. + default: Format(instr, "unimplemented", "(PCRelAddressing)"); + } +} + + +void Disassembler::VisitConditionalBranch(Instruction* instr) { + switch (instr->Mask(ConditionalBranchMask)) { + case B_cond: Format(instr, "b.'CBrn", "'BImmCond"); break; + default: UNREACHABLE(); + } +} + + +void Disassembler::VisitUnconditionalBranchToRegister(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "'Xn"; + + switch (instr->Mask(UnconditionalBranchToRegisterMask)) { + case BR: mnemonic = "br"; break; + case BLR: mnemonic = "blr"; break; + case RET: { + mnemonic = "ret"; + if (instr->Rn() == kLinkRegCode) { + form = NULL; + } + break; + } + default: form = "(UnconditionalBranchToRegister)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitUnconditionalBranch(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'BImmUncn"; + + switch (instr->Mask(UnconditionalBranchMask)) { + case B: mnemonic = "b"; break; + case BL: mnemonic = "bl"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitDataProcessing1Source(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Rd, 'Rn"; + + switch (instr->Mask(DataProcessing1SourceMask)) { + #define FORMAT(A, B) \ + case A##_w: \ + case A##_x: mnemonic = B; break; + FORMAT(RBIT, "rbit"); + FORMAT(REV16, "rev16"); + FORMAT(REV, "rev"); + FORMAT(CLZ, "clz"); + FORMAT(CLS, "cls"); + #undef FORMAT + case REV32_x: mnemonic = "rev32"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitDataProcessing2Source(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "'Rd, 'Rn, 'Rm"; + + switch (instr->Mask(DataProcessing2SourceMask)) { + #define FORMAT(A, B) \ + case A##_w: \ + case A##_x: mnemonic = B; break; + FORMAT(UDIV, "udiv"); + FORMAT(SDIV, "sdiv"); + FORMAT(LSLV, "lsl"); + FORMAT(LSRV, "lsr"); + FORMAT(ASRV, "asr"); + FORMAT(RORV, "ror"); + #undef FORMAT + default: form = "(DataProcessing2Source)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitDataProcessing3Source(Instruction* instr) { + bool ra_is_zr = RaIsZROrSP(instr); + const char *mnemonic = ""; + const char *form = "'Xd, 'Wn, 'Wm, 'Xa"; + const char *form_rrr = "'Rd, 'Rn, 'Rm"; + const char *form_rrrr = "'Rd, 'Rn, 'Rm, 'Ra"; + const char *form_xww = "'Xd, 'Wn, 'Wm"; + const char *form_xxx = "'Xd, 'Xn, 'Xm"; + + switch (instr->Mask(DataProcessing3SourceMask)) { + case MADD_w: + case MADD_x: { + mnemonic = "madd"; + form = form_rrrr; + if (ra_is_zr) { + mnemonic = "mul"; + form = form_rrr; + } + break; + } + case MSUB_w: + case MSUB_x: { + mnemonic = "msub"; + form = form_rrrr; + if (ra_is_zr) { + mnemonic = "mneg"; + form = form_rrr; + } + break; + } + case SMADDL_x: { + mnemonic = "smaddl"; + if (ra_is_zr) { + mnemonic = "smull"; + form = form_xww; + } + break; + } + case SMSUBL_x: { + mnemonic = "smsubl"; + if (ra_is_zr) { + mnemonic = "smnegl"; + form = form_xww; + } + break; + } + case UMADDL_x: { + mnemonic = "umaddl"; + if (ra_is_zr) { + mnemonic = "umull"; + form = form_xww; + } + break; + } + case UMSUBL_x: { + mnemonic = "umsubl"; + if (ra_is_zr) { + mnemonic = "umnegl"; + form = form_xww; + } + break; + } + case SMULH_x: { + mnemonic = "smulh"; + form = form_xxx; + break; + } + case UMULH_x: { + mnemonic = "umulh"; + form = form_xxx; + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitCompareBranch(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Rt, 'BImmCmpa"; + + switch (instr->Mask(CompareBranchMask)) { + case CBZ_w: + case CBZ_x: mnemonic = "cbz"; break; + case CBNZ_w: + case CBNZ_x: mnemonic = "cbnz"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitTestBranch(Instruction* instr) { + const char *mnemonic = ""; + // If the top bit of the immediate is clear, the tested register is + // disassembled as Wt, otherwise Xt. As the top bit of the immediate is + // encoded in bit 31 of the instruction, we can reuse the Rt form, which + // uses bit 31 (normally "sf") to choose the register size. + const char *form = "'Rt, 'IS, 'BImmTest"; + + switch (instr->Mask(TestBranchMask)) { + case TBZ: mnemonic = "tbz"; break; + case TBNZ: mnemonic = "tbnz"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitMoveWideImmediate(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Rd, 'IMoveImm"; + + // Print the shift separately for movk, to make it clear which half word will + // be overwritten. Movn and movz print the computed immediate, which includes + // shift calculation. + switch (instr->Mask(MoveWideImmediateMask)) { + case MOVN_w: + case MOVN_x: mnemonic = "movn"; break; + case MOVZ_w: + case MOVZ_x: mnemonic = "movz"; break; + case MOVK_w: + case MOVK_x: mnemonic = "movk"; form = "'Rd, 'IMoveLSL"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +#define LOAD_STORE_LIST(V) \ + V(STRB_w, "strb", "'Wt") \ + V(STRH_w, "strh", "'Wt") \ + V(STR_w, "str", "'Wt") \ + V(STR_x, "str", "'Xt") \ + V(LDRB_w, "ldrb", "'Wt") \ + V(LDRH_w, "ldrh", "'Wt") \ + V(LDR_w, "ldr", "'Wt") \ + V(LDR_x, "ldr", "'Xt") \ + V(LDRSB_x, "ldrsb", "'Xt") \ + V(LDRSH_x, "ldrsh", "'Xt") \ + V(LDRSW_x, "ldrsw", "'Xt") \ + V(LDRSB_w, "ldrsb", "'Wt") \ + V(LDRSH_w, "ldrsh", "'Wt") \ + V(STR_s, "str", "'St") \ + V(STR_d, "str", "'Dt") \ + V(LDR_s, "ldr", "'St") \ + V(LDR_d, "ldr", "'Dt") + +void Disassembler::VisitLoadStorePreIndex(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(LoadStorePreIndex)"; + + switch (instr->Mask(LoadStorePreIndexMask)) { + #define LS_PREINDEX(A, B, C) \ + case A##_pre: mnemonic = B; form = C ", ['Xns'ILS]!"; break; + LOAD_STORE_LIST(LS_PREINDEX) + #undef LS_PREINDEX + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadStorePostIndex(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(LoadStorePostIndex)"; + + switch (instr->Mask(LoadStorePostIndexMask)) { + #define LS_POSTINDEX(A, B, C) \ + case A##_post: mnemonic = B; form = C ", ['Xns]'ILS"; break; + LOAD_STORE_LIST(LS_POSTINDEX) + #undef LS_POSTINDEX + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadStoreUnsignedOffset(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(LoadStoreUnsignedOffset)"; + + switch (instr->Mask(LoadStoreUnsignedOffsetMask)) { + #define LS_UNSIGNEDOFFSET(A, B, C) \ + case A##_unsigned: mnemonic = B; form = C ", ['Xns'ILU]"; break; + LOAD_STORE_LIST(LS_UNSIGNEDOFFSET) + #undef LS_UNSIGNEDOFFSET + case PRFM_unsigned: mnemonic = "prfm"; form = "'PrefOp, ['Xn'ILU]"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadStoreRegisterOffset(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(LoadStoreRegisterOffset)"; + + switch (instr->Mask(LoadStoreRegisterOffsetMask)) { + #define LS_REGISTEROFFSET(A, B, C) \ + case A##_reg: mnemonic = B; form = C ", ['Xns, 'Offsetreg]"; break; + LOAD_STORE_LIST(LS_REGISTEROFFSET) + #undef LS_REGISTEROFFSET + case PRFM_reg: mnemonic = "prfm"; form = "'PrefOp, ['Xns, 'Offsetreg]"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadStoreUnscaledOffset(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "'Wt, ['Xns'ILS]"; + const char *form_x = "'Xt, ['Xns'ILS]"; + const char *form_s = "'St, ['Xns'ILS]"; + const char *form_d = "'Dt, ['Xns'ILS]"; + + switch (instr->Mask(LoadStoreUnscaledOffsetMask)) { + case STURB_w: mnemonic = "sturb"; break; + case STURH_w: mnemonic = "sturh"; break; + case STUR_w: mnemonic = "stur"; break; + case STUR_x: mnemonic = "stur"; form = form_x; break; + case STUR_s: mnemonic = "stur"; form = form_s; break; + case STUR_d: mnemonic = "stur"; form = form_d; break; + case LDURB_w: mnemonic = "ldurb"; break; + case LDURH_w: mnemonic = "ldurh"; break; + case LDUR_w: mnemonic = "ldur"; break; + case LDUR_x: mnemonic = "ldur"; form = form_x; break; + case LDUR_s: mnemonic = "ldur"; form = form_s; break; + case LDUR_d: mnemonic = "ldur"; form = form_d; break; + case LDURSB_x: form = form_x; // Fall through. + case LDURSB_w: mnemonic = "ldursb"; break; + case LDURSH_x: form = form_x; // Fall through. + case LDURSH_w: mnemonic = "ldursh"; break; + case LDURSW_x: mnemonic = "ldursw"; form = form_x; break; + default: form = "(LoadStoreUnscaledOffset)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadLiteral(Instruction* instr) { + const char *mnemonic = "ldr"; + const char *form = "(LoadLiteral)"; + + switch (instr->Mask(LoadLiteralMask)) { + case LDR_w_lit: form = "'Wt, 'ILLiteral 'LValue"; break; + case LDR_x_lit: form = "'Xt, 'ILLiteral 'LValue"; break; + case LDR_s_lit: form = "'St, 'ILLiteral 'LValue"; break; + case LDR_d_lit: form = "'Dt, 'ILLiteral 'LValue"; break; + default: mnemonic = "unimplemented"; + } + Format(instr, mnemonic, form); +} + + +#define LOAD_STORE_PAIR_LIST(V) \ + V(STP_w, "stp", "'Wt, 'Wt2", "4") \ + V(LDP_w, "ldp", "'Wt, 'Wt2", "4") \ + V(LDPSW_x, "ldpsw", "'Xt, 'Xt2", "4") \ + V(STP_x, "stp", "'Xt, 'Xt2", "8") \ + V(LDP_x, "ldp", "'Xt, 'Xt2", "8") \ + V(STP_s, "stp", "'St, 'St2", "4") \ + V(LDP_s, "ldp", "'St, 'St2", "4") \ + V(STP_d, "stp", "'Dt, 'Dt2", "8") \ + V(LDP_d, "ldp", "'Dt, 'Dt2", "8") + +void Disassembler::VisitLoadStorePairPostIndex(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(LoadStorePairPostIndex)"; + + switch (instr->Mask(LoadStorePairPostIndexMask)) { + #define LSP_POSTINDEX(A, B, C, D) \ + case A##_post: mnemonic = B; form = C ", ['Xns]'ILP" D; break; + LOAD_STORE_PAIR_LIST(LSP_POSTINDEX) + #undef LSP_POSTINDEX + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadStorePairPreIndex(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(LoadStorePairPreIndex)"; + + switch (instr->Mask(LoadStorePairPreIndexMask)) { + #define LSP_PREINDEX(A, B, C, D) \ + case A##_pre: mnemonic = B; form = C ", ['Xns'ILP" D "]!"; break; + LOAD_STORE_PAIR_LIST(LSP_PREINDEX) + #undef LSP_PREINDEX + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadStorePairOffset(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(LoadStorePairOffset)"; + + switch (instr->Mask(LoadStorePairOffsetMask)) { + #define LSP_OFFSET(A, B, C, D) \ + case A##_off: mnemonic = B; form = C ", ['Xns'ILP" D "]"; break; + LOAD_STORE_PAIR_LIST(LSP_OFFSET) + #undef LSP_OFFSET + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadStorePairNonTemporal(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form; + + switch (instr->Mask(LoadStorePairNonTemporalMask)) { + case STNP_w: mnemonic = "stnp"; form = "'Wt, 'Wt2, ['Xns'ILP4]"; break; + case LDNP_w: mnemonic = "ldnp"; form = "'Wt, 'Wt2, ['Xns'ILP4]"; break; + case STNP_x: mnemonic = "stnp"; form = "'Xt, 'Xt2, ['Xns'ILP8]"; break; + case LDNP_x: mnemonic = "ldnp"; form = "'Xt, 'Xt2, ['Xns'ILP8]"; break; + case STNP_s: mnemonic = "stnp"; form = "'St, 'St2, ['Xns'ILP4]"; break; + case LDNP_s: mnemonic = "ldnp"; form = "'St, 'St2, ['Xns'ILP4]"; break; + case STNP_d: mnemonic = "stnp"; form = "'Dt, 'Dt2, ['Xns'ILP8]"; break; + case LDNP_d: mnemonic = "ldnp"; form = "'Dt, 'Dt2, ['Xns'ILP8]"; break; + default: form = "(LoadStorePairNonTemporal)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPCompare(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "'Fn, 'Fm"; + const char *form_zero = "'Fn, #0.0"; + + switch (instr->Mask(FPCompareMask)) { + case FCMP_s_zero: + case FCMP_d_zero: form = form_zero; // Fall through. + case FCMP_s: + case FCMP_d: mnemonic = "fcmp"; break; + default: form = "(FPCompare)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPConditionalCompare(Instruction* instr) { + const char *mnemonic = "unmplemented"; + const char *form = "'Fn, 'Fm, 'INzcv, 'Cond"; + + switch (instr->Mask(FPConditionalCompareMask)) { + case FCCMP_s: + case FCCMP_d: mnemonic = "fccmp"; break; + case FCCMPE_s: + case FCCMPE_d: mnemonic = "fccmpe"; break; + default: form = "(FPConditionalCompare)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPConditionalSelect(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Fd, 'Fn, 'Fm, 'Cond"; + + switch (instr->Mask(FPConditionalSelectMask)) { + case FCSEL_s: + case FCSEL_d: mnemonic = "fcsel"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPDataProcessing1Source(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "'Fd, 'Fn"; + + switch (instr->Mask(FPDataProcessing1SourceMask)) { + #define FORMAT(A, B) \ + case A##_s: \ + case A##_d: mnemonic = B; break; + FORMAT(FMOV, "fmov"); + FORMAT(FABS, "fabs"); + FORMAT(FNEG, "fneg"); + FORMAT(FSQRT, "fsqrt"); + FORMAT(FRINTN, "frintn"); + FORMAT(FRINTP, "frintp"); + FORMAT(FRINTM, "frintm"); + FORMAT(FRINTZ, "frintz"); + FORMAT(FRINTA, "frinta"); + FORMAT(FRINTX, "frintx"); + FORMAT(FRINTI, "frinti"); + #undef FORMAT + case FCVT_ds: mnemonic = "fcvt"; form = "'Dd, 'Sn"; break; + case FCVT_sd: mnemonic = "fcvt"; form = "'Sd, 'Dn"; break; + default: form = "(FPDataProcessing1Source)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPDataProcessing2Source(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Fd, 'Fn, 'Fm"; + + switch (instr->Mask(FPDataProcessing2SourceMask)) { + #define FORMAT(A, B) \ + case A##_s: \ + case A##_d: mnemonic = B; break; + FORMAT(FMUL, "fmul"); + FORMAT(FDIV, "fdiv"); + FORMAT(FADD, "fadd"); + FORMAT(FSUB, "fsub"); + FORMAT(FMAX, "fmax"); + FORMAT(FMIN, "fmin"); + FORMAT(FMAXNM, "fmaxnm"); + FORMAT(FMINNM, "fminnm"); + FORMAT(FNMUL, "fnmul"); + #undef FORMAT + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPDataProcessing3Source(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Fd, 'Fn, 'Fm, 'Fa"; + + switch (instr->Mask(FPDataProcessing3SourceMask)) { + #define FORMAT(A, B) \ + case A##_s: \ + case A##_d: mnemonic = B; break; + FORMAT(FMADD, "fmadd"); + FORMAT(FMSUB, "fmsub"); + FORMAT(FNMADD, "fnmadd"); + FORMAT(FNMSUB, "fnmsub"); + #undef FORMAT + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPImmediate(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "(FPImmediate)"; + + switch (instr->Mask(FPImmediateMask)) { + case FMOV_s_imm: mnemonic = "fmov"; form = "'Sd, 'IFPSingle"; break; + case FMOV_d_imm: mnemonic = "fmov"; form = "'Dd, 'IFPDouble"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPIntegerConvert(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(FPIntegerConvert)"; + const char *form_rf = "'Rd, 'Fn"; + const char *form_fr = "'Fd, 'Rn"; + + switch (instr->Mask(FPIntegerConvertMask)) { + case FMOV_ws: + case FMOV_xd: mnemonic = "fmov"; form = form_rf; break; + case FMOV_sw: + case FMOV_dx: mnemonic = "fmov"; form = form_fr; break; + case FCVTMS_ws: + case FCVTMS_xs: + case FCVTMS_wd: + case FCVTMS_xd: mnemonic = "fcvtms"; form = form_rf; break; + case FCVTMU_ws: + case FCVTMU_xs: + case FCVTMU_wd: + case FCVTMU_xd: mnemonic = "fcvtmu"; form = form_rf; break; + case FCVTNS_ws: + case FCVTNS_xs: + case FCVTNS_wd: + case FCVTNS_xd: mnemonic = "fcvtns"; form = form_rf; break; + case FCVTNU_ws: + case FCVTNU_xs: + case FCVTNU_wd: + case FCVTNU_xd: mnemonic = "fcvtnu"; form = form_rf; break; + case FCVTZU_xd: + case FCVTZU_ws: + case FCVTZU_wd: + case FCVTZU_xs: mnemonic = "fcvtzu"; form = form_rf; break; + case FCVTZS_xd: + case FCVTZS_wd: + case FCVTZS_xs: + case FCVTZS_ws: mnemonic = "fcvtzs"; form = form_rf; break; + case SCVTF_sw: + case SCVTF_sx: + case SCVTF_dw: + case SCVTF_dx: mnemonic = "scvtf"; form = form_fr; break; + case UCVTF_sw: + case UCVTF_sx: + case UCVTF_dw: + case UCVTF_dx: mnemonic = "ucvtf"; form = form_fr; break; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPFixedPointConvert(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Rd, 'Fn, 'IFPFBits"; + const char *form_fr = "'Fd, 'Rn, 'IFPFBits"; + + switch (instr->Mask(FPFixedPointConvertMask)) { + case FCVTZS_ws_fixed: + case FCVTZS_xs_fixed: + case FCVTZS_wd_fixed: + case FCVTZS_xd_fixed: mnemonic = "fcvtzs"; break; + case FCVTZU_ws_fixed: + case FCVTZU_xs_fixed: + case FCVTZU_wd_fixed: + case FCVTZU_xd_fixed: mnemonic = "fcvtzu"; break; + case SCVTF_sw_fixed: + case SCVTF_sx_fixed: + case SCVTF_dw_fixed: + case SCVTF_dx_fixed: mnemonic = "scvtf"; form = form_fr; break; + case UCVTF_sw_fixed: + case UCVTF_sx_fixed: + case UCVTF_dw_fixed: + case UCVTF_dx_fixed: mnemonic = "ucvtf"; form = form_fr; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitSystem(Instruction* instr) { + // Some system instructions hijack their Op and Cp fields to represent a + // range of immediates instead of indicating a different instruction. This + // makes the decoding tricky. + const char *mnemonic = "unimplemented"; + const char *form = "(System)"; + + if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) { + switch (instr->Mask(SystemSysRegMask)) { + case MRS: { + mnemonic = "mrs"; + switch (instr->ImmSystemRegister()) { + case NZCV: form = "'Xt, nzcv"; break; + case FPCR: form = "'Xt, fpcr"; break; + default: form = "'Xt, (unknown)"; break; + } + break; + } + case MSR: { + mnemonic = "msr"; + switch (instr->ImmSystemRegister()) { + case NZCV: form = "nzcv, 'Xt"; break; + case FPCR: form = "fpcr, 'Xt"; break; + default: form = "(unknown), 'Xt"; break; + } + break; + } + } + } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) { + ASSERT(instr->Mask(SystemHintMask) == HINT); + switch (instr->ImmHint()) { + case NOP: { + mnemonic = "nop"; + form = NULL; + break; + } + } + } + + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitException(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "'IDebug"; + + switch (instr->Mask(ExceptionMask)) { + case HLT: mnemonic = "hlt"; break; + case BRK: mnemonic = "brk"; break; + case SVC: mnemonic = "svc"; break; + case HVC: mnemonic = "hvc"; break; + case SMC: mnemonic = "smc"; break; + case DCPS1: mnemonic = "dcps1"; form = "{'IDebug}"; break; + case DCPS2: mnemonic = "dcps2"; form = "{'IDebug}"; break; + case DCPS3: mnemonic = "dcps3"; form = "{'IDebug}"; break; + default: form = "(Exception)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitUnimplemented(Instruction* instr) { + Format(instr, "unimplemented", "(Unimplemented)"); +} + + +void Disassembler::VisitUnallocated(Instruction* instr) { + Format(instr, "unallocated", "(Unallocated)"); +} + + +void Disassembler::ProcessOutput(Instruction* /*instr*/) { + // The base disasm does nothing more than disassembling into a buffer. +} + + +void Disassembler::Format(Instruction* instr, const char* mnemonic, + const char* format) { + ASSERT(mnemonic != NULL); + ResetOutput(); + Substitute(instr, mnemonic); + if (format != NULL) { + buffer_[buffer_pos_++] = ' '; + Substitute(instr, format); + } + buffer_[buffer_pos_] = 0; + ProcessOutput(instr); +} + + +void Disassembler::Substitute(Instruction* instr, const char* string) { + char chr = *string++; + while (chr != '\0') { + if (chr == '\'') { + string += SubstituteField(instr, string); + } else { + buffer_[buffer_pos_++] = chr; + } + chr = *string++; + } +} + + +int Disassembler::SubstituteField(Instruction* instr, const char* format) { + switch (format[0]) { + case 'R': // Register. X or W, selected by sf bit. + case 'F': // FP Register. S or D, selected by type field. + case 'W': + case 'X': + case 'S': + case 'D': return SubstituteRegisterField(instr, format); + case 'I': return SubstituteImmediateField(instr, format); + case 'L': return SubstituteLiteralField(instr, format); + case 'H': return SubstituteShiftField(instr, format); + case 'P': return SubstitutePrefetchField(instr, format); + case 'C': return SubstituteConditionField(instr, format); + case 'E': return SubstituteExtendField(instr, format); + case 'A': return SubstitutePCRelAddressField(instr, format); + case 'B': return SubstituteBranchTargetField(instr, format); + case 'O': return SubstituteLSRegOffsetField(instr, format); + default: { + UNREACHABLE(); + return 1; + } + } +} + + +int Disassembler::SubstituteRegisterField(Instruction* instr, + const char* format) { + unsigned reg_num = 0; + unsigned field_len = 2; + switch (format[1]) { + case 'd': reg_num = instr->Rd(); break; + case 'n': reg_num = instr->Rn(); break; + case 'm': reg_num = instr->Rm(); break; + case 'a': reg_num = instr->Ra(); break; + case 't': { + if (format[2] == '2') { + reg_num = instr->Rt2(); + field_len = 3; + } else { + reg_num = instr->Rt(); + } + break; + } + default: UNREACHABLE(); + } + + // Increase field length for registers tagged as stack. + if (format[2] == 's') { + field_len = 3; + } + + char reg_type; + if (format[0] == 'R') { + // Register type is R: use sf bit to choose X and W. + reg_type = instr->SixtyFourBits() ? 'x' : 'w'; + } else if (format[0] == 'F') { + // Floating-point register: use type field to choose S or D. + reg_type = ((instr->FPType() & 1) == 0) ? 's' : 'd'; + } else { + // Register type is specified. Make it lower case. + reg_type = format[0] + 0x20; + } + + if ((reg_num != kZeroRegCode) || (reg_type == 's') || (reg_type == 'd')) { + // A normal register: w0 - w30, x0 - x30, s0 - s31, d0 - d31. + AppendToOutput("%c%d", reg_type, reg_num); + } else if (format[2] == 's') { + // Disassemble w31/x31 as stack pointer wsp/sp. + AppendToOutput("%s", (reg_type == 'w') ? "wsp" : "sp"); + } else { + // Disassemble w31/x31 as zero register wzr/xzr. + AppendToOutput("%czr", reg_type); + } + + return field_len; +} + + +int Disassembler::SubstituteImmediateField(Instruction* instr, + const char* format) { + ASSERT(format[0] == 'I'); + + switch (format[1]) { + case 'M': { // IMoveImm or IMoveLSL. + if (format[5] == 'I') { + uint64_t imm = instr->ImmMoveWide() << (16 * instr->ShiftMoveWide()); + AppendToOutput("#0x%" PRIx64, imm); + } else { + ASSERT(format[5] == 'L'); + AppendToOutput("#0x%" PRIx64, instr->ImmMoveWide()); + if (instr->ShiftMoveWide() > 0) { + AppendToOutput(", lsl #%d", 16 * instr->ShiftMoveWide()); + } + } + return 8; + } + case 'L': { + switch (format[2]) { + case 'L': { // ILLiteral - Immediate Load Literal. + AppendToOutput("pc%+" PRId64, + instr->ImmLLiteral() << kLiteralEntrySizeLog2); + return 9; + } + case 'S': { // ILS - Immediate Load/Store. + if (instr->ImmLS() != 0) { + AppendToOutput(", #%" PRId64, instr->ImmLS()); + } + return 3; + } + case 'P': { // ILPx - Immediate Load/Store Pair, x = access size. + if (instr->ImmLSPair() != 0) { + // format[3] is the scale value. Convert to a number. + int scale = format[3] - 0x30; + AppendToOutput(", #%" PRId64, instr->ImmLSPair() * scale); + } + return 4; + } + case 'U': { // ILU - Immediate Load/Store Unsigned. + if (instr->ImmLSUnsigned() != 0) { + AppendToOutput(", #%" PRIu64, + instr->ImmLSUnsigned() << instr->SizeLS()); + } + return 3; + } + } + } + case 'C': { // ICondB - Immediate Conditional Branch. + int64_t offset = instr->ImmCondBranch() << 2; + char sign = (offset >= 0) ? '+' : '-'; + AppendToOutput("#%c0x%" PRIx64, sign, offset); + return 6; + } + case 'A': { // IAddSub. + ASSERT(instr->ShiftAddSub() <= 1); + int64_t imm = instr->ImmAddSub() << (12 * instr->ShiftAddSub()); + AppendToOutput("#0x%" PRIx64 " (%" PRId64 ")", imm, imm); + return 7; + } + case 'F': { // IFPSingle, IFPDouble or IFPFBits. + if (format[3] == 'F') { // IFPFbits. + AppendToOutput("#%d", 64 - instr->FPScale()); + return 8; + } else { + AppendToOutput("#0x%" PRIx64 " (%.4f)", instr->ImmFP(), + format[3] == 'S' ? instr->ImmFP32() : instr->ImmFP64()); + return 9; + } + } + case 'T': { // ITri - Immediate Triangular Encoded. + AppendToOutput("#0x%" PRIx64, instr->ImmLogical()); + return 4; + } + case 'N': { // INzcv. + int nzcv = (instr->Nzcv() << Flags_offset); + AppendToOutput("#%c%c%c%c", ((nzcv & NFlag) == 0) ? 'n' : 'N', + ((nzcv & ZFlag) == 0) ? 'z' : 'Z', + ((nzcv & CFlag) == 0) ? 'c' : 'C', + ((nzcv & VFlag) == 0) ? 'v' : 'V'); + return 5; + } + case 'P': { // IP - Conditional compare. + AppendToOutput("#%d", instr->ImmCondCmp()); + return 2; + } + case 'B': { // Bitfields. + return SubstituteBitfieldImmediateField(instr, format); + } + case 'E': { // IExtract. + AppendToOutput("#%d", instr->ImmS()); + return 8; + } + case 'S': { // IS - Test and branch bit. + AppendToOutput("#%d", (instr->ImmTestBranchBit5() << 5) | + instr->ImmTestBranchBit40()); + return 2; + } + case 'D': { // IDebug - HLT and BRK instructions. + AppendToOutput("#0x%x", instr->ImmException()); + return 6; + } + default: { + UNIMPLEMENTED(); + return 0; + } + } +} + + +int Disassembler::SubstituteBitfieldImmediateField(Instruction* instr, + const char* format) { + ASSERT((format[0] == 'I') && (format[1] == 'B')); + unsigned r = instr->ImmR(); + unsigned s = instr->ImmS(); + + switch (format[2]) { + case 'r': { // IBr. + AppendToOutput("#%d", r); + return 3; + } + case 's': { // IBs+1 or IBs-r+1. + if (format[3] == '+') { + AppendToOutput("#%d", s + 1); + return 5; + } else { + ASSERT(format[3] == '-'); + AppendToOutput("#%d", s - r + 1); + return 7; + } + } + case 'Z': { // IBZ-r. + ASSERT((format[3] == '-') && (format[4] == 'r')); + unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize; + AppendToOutput("#%d", reg_size - r); + return 5; + } + default: { + UNREACHABLE(); + return 0; + } + } +} + + +int Disassembler::SubstituteLiteralField(Instruction* instr, + const char* format) { + ASSERT(strncmp(format, "LValue", 6) == 0); + USE(format); + + switch (instr->Mask(LoadLiteralMask)) { + case LDR_w_lit: + case LDR_x_lit: + case LDR_s_lit: + case LDR_d_lit: AppendToOutput("(addr %p)", instr->LiteralAddress()); break; + default: UNREACHABLE(); + } + + return 6; +} + + +int Disassembler::SubstituteShiftField(Instruction* instr, const char* format) { + ASSERT(format[0] == 'H'); + ASSERT(instr->ShiftDP() <= 0x3); + + switch (format[1]) { + case 'D': { // HDP. + ASSERT(instr->ShiftDP() != ROR); + } // Fall through. + case 'L': { // HLo. + if (instr->ImmDPShift() != 0) { + const char* shift_type[] = {"lsl", "lsr", "asr", "ror"}; + AppendToOutput(", %s #%" PRId64, shift_type[instr->ShiftDP()], + instr->ImmDPShift()); + } + return 3; + } + default: + UNIMPLEMENTED(); + return 0; + } +} + + +int Disassembler::SubstituteConditionField(Instruction* instr, + const char* format) { + ASSERT(format[0] == 'C'); + const char* condition_code[] = { "eq", "ne", "hs", "lo", + "mi", "pl", "vs", "vc", + "hi", "ls", "ge", "lt", + "gt", "le", "al", "nv" }; + int cond; + switch (format[1]) { + case 'B': cond = instr->ConditionBranch(); break; + case 'I': { + cond = InvertCondition(static_cast<Condition>(instr->Condition())); + break; + } + default: cond = instr->Condition(); + } + AppendToOutput("%s", condition_code[cond]); + return 4; +} + + +int Disassembler::SubstitutePCRelAddressField(Instruction* instr, + const char* format) { + USE(format); + ASSERT(strncmp(format, "AddrPCRel", 9) == 0); + + int offset = instr->ImmPCRel(); + + // Only ADR (AddrPCRelByte) is supported. + ASSERT(strcmp(format, "AddrPCRelByte") == 0); + + char sign = '+'; + if (offset < 0) { + offset = -offset; + sign = '-'; + } + // TODO: Extend this to support printing the target address. + AppendToOutput("#%c0x%x", sign, offset); + return 13; +} + + +int Disassembler::SubstituteBranchTargetField(Instruction* instr, + const char* format) { + ASSERT(strncmp(format, "BImm", 4) == 0); + + int64_t offset = 0; + switch (format[5]) { + // BImmUncn - unconditional branch immediate. + case 'n': offset = instr->ImmUncondBranch(); break; + // BImmCond - conditional branch immediate. + case 'o': offset = instr->ImmCondBranch(); break; + // BImmCmpa - compare and branch immediate. + case 'm': offset = instr->ImmCmpBranch(); break; + // BImmTest - test and branch immediate. + case 'e': offset = instr->ImmTestBranch(); break; + default: UNIMPLEMENTED(); + } + offset <<= kInstructionSizeLog2; + char sign = '+'; + if (offset < 0) { + offset = -offset; + sign = '-'; + } + AppendToOutput("#%c0x%" PRIx64, sign, offset); + return 8; +} + + +int Disassembler::SubstituteExtendField(Instruction* instr, + const char* format) { + ASSERT(strncmp(format, "Ext", 3) == 0); + ASSERT(instr->ExtendMode() <= 7); + USE(format); + + const char* extend_mode[] = { "uxtb", "uxth", "uxtw", "uxtx", + "sxtb", "sxth", "sxtw", "sxtx" }; + + // If rd or rn is SP, uxtw on 32-bit registers and uxtx on 64-bit + // registers becomes lsl. + if (((instr->Rd() == kZeroRegCode) || (instr->Rn() == kZeroRegCode)) && + (((instr->ExtendMode() == UXTW) && (instr->SixtyFourBits() == 0)) || + (instr->ExtendMode() == UXTX))) { + if (instr->ImmExtendShift() > 0) { + AppendToOutput(", lsl #%d", instr->ImmExtendShift()); + } + } else { + AppendToOutput(", %s", extend_mode[instr->ExtendMode()]); + if (instr->ImmExtendShift() > 0) { + AppendToOutput(" #%d", instr->ImmExtendShift()); + } + } + return 3; +} + + +int Disassembler::SubstituteLSRegOffsetField(Instruction* instr, + const char* format) { + ASSERT(strncmp(format, "Offsetreg", 9) == 0); + const char* extend_mode[] = { "undefined", "undefined", "uxtw", "lsl", + "undefined", "undefined", "sxtw", "sxtx" }; + USE(format); + + unsigned shift = instr->ImmShiftLS(); + Extend ext = static_cast<Extend>(instr->ExtendMode()); + char reg_type = ((ext == UXTW) || (ext == SXTW)) ? 'w' : 'x'; + + unsigned rm = instr->Rm(); + if (rm == kZeroRegCode) { + AppendToOutput("%czr", reg_type); + } else { + AppendToOutput("%c%d", reg_type, rm); + } + + // Extend mode UXTX is an alias for shift mode LSL here. + if (!((ext == UXTX) && (shift == 0))) { + AppendToOutput(", %s", extend_mode[ext]); + if (shift != 0) { + AppendToOutput(" #%d", instr->SizeLS()); + } + } + return 9; +} + + +int Disassembler::SubstitutePrefetchField(Instruction* instr, + const char* format) { + ASSERT(format[0] == 'P'); + USE(format); + + int prefetch_mode = instr->PrefetchMode(); + + const char* ls = (prefetch_mode & 0x10) ? "st" : "ld"; + int level = (prefetch_mode >> 1) + 1; + const char* ks = (prefetch_mode & 1) ? "strm" : "keep"; + + AppendToOutput("p%sl%d%s", ls, level, ks); + return 6; +} + + +void Disassembler::ResetOutput() { + buffer_pos_ = 0; + buffer_[buffer_pos_] = 0; +} + + +void Disassembler::AppendToOutput(const char* format, ...) { + va_list args; + va_start(args, format); + buffer_pos_ += vsnprintf(&buffer_[buffer_pos_], buffer_size_, format, args); + va_end(args); +} + + +void PrintDisassembler::ProcessOutput(Instruction* instr) { + fprintf(stream_, "0x%016" PRIx64 " %08" PRIx32 "\t\t%s\n", + reinterpret_cast<uint64_t>(instr), + instr->InstructionBits(), + GetOutput()); +} +} // namespace vixl diff --git a/disas/libvixl/a64/disasm-a64.h b/disas/libvixl/a64/disasm-a64.h new file mode 100644 index 0000000000..857a5acac4 --- /dev/null +++ b/disas/libvixl/a64/disasm-a64.h @@ -0,0 +1,109 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef VIXL_A64_DISASM_A64_H +#define VIXL_A64_DISASM_A64_H + +#include "globals.h" +#include "utils.h" +#include "instructions-a64.h" +#include "decoder-a64.h" + +namespace vixl { + +class Disassembler: public DecoderVisitor { + public: + Disassembler(); + Disassembler(char* text_buffer, int buffer_size); + virtual ~Disassembler(); + char* GetOutput(); + + // Declare all Visitor functions. + #define DECLARE(A) void Visit##A(Instruction* instr); + VISITOR_LIST(DECLARE) + #undef DECLARE + + protected: + virtual void ProcessOutput(Instruction* instr); + + private: + void Format(Instruction* instr, const char* mnemonic, const char* format); + void Substitute(Instruction* instr, const char* string); + int SubstituteField(Instruction* instr, const char* format); + int SubstituteRegisterField(Instruction* instr, const char* format); + int SubstituteImmediateField(Instruction* instr, const char* format); + int SubstituteLiteralField(Instruction* instr, const char* format); + int SubstituteBitfieldImmediateField(Instruction* instr, const char* format); + int SubstituteShiftField(Instruction* instr, const char* format); + int SubstituteExtendField(Instruction* instr, const char* format); + int SubstituteConditionField(Instruction* instr, const char* format); + int SubstitutePCRelAddressField(Instruction* instr, const char* format); + int SubstituteBranchTargetField(Instruction* instr, const char* format); + int SubstituteLSRegOffsetField(Instruction* instr, const char* format); + int SubstitutePrefetchField(Instruction* instr, const char* format); + + inline bool RdIsZROrSP(Instruction* instr) const { + return (instr->Rd() == kZeroRegCode); + } + + inline bool RnIsZROrSP(Instruction* instr) const { + return (instr->Rn() == kZeroRegCode); + } + + inline bool RmIsZROrSP(Instruction* instr) const { + return (instr->Rm() == kZeroRegCode); + } + + inline bool RaIsZROrSP(Instruction* instr) const { + return (instr->Ra() == kZeroRegCode); + } + + bool IsMovzMovnImm(unsigned reg_size, uint64_t value); + + void ResetOutput(); + void AppendToOutput(const char* string, ...); + + char* buffer_; + uint32_t buffer_pos_; + uint32_t buffer_size_; + bool own_buffer_; +}; + + +class PrintDisassembler: public Disassembler { + public: + explicit PrintDisassembler(FILE* stream) : stream_(stream) { } + ~PrintDisassembler() { } + + protected: + virtual void ProcessOutput(Instruction* instr); + + private: + FILE *stream_; +}; +} // namespace vixl + +#endif // VIXL_A64_DISASM_A64_H diff --git a/disas/libvixl/a64/instructions-a64.cc b/disas/libvixl/a64/instructions-a64.cc new file mode 100644 index 0000000000..e87fa3acce --- /dev/null +++ b/disas/libvixl/a64/instructions-a64.cc @@ -0,0 +1,238 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "a64/instructions-a64.h" +#include "a64/assembler-a64.h" + +namespace vixl { + + +static uint64_t RotateRight(uint64_t value, + unsigned int rotate, + unsigned int width) { + ASSERT(width <= 64); + rotate &= 63; + return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) | + (value >> rotate); +} + + +static uint64_t RepeatBitsAcrossReg(unsigned reg_size, + uint64_t value, + unsigned width) { + ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) || + (width == 32)); + ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize)); + uint64_t result = value & ((1UL << width) - 1UL); + for (unsigned i = width; i < reg_size; i *= 2) { + result |= (result << i); + } + return result; +} + + +// Logical immediates can't encode zero, so a return value of zero is used to +// indicate a failure case. Specifically, where the constraints on imm_s are +// not met. +uint64_t Instruction::ImmLogical() { + unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize; + int64_t n = BitN(); + int64_t imm_s = ImmSetBits(); + int64_t imm_r = ImmRotate(); + + // An integer is constructed from the n, imm_s and imm_r bits according to + // the following table: + // + // N imms immr size S R + // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) + // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) + // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) + // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) + // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) + // 0 11110s xxxxxr 2 UInt(s) UInt(r) + // (s bits must not be all set) + // + // A pattern is constructed of size bits, where the least significant S+1 + // bits are set. The pattern is rotated right by R, and repeated across a + // 32 or 64-bit value, depending on destination register width. + // + + if (n == 1) { + if (imm_s == 0x3F) { + return 0; + } + uint64_t bits = (1UL << (imm_s + 1)) - 1; + return RotateRight(bits, imm_r, 64); + } else { + if ((imm_s >> 1) == 0x1F) { + return 0; + } + for (int width = 0x20; width >= 0x2; width >>= 1) { + if ((imm_s & width) == 0) { + int mask = width - 1; + if ((imm_s & mask) == mask) { + return 0; + } + uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1; + return RepeatBitsAcrossReg(reg_size, + RotateRight(bits, imm_r & mask, width), + width); + } + } + } + UNREACHABLE(); + return 0; +} + + +float Instruction::ImmFP32() { + // ImmFP: abcdefgh (8 bits) + // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits) + // where B is b ^ 1 + uint32_t bits = ImmFP(); + uint32_t bit7 = (bits >> 7) & 0x1; + uint32_t bit6 = (bits >> 6) & 0x1; + uint32_t bit5_to_0 = bits & 0x3f; + uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19); + + return rawbits_to_float(result); +} + + +double Instruction::ImmFP64() { + // ImmFP: abcdefgh (8 bits) + // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 + // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits) + // where B is b ^ 1 + uint32_t bits = ImmFP(); + uint64_t bit7 = (bits >> 7) & 0x1; + uint64_t bit6 = (bits >> 6) & 0x1; + uint64_t bit5_to_0 = bits & 0x3f; + uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48); + + return rawbits_to_double(result); +} + + +LSDataSize CalcLSPairDataSize(LoadStorePairOp op) { + switch (op) { + case STP_x: + case LDP_x: + case STP_d: + case LDP_d: return LSDoubleWord; + default: return LSWord; + } +} + + +Instruction* Instruction::ImmPCOffsetTarget() { + ptrdiff_t offset; + if (IsPCRelAddressing()) { + // PC-relative addressing. Only ADR is supported. + offset = ImmPCRel(); + } else { + // All PC-relative branches. + ASSERT(BranchType() != UnknownBranchType); + // Relative branch offsets are instruction-size-aligned. + offset = ImmBranch() << kInstructionSizeLog2; + } + return this + offset; +} + + +inline int Instruction::ImmBranch() const { + switch (BranchType()) { + case CondBranchType: return ImmCondBranch(); + case UncondBranchType: return ImmUncondBranch(); + case CompareBranchType: return ImmCmpBranch(); + case TestBranchType: return ImmTestBranch(); + default: UNREACHABLE(); + } + return 0; +} + + +void Instruction::SetImmPCOffsetTarget(Instruction* target) { + if (IsPCRelAddressing()) { + SetPCRelImmTarget(target); + } else { + SetBranchImmTarget(target); + } +} + + +void Instruction::SetPCRelImmTarget(Instruction* target) { + // ADRP is not supported, so 'this' must point to an ADR instruction. + ASSERT(Mask(PCRelAddressingMask) == ADR); + + Instr imm = Assembler::ImmPCRelAddress(target - this); + + SetInstructionBits(Mask(~ImmPCRel_mask) | imm); +} + + +void Instruction::SetBranchImmTarget(Instruction* target) { + ASSERT(((target - this) & 3) == 0); + Instr branch_imm = 0; + uint32_t imm_mask = 0; + int offset = (target - this) >> kInstructionSizeLog2; + switch (BranchType()) { + case CondBranchType: { + branch_imm = Assembler::ImmCondBranch(offset); + imm_mask = ImmCondBranch_mask; + break; + } + case UncondBranchType: { + branch_imm = Assembler::ImmUncondBranch(offset); + imm_mask = ImmUncondBranch_mask; + break; + } + case CompareBranchType: { + branch_imm = Assembler::ImmCmpBranch(offset); + imm_mask = ImmCmpBranch_mask; + break; + } + case TestBranchType: { + branch_imm = Assembler::ImmTestBranch(offset); + imm_mask = ImmTestBranch_mask; + break; + } + default: UNREACHABLE(); + } + SetInstructionBits(Mask(~imm_mask) | branch_imm); +} + + +void Instruction::SetImmLLiteral(Instruction* source) { + ASSERT(((source - this) & 3) == 0); + int offset = (source - this) >> kLiteralEntrySizeLog2; + Instr imm = Assembler::ImmLLiteral(offset); + Instr mask = ImmLLiteral_mask; + + SetInstructionBits(Mask(~mask) | imm); +} +} // namespace vixl + diff --git a/disas/libvixl/a64/instructions-a64.h b/disas/libvixl/a64/instructions-a64.h new file mode 100644 index 0000000000..0f31fcd719 --- /dev/null +++ b/disas/libvixl/a64/instructions-a64.h @@ -0,0 +1,344 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef VIXL_A64_INSTRUCTIONS_A64_H_ +#define VIXL_A64_INSTRUCTIONS_A64_H_ + +#include "globals.h" +#include "utils.h" +#include "a64/constants-a64.h" + +namespace vixl { +// ISA constants. -------------------------------------------------------------- + +typedef uint32_t Instr; +const unsigned kInstructionSize = 4; +const unsigned kInstructionSizeLog2 = 2; +const unsigned kLiteralEntrySize = 4; +const unsigned kLiteralEntrySizeLog2 = 2; +const unsigned kMaxLoadLiteralRange = 1 * MBytes; + +const unsigned kWRegSize = 32; +const unsigned kWRegSizeLog2 = 5; +const unsigned kWRegSizeInBytes = kWRegSize / 8; +const unsigned kXRegSize = 64; +const unsigned kXRegSizeLog2 = 6; +const unsigned kXRegSizeInBytes = kXRegSize / 8; +const unsigned kSRegSize = 32; +const unsigned kSRegSizeLog2 = 5; +const unsigned kSRegSizeInBytes = kSRegSize / 8; +const unsigned kDRegSize = 64; +const unsigned kDRegSizeLog2 = 6; +const unsigned kDRegSizeInBytes = kDRegSize / 8; +const int64_t kWRegMask = 0x00000000ffffffffL; +const int64_t kXRegMask = 0xffffffffffffffffL; +const int64_t kSRegMask = 0x00000000ffffffffL; +const int64_t kDRegMask = 0xffffffffffffffffL; +const int64_t kXSignMask = 0x1L << 63; +const int64_t kWSignMask = 0x1L << 31; +const int64_t kByteMask = 0xffL; +const int64_t kHalfWordMask = 0xffffL; +const int64_t kWordMask = 0xffffffffL; +const uint64_t kXMaxUInt = 0xffffffffffffffffUL; +const uint64_t kWMaxUInt = 0xffffffffUL; +const int64_t kXMaxInt = 0x7fffffffffffffffL; +const int64_t kXMinInt = 0x8000000000000000L; +const int32_t kWMaxInt = 0x7fffffff; +const int32_t kWMinInt = 0x80000000; +const unsigned kLinkRegCode = 30; +const unsigned kZeroRegCode = 31; +const unsigned kSPRegInternalCode = 63; +const unsigned kRegCodeMask = 0x1f; + +// AArch64 floating-point specifics. These match IEEE-754. +const unsigned kDoubleMantissaBits = 52; +const unsigned kDoubleExponentBits = 11; +const unsigned kFloatMantissaBits = 23; +const unsigned kFloatExponentBits = 8; + +const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000); +const float kFP32NegativeInfinity = rawbits_to_float(0xff800000); +const double kFP64PositiveInfinity = rawbits_to_double(0x7ff0000000000000UL); +const double kFP64NegativeInfinity = rawbits_to_double(0xfff0000000000000UL); + +// This value is a signalling NaN as both a double and as a float (taking the +// least-significant word). +static const double kFP64SignallingNaN = rawbits_to_double(0x7ff000007f800001); +static const float kFP32SignallingNaN = rawbits_to_float(0x7f800001); + +// A similar value, but as a quiet NaN. +static const double kFP64QuietNaN = rawbits_to_double(0x7ff800007fc00001); +static const float kFP32QuietNaN = rawbits_to_float(0x7fc00001); + +enum LSDataSize { + LSByte = 0, + LSHalfword = 1, + LSWord = 2, + LSDoubleWord = 3 +}; + +LSDataSize CalcLSPairDataSize(LoadStorePairOp op); + +enum ImmBranchType { + UnknownBranchType = 0, + CondBranchType = 1, + UncondBranchType = 2, + CompareBranchType = 3, + TestBranchType = 4 +}; + +enum AddrMode { + Offset, + PreIndex, + PostIndex +}; + +enum FPRounding { + // The first four values are encodable directly by FPCR<RMode>. + FPTieEven = 0x0, + FPPositiveInfinity = 0x1, + FPNegativeInfinity = 0x2, + FPZero = 0x3, + + // The final rounding mode is only available when explicitly specified by the + // instruction (such as with fcvta). It cannot be set in FPCR. + FPTieAway +}; + +enum Reg31Mode { + Reg31IsStackPointer, + Reg31IsZeroRegister +}; + +// Instructions. --------------------------------------------------------------- + +class Instruction { + public: + inline Instr InstructionBits() const { + return *(reinterpret_cast<const Instr*>(this)); + } + + inline void SetInstructionBits(Instr new_instr) { + *(reinterpret_cast<Instr*>(this)) = new_instr; + } + + inline int Bit(int pos) const { + return (InstructionBits() >> pos) & 1; + } + + inline uint32_t Bits(int msb, int lsb) const { + return unsigned_bitextract_32(msb, lsb, InstructionBits()); + } + + inline int32_t SignedBits(int msb, int lsb) const { + int32_t bits = *(reinterpret_cast<const int32_t*>(this)); + return signed_bitextract_32(msb, lsb, bits); + } + + inline Instr Mask(uint32_t mask) const { + return InstructionBits() & mask; + } + + #define DEFINE_GETTER(Name, HighBit, LowBit, Func) \ + inline int64_t Name() const { return Func(HighBit, LowBit); } + INSTRUCTION_FIELDS_LIST(DEFINE_GETTER) + #undef DEFINE_GETTER + + // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST), + // formed from ImmPCRelLo and ImmPCRelHi. + int ImmPCRel() const { + int const offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo()); + int const width = ImmPCRelLo_width + ImmPCRelHi_width; + return signed_bitextract_32(width-1, 0, offset); + } + + uint64_t ImmLogical(); + float ImmFP32(); + double ImmFP64(); + + inline LSDataSize SizeLSPair() const { + return CalcLSPairDataSize( + static_cast<LoadStorePairOp>(Mask(LoadStorePairMask))); + } + + // Helpers. + inline bool IsCondBranchImm() const { + return Mask(ConditionalBranchFMask) == ConditionalBranchFixed; + } + + inline bool IsUncondBranchImm() const { + return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed; + } + + inline bool IsCompareBranch() const { + return Mask(CompareBranchFMask) == CompareBranchFixed; + } + + inline bool IsTestBranch() const { + return Mask(TestBranchFMask) == TestBranchFixed; + } + + inline bool IsPCRelAddressing() const { + return Mask(PCRelAddressingFMask) == PCRelAddressingFixed; + } + + inline bool IsLogicalImmediate() const { + return Mask(LogicalImmediateFMask) == LogicalImmediateFixed; + } + + inline bool IsAddSubImmediate() const { + return Mask(AddSubImmediateFMask) == AddSubImmediateFixed; + } + + inline bool IsAddSubExtended() const { + return Mask(AddSubExtendedFMask) == AddSubExtendedFixed; + } + + inline bool IsLoadOrStore() const { + return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed; + } + + inline bool IsMovn() const { + return (Mask(MoveWideImmediateMask) == MOVN_x) || + (Mask(MoveWideImmediateMask) == MOVN_w); + } + + // Indicate whether Rd can be the stack pointer or the zero register. This + // does not check that the instruction actually has an Rd field. + inline Reg31Mode RdMode() const { + // The following instructions use sp or wsp as Rd: + // Add/sub (immediate) when not setting the flags. + // Add/sub (extended) when not setting the flags. + // Logical (immediate) when not setting the flags. + // Otherwise, r31 is the zero register. + if (IsAddSubImmediate() || IsAddSubExtended()) { + if (Mask(AddSubSetFlagsBit)) { + return Reg31IsZeroRegister; + } else { + return Reg31IsStackPointer; + } + } + if (IsLogicalImmediate()) { + // Of the logical (immediate) instructions, only ANDS (and its aliases) + // can set the flags. The others can all write into sp. + // Note that some logical operations are not available to + // immediate-operand instructions, so we have to combine two masks here. + if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) { + return Reg31IsZeroRegister; + } else { + return Reg31IsStackPointer; + } + } + return Reg31IsZeroRegister; + } + + // Indicate whether Rn can be the stack pointer or the zero register. This + // does not check that the instruction actually has an Rn field. + inline Reg31Mode RnMode() const { + // The following instructions use sp or wsp as Rn: + // All loads and stores. + // Add/sub (immediate). + // Add/sub (extended). + // Otherwise, r31 is the zero register. + if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) { + return Reg31IsStackPointer; + } + return Reg31IsZeroRegister; + } + + inline ImmBranchType BranchType() const { + if (IsCondBranchImm()) { + return CondBranchType; + } else if (IsUncondBranchImm()) { + return UncondBranchType; + } else if (IsCompareBranch()) { + return CompareBranchType; + } else if (IsTestBranch()) { + return TestBranchType; + } else { + return UnknownBranchType; + } + } + + // Find the target of this instruction. 'this' may be a branch or a + // PC-relative addressing instruction. + Instruction* ImmPCOffsetTarget(); + + // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or + // a PC-relative addressing instruction. + void SetImmPCOffsetTarget(Instruction* target); + // Patch a literal load instruction to load from 'source'. + void SetImmLLiteral(Instruction* source); + + inline uint8_t* LiteralAddress() { + int offset = ImmLLiteral() << kLiteralEntrySizeLog2; + return reinterpret_cast<uint8_t*>(this) + offset; + } + + inline uint32_t Literal32() { + uint32_t literal; + memcpy(&literal, LiteralAddress(), sizeof(literal)); + + return literal; + } + + inline uint64_t Literal64() { + uint64_t literal; + memcpy(&literal, LiteralAddress(), sizeof(literal)); + + return literal; + } + + inline float LiteralFP32() { + return rawbits_to_float(Literal32()); + } + + inline double LiteralFP64() { + return rawbits_to_double(Literal64()); + } + + inline Instruction* NextInstruction() { + return this + kInstructionSize; + } + + inline Instruction* InstructionAtOffset(int64_t offset) { + ASSERT(IsWordAligned(this + offset)); + return this + offset; + } + + template<typename T> static inline Instruction* Cast(T src) { + return reinterpret_cast<Instruction*>(src); + } + + private: + inline int ImmBranch() const; + + void SetPCRelImmTarget(Instruction* target); + void SetBranchImmTarget(Instruction* target); +}; +} // namespace vixl + +#endif // VIXL_A64_INSTRUCTIONS_A64_H_ |