summaryrefslogtreecommitdiff
path: root/src/gen6_mfc_common.c
blob: 1796e95e1bc822b6ee09fc708981e5346e143fae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
 * IN NO EVENT SHALL PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors:
 *    Xiang Haihao <haihao.xiang@intel.com>
 *    Zhao Yakui <yakui.zhao@intel.com>
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>

#include "intel_batchbuffer.h"
#include "i965_defines.h"
#include "i965_structs.h"
#include "i965_drv_video.h"
#include "i965_encoder.h"
#include "i965_encoder_utils.h"
#include "gen6_mfc.h"
#include "gen6_vme.h"
#include "intel_media.h"

#define BRC_CLIP(x, min, max) \
{ \
    x = ((x > (max)) ? (max) : ((x < (min)) ? (min) : x)); \
}

#define BRC_P_B_QP_DIFF 4
#define BRC_I_P_QP_DIFF 2
#define BRC_I_B_QP_DIFF (BRC_I_P_QP_DIFF + BRC_P_B_QP_DIFF)

#define BRC_PWEIGHT 0.6  /* weight if P slice with comparison to I slice */
#define BRC_BWEIGHT 0.25 /* weight if B slice with comparison to I slice */

#define BRC_QP_MAX_CHANGE 5 /* maximum qp modification */
#define BRC_CY 0.1 /* weight for */
#define BRC_CX_UNDERFLOW 5.
#define BRC_CX_OVERFLOW -4.

#define BRC_PI_0_5 1.5707963267948966192313216916398

#ifndef HAVE_LOG2F
#define log2f(x) (logf(x)/(float)M_LN2)
#endif

int intel_avc_enc_slice_type_fixup(int slice_type)
{
    if (slice_type == SLICE_TYPE_SP ||
        slice_type == SLICE_TYPE_P)
        slice_type = SLICE_TYPE_P;
    else if (slice_type == SLICE_TYPE_SI ||
             slice_type == SLICE_TYPE_I)
        slice_type = SLICE_TYPE_I;
    else {
        if (slice_type != SLICE_TYPE_B)
            WARN_ONCE("Invalid slice type for H.264 encoding!\n");

        slice_type = SLICE_TYPE_B;
    }

    return slice_type;
}

static void
intel_mfc_bit_rate_control_context_init(struct encode_state *encode_state, 
                                       struct gen6_mfc_context *mfc_context)
{
    VAEncSequenceParameterBufferH264 *pSequenceParameter = (VAEncSequenceParameterBufferH264 *)encode_state->seq_param_ext->buffer;
    int width_in_mbs = (mfc_context->surface_state.width + 15) / 16;
    int height_in_mbs = (mfc_context->surface_state.height + 15) / 16;
    float fps =  pSequenceParameter->time_scale * 0.5 / pSequenceParameter->num_units_in_tick ;
    int inter_mb_size = pSequenceParameter->bits_per_second * 1.0 / (fps+4.0) / width_in_mbs / height_in_mbs;
    int intra_mb_size = inter_mb_size * 5.0;
    int i;

    mfc_context->bit_rate_control_context[SLICE_TYPE_I].target_mb_size = intra_mb_size;
    mfc_context->bit_rate_control_context[SLICE_TYPE_I].target_frame_size = intra_mb_size * width_in_mbs * height_in_mbs;
    mfc_context->bit_rate_control_context[SLICE_TYPE_P].target_mb_size = inter_mb_size;
    mfc_context->bit_rate_control_context[SLICE_TYPE_P].target_frame_size = inter_mb_size * width_in_mbs * height_in_mbs;
    mfc_context->bit_rate_control_context[SLICE_TYPE_B].target_mb_size = inter_mb_size;
    mfc_context->bit_rate_control_context[SLICE_TYPE_B].target_frame_size = inter_mb_size * width_in_mbs * height_in_mbs;

    for(i = 0 ; i < 3; i++) {
        mfc_context->bit_rate_control_context[i].QpPrimeY = 26;
        mfc_context->bit_rate_control_context[i].MaxQpNegModifier = 6;
        mfc_context->bit_rate_control_context[i].MaxQpPosModifier = 6;
        mfc_context->bit_rate_control_context[i].GrowInit = 6;
        mfc_context->bit_rate_control_context[i].GrowResistance = 4;
        mfc_context->bit_rate_control_context[i].ShrinkInit = 6;
        mfc_context->bit_rate_control_context[i].ShrinkResistance = 4;
        
        mfc_context->bit_rate_control_context[i].Correct[0] = 8;
        mfc_context->bit_rate_control_context[i].Correct[1] = 4;
        mfc_context->bit_rate_control_context[i].Correct[2] = 2;
        mfc_context->bit_rate_control_context[i].Correct[3] = 2;
        mfc_context->bit_rate_control_context[i].Correct[4] = 4;
        mfc_context->bit_rate_control_context[i].Correct[5] = 8;
    }
    
    mfc_context->bit_rate_control_context[SLICE_TYPE_I].TargetSizeInWord = (intra_mb_size + 16)/ 16;
    mfc_context->bit_rate_control_context[SLICE_TYPE_P].TargetSizeInWord = (inter_mb_size + 16)/ 16;
    mfc_context->bit_rate_control_context[SLICE_TYPE_B].TargetSizeInWord = (inter_mb_size + 16)/ 16;

    mfc_context->bit_rate_control_context[SLICE_TYPE_I].MaxSizeInWord = mfc_context->bit_rate_control_context[SLICE_TYPE_I].TargetSizeInWord * 1.5;
    mfc_context->bit_rate_control_context[SLICE_TYPE_P].MaxSizeInWord = mfc_context->bit_rate_control_context[SLICE_TYPE_P].TargetSizeInWord * 1.5;
    mfc_context->bit_rate_control_context[SLICE_TYPE_B].MaxSizeInWord = mfc_context->bit_rate_control_context[SLICE_TYPE_B].TargetSizeInWord * 1.5;
}

static void intel_mfc_brc_init(struct encode_state *encode_state,
                  struct intel_encoder_context* encoder_context)
{
    struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
    VAEncSequenceParameterBufferH264 *pSequenceParameter = (VAEncSequenceParameterBufferH264 *)encode_state->seq_param_ext->buffer;
    VAEncMiscParameterBuffer* pMiscParamHRD = (VAEncMiscParameterBuffer*)encode_state->misc_param[VAEncMiscParameterTypeHRD]->buffer;
    VAEncMiscParameterHRD* pParameterHRD = (VAEncMiscParameterHRD*)pMiscParamHRD->data;
    double bitrate = pSequenceParameter->bits_per_second;
    double framerate = (double)pSequenceParameter->time_scale /(2 * (double)pSequenceParameter->num_units_in_tick);
    int inum = 1, pnum = 0, bnum = 0; /* Gop structure: number of I, P, B frames in the Gop. */
    int intra_period = pSequenceParameter->intra_period;
    int ip_period = pSequenceParameter->ip_period;
    double qp1_size = 0.1 * 8 * 3 * (pSequenceParameter->picture_width_in_mbs<<4) * (pSequenceParameter->picture_height_in_mbs<<4)/2;
    double qp51_size = 0.001 * 8 * 3 * (pSequenceParameter->picture_width_in_mbs<<4) * (pSequenceParameter->picture_height_in_mbs<<4)/2;
    double bpf;

    if (pSequenceParameter->ip_period) {
        pnum = (intra_period + ip_period - 1)/ip_period - 1;
        bnum = intra_period - inum - pnum;
    }

    mfc_context->brc.mode = encoder_context->rate_control_mode;

    mfc_context->brc.target_frame_size[SLICE_TYPE_I] = (int)((double)((bitrate * intra_period)/framerate) /
                                                             (double)(inum + BRC_PWEIGHT * pnum + BRC_BWEIGHT * bnum));
    mfc_context->brc.target_frame_size[SLICE_TYPE_P] = BRC_PWEIGHT * mfc_context->brc.target_frame_size[SLICE_TYPE_I];
    mfc_context->brc.target_frame_size[SLICE_TYPE_B] = BRC_BWEIGHT * mfc_context->brc.target_frame_size[SLICE_TYPE_I];

    mfc_context->brc.gop_nums[SLICE_TYPE_I] = inum;
    mfc_context->brc.gop_nums[SLICE_TYPE_P] = pnum;
    mfc_context->brc.gop_nums[SLICE_TYPE_B] = bnum;

    bpf = mfc_context->brc.bits_per_frame = bitrate/framerate;

    mfc_context->hrd.buffer_size = (double)pParameterHRD->buffer_size;
    mfc_context->hrd.current_buffer_fullness =
        (double)(pParameterHRD->initial_buffer_fullness < mfc_context->hrd.buffer_size)?
            pParameterHRD->initial_buffer_fullness: mfc_context->hrd.buffer_size/2.;
    mfc_context->hrd.target_buffer_fullness = (double)mfc_context->hrd.buffer_size/2.;
    mfc_context->hrd.buffer_capacity = (double)mfc_context->hrd.buffer_size/qp1_size;
    mfc_context->hrd.violation_noted = 0;

    if ((bpf > qp51_size) && (bpf < qp1_size)) {
        mfc_context->bit_rate_control_context[SLICE_TYPE_P].QpPrimeY = 51 - 50*(bpf - qp51_size)/(qp1_size - qp51_size);
    }
    else if (bpf >= qp1_size)
        mfc_context->bit_rate_control_context[SLICE_TYPE_P].QpPrimeY = 1;
    else if (bpf <= qp51_size)
        mfc_context->bit_rate_control_context[SLICE_TYPE_P].QpPrimeY = 51;

    mfc_context->bit_rate_control_context[SLICE_TYPE_I].QpPrimeY = mfc_context->bit_rate_control_context[SLICE_TYPE_P].QpPrimeY;
    mfc_context->bit_rate_control_context[SLICE_TYPE_B].QpPrimeY = mfc_context->bit_rate_control_context[SLICE_TYPE_I].QpPrimeY;

    BRC_CLIP(mfc_context->bit_rate_control_context[SLICE_TYPE_I].QpPrimeY, 1, 51);
    BRC_CLIP(mfc_context->bit_rate_control_context[SLICE_TYPE_P].QpPrimeY, 1, 51);
    BRC_CLIP(mfc_context->bit_rate_control_context[SLICE_TYPE_B].QpPrimeY, 1, 51);
}

int intel_mfc_update_hrd(struct encode_state *encode_state,
                               struct gen6_mfc_context *mfc_context,
                               int frame_bits)
{
    double prev_bf = mfc_context->hrd.current_buffer_fullness;

    mfc_context->hrd.current_buffer_fullness -= frame_bits;

    if (mfc_context->hrd.buffer_size > 0 && mfc_context->hrd.current_buffer_fullness <= 0.) {
        mfc_context->hrd.current_buffer_fullness = prev_bf;
        return BRC_UNDERFLOW;
    }
    
    mfc_context->hrd.current_buffer_fullness += mfc_context->brc.bits_per_frame;
    if (mfc_context->hrd.buffer_size > 0 && mfc_context->hrd.current_buffer_fullness > mfc_context->hrd.buffer_size) {
        if (mfc_context->brc.mode == VA_RC_VBR)
            mfc_context->hrd.current_buffer_fullness = mfc_context->hrd.buffer_size;
        else {
            mfc_context->hrd.current_buffer_fullness = prev_bf;
            return BRC_OVERFLOW;
        }
    }
    return BRC_NO_HRD_VIOLATION;
}

int intel_mfc_brc_postpack(struct encode_state *encode_state,
                                 struct gen6_mfc_context *mfc_context,
                                 int frame_bits)
{
    gen6_brc_status sts = BRC_NO_HRD_VIOLATION;
    VAEncSliceParameterBufferH264 *pSliceParameter = (VAEncSliceParameterBufferH264 *)encode_state->slice_params_ext[0]->buffer; 
    int slicetype = intel_avc_enc_slice_type_fixup(pSliceParameter->slice_type);
    int qpi = mfc_context->bit_rate_control_context[SLICE_TYPE_I].QpPrimeY;
    int qpp = mfc_context->bit_rate_control_context[SLICE_TYPE_P].QpPrimeY;
    int qpb = mfc_context->bit_rate_control_context[SLICE_TYPE_B].QpPrimeY;
    int qp; // quantizer of previously encoded slice of current type
    int qpn; // predicted quantizer for next frame of current type in integer format
    double qpf; // predicted quantizer for next frame of current type in float format
    double delta_qp; // QP correction
    int target_frame_size, frame_size_next;
    /* Notes:
     *  x - how far we are from HRD buffer borders
     *  y - how far we are from target HRD buffer fullness
     */
    double x, y;
    double frame_size_alpha;

    qp = mfc_context->bit_rate_control_context[slicetype].QpPrimeY;

    target_frame_size = mfc_context->brc.target_frame_size[slicetype];
    if (mfc_context->hrd.buffer_capacity < 5)
        frame_size_alpha = 0;
    else
        frame_size_alpha = (double)mfc_context->brc.gop_nums[slicetype];
    if (frame_size_alpha > 30) frame_size_alpha = 30;
    frame_size_next = target_frame_size + (double)(target_frame_size - frame_bits) /
                                          (double)(frame_size_alpha + 1.);

    /* frame_size_next: avoiding negative number and too small value */
    if ((double)frame_size_next < (double)(target_frame_size * 0.25))
        frame_size_next = (int)((double)target_frame_size * 0.25);

    qpf = (double)qp * target_frame_size / frame_size_next;
    qpn = (int)(qpf + 0.5);

    if (qpn == qp) {
        /* setting qpn we round qpf making mistakes: now we are trying to compensate this */
        mfc_context->brc.qpf_rounding_accumulator += qpf - qpn;
        if (mfc_context->brc.qpf_rounding_accumulator > 1.0) {
            qpn++;
            mfc_context->brc.qpf_rounding_accumulator = 0.;
        } else if (mfc_context->brc.qpf_rounding_accumulator < -1.0) {
            qpn--;
            mfc_context->brc.qpf_rounding_accumulator = 0.;
        }
    }
    /* making sure that QP is not changing too fast */
    if ((qpn - qp) > BRC_QP_MAX_CHANGE) qpn = qp + BRC_QP_MAX_CHANGE;
    else if ((qpn - qp) < -BRC_QP_MAX_CHANGE) qpn = qp - BRC_QP_MAX_CHANGE;
    /* making sure that with QP predictions we did do not leave QPs range */
    BRC_CLIP(qpn, 1, 51);

    /* checking wthether HRD compliance is still met */
    sts = intel_mfc_update_hrd(encode_state, mfc_context, frame_bits);

    /* calculating QP delta as some function*/
    x = mfc_context->hrd.target_buffer_fullness - mfc_context->hrd.current_buffer_fullness;
    if (x > 0) {
        x /= mfc_context->hrd.target_buffer_fullness;
        y = mfc_context->hrd.current_buffer_fullness;
    }
    else {
        x /= (mfc_context->hrd.buffer_size - mfc_context->hrd.target_buffer_fullness);
        y = mfc_context->hrd.buffer_size - mfc_context->hrd.current_buffer_fullness;
    }
    if (y < 0.01) y = 0.01;
    if (x > 1) x = 1;
    else if (x < -1) x = -1;

    delta_qp = BRC_QP_MAX_CHANGE*exp(-1/y)*sin(BRC_PI_0_5 * x);
    qpn = (int)(qpn + delta_qp + 0.5);

    /* making sure that with QP predictions we did do not leave QPs range */
    BRC_CLIP(qpn, 1, 51);

    if (sts == BRC_NO_HRD_VIOLATION) { // no HRD violation
        /* correcting QPs of slices of other types */
        if (slicetype == SLICE_TYPE_P) {
            if (abs(qpn + BRC_P_B_QP_DIFF - qpb) > 2)
                mfc_context->bit_rate_control_context[SLICE_TYPE_B].QpPrimeY += (qpn + BRC_P_B_QP_DIFF - qpb) >> 1;
            if (abs(qpn - BRC_I_P_QP_DIFF - qpi) > 2)
                mfc_context->bit_rate_control_context[SLICE_TYPE_I].QpPrimeY += (qpn - BRC_I_P_QP_DIFF - qpi) >> 1;
        } else if (slicetype == SLICE_TYPE_I) {
            if (abs(qpn + BRC_I_B_QP_DIFF - qpb) > 4)
                mfc_context->bit_rate_control_context[SLICE_TYPE_B].QpPrimeY += (qpn + BRC_I_B_QP_DIFF - qpb) >> 2;
            if (abs(qpn + BRC_I_P_QP_DIFF - qpp) > 2)
                mfc_context->bit_rate_control_context[SLICE_TYPE_P].QpPrimeY += (qpn + BRC_I_P_QP_DIFF - qpp) >> 2;
        } else { // SLICE_TYPE_B
            if (abs(qpn - BRC_P_B_QP_DIFF - qpp) > 2)
                mfc_context->bit_rate_control_context[SLICE_TYPE_P].QpPrimeY += (qpn - BRC_P_B_QP_DIFF - qpp) >> 1;
            if (abs(qpn - BRC_I_B_QP_DIFF - qpi) > 4)
                mfc_context->bit_rate_control_context[SLICE_TYPE_I].QpPrimeY += (qpn - BRC_I_B_QP_DIFF - qpi) >> 2;
        }
        BRC_CLIP(mfc_context->bit_rate_control_context[SLICE_TYPE_I].QpPrimeY, 1, 51);
        BRC_CLIP(mfc_context->bit_rate_control_context[SLICE_TYPE_P].QpPrimeY, 1, 51);
        BRC_CLIP(mfc_context->bit_rate_control_context[SLICE_TYPE_B].QpPrimeY, 1, 51);
    } else if (sts == BRC_UNDERFLOW) { // underflow
        if (qpn <= qp) qpn = qp + 1;
        if (qpn > 51) {
            qpn = 51;
            sts = BRC_UNDERFLOW_WITH_MAX_QP; //underflow with maxQP
        }
    } else if (sts == BRC_OVERFLOW) {
        if (qpn >= qp) qpn = qp - 1;
        if (qpn < 1) { // < 0 (?) overflow with minQP
            qpn = 1;
            sts = BRC_OVERFLOW_WITH_MIN_QP; // bit stuffing to be done
        }
    }

    mfc_context->bit_rate_control_context[slicetype].QpPrimeY = qpn;

    return sts;
}

static void intel_mfc_hrd_context_init(struct encode_state *encode_state,
                          struct intel_encoder_context *encoder_context)
{
    struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
    VAEncSequenceParameterBufferH264 *pSequenceParameter = (VAEncSequenceParameterBufferH264 *)encode_state->seq_param_ext->buffer;
    unsigned int rate_control_mode = encoder_context->rate_control_mode;
    int target_bit_rate = pSequenceParameter->bits_per_second;
    
    // current we only support CBR mode.
    if (rate_control_mode == VA_RC_CBR) {
        mfc_context->vui_hrd.i_bit_rate_value = target_bit_rate >> 10;
        mfc_context->vui_hrd.i_cpb_size_value = (target_bit_rate * 8) >> 10;
        mfc_context->vui_hrd.i_initial_cpb_removal_delay = mfc_context->vui_hrd.i_cpb_size_value * 0.5 * 1024 / target_bit_rate * 90000;
        mfc_context->vui_hrd.i_cpb_removal_delay = 2;
        mfc_context->vui_hrd.i_frame_number = 0;

        mfc_context->vui_hrd.i_initial_cpb_removal_delay_length = 24; 
        mfc_context->vui_hrd.i_cpb_removal_delay_length = 24;
        mfc_context->vui_hrd.i_dpb_output_delay_length = 24;
    }

}

void 
intel_mfc_hrd_context_update(struct encode_state *encode_state, 
                          struct gen6_mfc_context *mfc_context) 
{
    mfc_context->vui_hrd.i_frame_number++;
}

int intel_mfc_interlace_check(VADriverContextP ctx,
                   struct encode_state *encode_state,
                   struct intel_encoder_context *encoder_context) 
{
    struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
    VAEncSliceParameterBufferH264 *pSliceParameter;
    int i;
    int mbCount = 0;
    int width_in_mbs = (mfc_context->surface_state.width + 15) / 16;
    int height_in_mbs = (mfc_context->surface_state.height + 15) / 16;
  
    for (i = 0; i < encode_state->num_slice_params_ext; i++) {
        pSliceParameter = (VAEncSliceParameterBufferH264 *)encode_state->slice_params_ext[i]->buffer; 
        mbCount += pSliceParameter->num_macroblocks; 
    }
    
    if ( mbCount == ( width_in_mbs * height_in_mbs ) )
        return 0;

    return 1;
}

void intel_mfc_brc_prepare(struct encode_state *encode_state,
                          struct intel_encoder_context *encoder_context)
{
    unsigned int rate_control_mode = encoder_context->rate_control_mode;
    struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;

    if (rate_control_mode == VA_RC_CBR) {
        /*Programing bit rate control */
        if ( mfc_context->bit_rate_control_context[SLICE_TYPE_I].MaxSizeInWord == 0 ) {
            intel_mfc_bit_rate_control_context_init(encode_state, mfc_context);
            intel_mfc_brc_init(encode_state, encoder_context);
        }

        /*Programing HRD control */
        if ( mfc_context->vui_hrd.i_cpb_size_value == 0 )
            intel_mfc_hrd_context_init(encode_state, encoder_context);    
    }
}

void intel_mfc_avc_pipeline_header_programing(VADriverContextP ctx,
                                                    struct encode_state *encode_state,
                                                    struct intel_encoder_context *encoder_context,
                                                    struct intel_batchbuffer *slice_batch)
{
    struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
    int idx = va_enc_packed_type_to_idx(VAEncPackedHeaderH264_SPS);
    unsigned int rate_control_mode = encoder_context->rate_control_mode;

    if (encode_state->packed_header_data[idx]) {
        VAEncPackedHeaderParameterBuffer *param = NULL;
        unsigned int *header_data = (unsigned int *)encode_state->packed_header_data[idx]->buffer;
        unsigned int length_in_bits;

        assert(encode_state->packed_header_param[idx]);
        param = (VAEncPackedHeaderParameterBuffer *)encode_state->packed_header_param[idx]->buffer;
        length_in_bits = param->bit_length;

        mfc_context->insert_object(ctx,
                                   encoder_context,
                                   header_data,
                                   ALIGN(length_in_bits, 32) >> 5,
                                   length_in_bits & 0x1f,
                                   5,   /* FIXME: check it */
                                   0,
                                   0,
                                   !param->has_emulation_bytes,
                                   slice_batch);
    }

    idx = va_enc_packed_type_to_idx(VAEncPackedHeaderH264_PPS);

    if (encode_state->packed_header_data[idx]) {
        VAEncPackedHeaderParameterBuffer *param = NULL;
        unsigned int *header_data = (unsigned int *)encode_state->packed_header_data[idx]->buffer;
        unsigned int length_in_bits;

        assert(encode_state->packed_header_param[idx]);
        param = (VAEncPackedHeaderParameterBuffer *)encode_state->packed_header_param[idx]->buffer;
        length_in_bits = param->bit_length;

        mfc_context->insert_object(ctx,
                                   encoder_context,
                                   header_data,
                                   ALIGN(length_in_bits, 32) >> 5,
                                   length_in_bits & 0x1f,
                                   5, /* FIXME: check it */
                                   0,
                                   0,
                                   !param->has_emulation_bytes,
                                   slice_batch);
    }
    
    idx = va_enc_packed_type_to_idx(VAEncPackedHeaderH264_SEI);

    if (encode_state->packed_header_data[idx]) {
        VAEncPackedHeaderParameterBuffer *param = NULL;
        unsigned int *header_data = (unsigned int *)encode_state->packed_header_data[idx]->buffer;
        unsigned int length_in_bits;

        assert(encode_state->packed_header_param[idx]);
        param = (VAEncPackedHeaderParameterBuffer *)encode_state->packed_header_param[idx]->buffer;
        length_in_bits = param->bit_length;

        mfc_context->insert_object(ctx,
                                   encoder_context,
                                   header_data,
                                   ALIGN(length_in_bits, 32) >> 5,
                                   length_in_bits & 0x1f,
                                   5, /* FIXME: check it */
                                   0,
                                   0,
                                   !param->has_emulation_bytes,
                                   slice_batch);
    } else if (rate_control_mode == VA_RC_CBR) {
        // this is frist AU
        struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;

        unsigned char *sei_data = NULL;
    
        int length_in_bits = build_avc_sei_buffer_timing(
			mfc_context->vui_hrd.i_initial_cpb_removal_delay_length,
			mfc_context->vui_hrd.i_initial_cpb_removal_delay,
			0,
			mfc_context->vui_hrd.i_cpb_removal_delay_length,                                                       mfc_context->vui_hrd.i_cpb_removal_delay * mfc_context->vui_hrd.i_frame_number,
			mfc_context->vui_hrd.i_dpb_output_delay_length,
			0,
			&sei_data);
        mfc_context->insert_object(ctx,
                                   encoder_context,
                                   (unsigned int *)sei_data,
                                   ALIGN(length_in_bits, 32) >> 5,
                                   length_in_bits & 0x1f,
                                   4,   
                                   0,   
                                   0,   
                                   1,
                                   slice_batch);  
        free(sei_data);
    }
}

VAStatus intel_mfc_avc_prepare(VADriverContextP ctx, 
                                     struct encode_state *encode_state,
                                     struct intel_encoder_context *encoder_context)
{
    struct i965_driver_data *i965 = i965_driver_data(ctx);
    struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
    struct object_surface *obj_surface;	
    struct object_buffer *obj_buffer;
    GenAvcSurface *gen6_avc_surface;
    dri_bo *bo;
    VAStatus vaStatus = VA_STATUS_SUCCESS;
    int i, j, enable_avc_ildb = 0;
    VAEncSliceParameterBufferH264 *slice_param;
    struct i965_coded_buffer_segment *coded_buffer_segment;
    VAEncSequenceParameterBufferH264 *pSequenceParameter = (VAEncSequenceParameterBufferH264 *)encode_state->seq_param_ext->buffer;
    int width_in_mbs = pSequenceParameter->picture_width_in_mbs;
    int height_in_mbs = pSequenceParameter->picture_height_in_mbs;

    if (IS_GEN6(i965->intel.device_id)) {
	/* On the SNB it should be fixed to 128 for the DMV buffer */
	width_in_mbs = 128;
    }

    for (j = 0; j < encode_state->num_slice_params_ext && enable_avc_ildb == 0; j++) {
        assert(encode_state->slice_params_ext && encode_state->slice_params_ext[j]->buffer);
        slice_param = (VAEncSliceParameterBufferH264 *)encode_state->slice_params_ext[j]->buffer;

        for (i = 0; i < encode_state->slice_params_ext[j]->num_elements; i++) {
            assert((slice_param->slice_type == SLICE_TYPE_I) ||
                   (slice_param->slice_type == SLICE_TYPE_SI) ||
                   (slice_param->slice_type == SLICE_TYPE_P) ||
                   (slice_param->slice_type == SLICE_TYPE_SP) ||
                   (slice_param->slice_type == SLICE_TYPE_B));

            if (slice_param->disable_deblocking_filter_idc != 1) {
                enable_avc_ildb = 1;
                break;
            }

            slice_param++;
        }
    }

    /*Setup all the input&output object*/

    /* Setup current frame and current direct mv buffer*/
    obj_surface = encode_state->reconstructed_object;
    i965_check_alloc_surface_bo(ctx, obj_surface, 1, VA_FOURCC('N','V','1','2'), SUBSAMPLE_YUV420);

    if ( obj_surface->private_data == NULL) {
        gen6_avc_surface = calloc(sizeof(GenAvcSurface), 1);
        gen6_avc_surface->dmv_top = 
            dri_bo_alloc(i965->intel.bufmgr,
                         "Buffer",
                         68 * width_in_mbs * height_in_mbs, 
                         64);
        gen6_avc_surface->dmv_bottom = 
            dri_bo_alloc(i965->intel.bufmgr,
                         "Buffer",
                         68 * width_in_mbs * height_in_mbs, 
                         64);
        assert(gen6_avc_surface->dmv_top);
        assert(gen6_avc_surface->dmv_bottom);
        obj_surface->private_data = (void *)gen6_avc_surface;
        obj_surface->free_private_data = (void *)gen_free_avc_surface; 
    }
    gen6_avc_surface = (GenAvcSurface *) obj_surface->private_data;
    mfc_context->direct_mv_buffers[NUM_MFC_DMV_BUFFERS - 2].bo = gen6_avc_surface->dmv_top;
    mfc_context->direct_mv_buffers[NUM_MFC_DMV_BUFFERS - 1].bo = gen6_avc_surface->dmv_bottom;
    dri_bo_reference(gen6_avc_surface->dmv_top);
    dri_bo_reference(gen6_avc_surface->dmv_bottom);

    if (enable_avc_ildb) {
        mfc_context->post_deblocking_output.bo = obj_surface->bo;
        dri_bo_reference(mfc_context->post_deblocking_output.bo);
    } else {
        mfc_context->pre_deblocking_output.bo = obj_surface->bo;
        dri_bo_reference(mfc_context->pre_deblocking_output.bo);
    }

    mfc_context->surface_state.width = obj_surface->orig_width;
    mfc_context->surface_state.height = obj_surface->orig_height;
    mfc_context->surface_state.w_pitch = obj_surface->width;
    mfc_context->surface_state.h_pitch = obj_surface->height;
    
    /* Setup reference frames and direct mv buffers*/
    for(i = 0; i < MAX_MFC_REFERENCE_SURFACES; i++) {
        obj_surface = encode_state->reference_objects[i];
        
        if (obj_surface && obj_surface->bo) {
            mfc_context->reference_surfaces[i].bo = obj_surface->bo;
            dri_bo_reference(obj_surface->bo);

            /* Check DMV buffer */
            if ( obj_surface->private_data == NULL) {
                
                gen6_avc_surface = calloc(sizeof(GenAvcSurface), 1);
                gen6_avc_surface->dmv_top = 
                    dri_bo_alloc(i965->intel.bufmgr,
                                 "Buffer",
                                 68 * width_in_mbs * height_in_mbs, 
                                 64);
                gen6_avc_surface->dmv_bottom = 
                    dri_bo_alloc(i965->intel.bufmgr,
                                 "Buffer",
                                 68 * width_in_mbs * height_in_mbs, 
                                 64);
                assert(gen6_avc_surface->dmv_top);
                assert(gen6_avc_surface->dmv_bottom);
                obj_surface->private_data = gen6_avc_surface;
                obj_surface->free_private_data = gen_free_avc_surface; 
            }
    
            gen6_avc_surface = (GenAvcSurface *) obj_surface->private_data;
            /* Setup DMV buffer */
            mfc_context->direct_mv_buffers[i*2].bo = gen6_avc_surface->dmv_top;
            mfc_context->direct_mv_buffers[i*2+1].bo = gen6_avc_surface->dmv_bottom; 
            dri_bo_reference(gen6_avc_surface->dmv_top);
            dri_bo_reference(gen6_avc_surface->dmv_bottom);
        } else {
            break;
        }
    }
	
    mfc_context->uncompressed_picture_source.bo = encode_state->input_yuv_object->bo;
    dri_bo_reference(mfc_context->uncompressed_picture_source.bo);

    obj_buffer = encode_state->coded_buf_object;
    bo = obj_buffer->buffer_store->bo;
    mfc_context->mfc_indirect_pak_bse_object.bo = bo;
    mfc_context->mfc_indirect_pak_bse_object.offset = I965_CODEDBUFFER_HEADER_SIZE;
    mfc_context->mfc_indirect_pak_bse_object.end_offset = ALIGN(obj_buffer->size_element - 0x1000, 0x1000);
    dri_bo_reference(mfc_context->mfc_indirect_pak_bse_object.bo);
    
    dri_bo_map(bo, 1);
    coded_buffer_segment = (struct i965_coded_buffer_segment *)bo->virtual;
    coded_buffer_segment->mapped = 0;
    coded_buffer_segment->codec = CODED_H264;
    dri_bo_unmap(bo);

    return vaStatus;
}
/*
 * The LUT uses the pair of 4-bit units: (shift, base) structure.
 * 2^K * X = value . 
 * So it is necessary to convert one cost into the nearest LUT format.
 * The derivation is:
 * 2^K *x = 2^n * (1 + deltaX)
 *    k + log2(x) = n + log2(1 + deltaX)
 *    log2(x) = n - k + log2(1 + deltaX)
 *    As X is in the range of [1, 15]
 *      4 > n - k + log2(1 + deltaX) >= 0 
 *      =>    n + log2(1 + deltaX)  >= k > n - 4  + log2(1 + deltaX)
 *    Then we can derive the corresponding K and get the nearest LUT format.
 */
int intel_format_lutvalue(int value, int max)
{
	int ret;
	int logvalue, temp1, temp2;

	if (value <= 0)
		return 0;

	logvalue = (int)(log2f((float)value));
	if (logvalue < 4) {
		ret = value;
	} else {
		int error, temp_value, base, j, temp_err;
		error = value;
		j = logvalue - 4 + 1;
		ret = -1;
		for(; j <= logvalue; j++) {
			if (j == 0) {
				base = value >> j;
			} else {
				base = (value + (1 << (j - 1)) - 1) >> j; 
			}
			if (base >= 16)
				continue;

			temp_value = base << j;
			temp_err = abs(value - temp_value);
			if (temp_err < error) {
				error = temp_err;
				ret = (j << 4) | base;
				if (temp_err == 0)
					break;
			}
		}	
	}
	temp1 = (ret & 0xf) << ((ret & 0xf0) >> 4);
	temp2 = (max & 0xf) << ((max & 0xf0) >> 4);
	if (temp1 > temp2)
		ret = max;
	return ret;
	
}


#define		QP_MAX			52


static float intel_lambda_qp(int qp)
{
	float value, lambdaf;
	value = qp;
	value = value / 6 - 2;
	if (value < 0)
		value = 0;
	lambdaf = roundf(powf(2, value));
	return lambdaf;	
}


void intel_vme_update_mbmv_cost(VADriverContextP ctx,
                                       struct encode_state *encode_state,
                                       struct intel_encoder_context *encoder_context)
{
    struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
    struct gen6_vme_context *vme_context = encoder_context->vme_context;
    VAEncPictureParameterBufferH264 *pic_param = (VAEncPictureParameterBufferH264 *)encode_state->pic_param_ext->buffer;
    VAEncSliceParameterBufferH264 *slice_param = (VAEncSliceParameterBufferH264 *)encode_state->slice_params_ext[0]->buffer;
    int qp, m_cost, j, mv_count;
    uint8_t *vme_state_message = (uint8_t *)(vme_context->vme_state_message);
    float   lambda, m_costf;

    int slice_type = intel_avc_enc_slice_type_fixup(slice_param->slice_type);

    
    if (encoder_context->rate_control_mode == VA_RC_CQP)
	qp = pic_param->pic_init_qp + slice_param->slice_qp_delta;
    else
	qp = mfc_context->bit_rate_control_context[slice_type].QpPrimeY;
  
    if (vme_state_message == NULL)
	return;
 
    assert(qp <= QP_MAX); 
    lambda = intel_lambda_qp(qp);
    if (slice_type == SLICE_TYPE_I) {
	vme_state_message[MODE_INTRA_16X16] = 0;
	m_cost = lambda * 4;
	vme_state_message[MODE_INTRA_8X8] = intel_format_lutvalue(m_cost, 0x8f);
	m_cost = lambda * 16; 
	vme_state_message[MODE_INTRA_4X4] = intel_format_lutvalue(m_cost, 0x8f);
	m_cost = lambda * 3;
	vme_state_message[MODE_INTRA_NONPRED] = intel_format_lutvalue(m_cost, 0x6f);
    } else {
    	m_cost = 0;
	vme_state_message[MODE_INTER_MV0] = intel_format_lutvalue(m_cost, 0x6f);
	for (j = 1; j < 3; j++) {
		m_costf = (log2f((float)(j + 1)) + 1.718f) * lambda;
		m_cost = (int)m_costf;
		vme_state_message[MODE_INTER_MV0 + j] = intel_format_lutvalue(m_cost, 0x6f);
   	}
    	mv_count = 3;
    	for (j = 4; j <= 64; j *= 2) {
		m_costf = (log2f((float)(j + 1)) + 1.718f) * lambda;
		m_cost = (int)m_costf;
		vme_state_message[MODE_INTER_MV0 + mv_count] = intel_format_lutvalue(m_cost, 0x6f);
		mv_count++;
	}

	if (qp <= 25) {
		vme_state_message[MODE_INTRA_16X16] = 0x4a;
		vme_state_message[MODE_INTRA_8X8] = 0x4a;
		vme_state_message[MODE_INTRA_4X4] = 0x4a;
		vme_state_message[MODE_INTRA_NONPRED] = 0x4a;
		vme_state_message[MODE_INTER_16X16] = 0x4a;
		vme_state_message[MODE_INTER_16X8] = 0x4a;
		vme_state_message[MODE_INTER_8X8] = 0x4a;
		vme_state_message[MODE_INTER_8X4] = 0x4a;
		vme_state_message[MODE_INTER_4X4] = 0x4a;
		vme_state_message[MODE_INTER_BWD] = 0x2a;
		return;	
	}
	m_costf = lambda * 10;
	vme_state_message[MODE_INTRA_16X16] = intel_format_lutvalue(m_cost, 0x8f);
	m_cost = lambda * 14;
	vme_state_message[MODE_INTRA_8X8] = intel_format_lutvalue(m_cost, 0x8f);
	m_cost = lambda * 24; 
	vme_state_message[MODE_INTRA_4X4] = intel_format_lutvalue(m_cost, 0x8f);
	m_costf = lambda * 3.5;
	m_cost = m_costf;
	vme_state_message[MODE_INTRA_NONPRED] = intel_format_lutvalue(m_cost, 0x6f);
    	if (slice_type == SLICE_TYPE_P) {
		m_costf = lambda * 2.5;
		m_cost = m_costf;
		vme_state_message[MODE_INTER_16X16] = intel_format_lutvalue(m_cost, 0x8f);
		m_costf = lambda * 4;
		m_cost = m_costf;
		vme_state_message[MODE_INTER_16X8] = intel_format_lutvalue(m_cost, 0x8f);
		m_costf = lambda * 1.5;
		m_cost = m_costf;
		vme_state_message[MODE_INTER_8X8] = intel_format_lutvalue(m_cost, 0x6f);
		m_costf = lambda * 3;
		m_cost = m_costf;
		vme_state_message[MODE_INTER_8X4] = intel_format_lutvalue(m_cost, 0x6f);
		m_costf = lambda * 5;
		m_cost = m_costf;
		vme_state_message[MODE_INTER_4X4] = intel_format_lutvalue(m_cost, 0x6f);
		/* BWD is not used in P-frame */
		vme_state_message[MODE_INTER_BWD] = 0;
	} else {
		m_costf = lambda * 2.5;
		m_cost = m_costf;
		vme_state_message[MODE_INTER_16X16] = intel_format_lutvalue(m_cost, 0x8f);
		m_costf = lambda * 5.5;
		m_cost = m_costf;
		vme_state_message[MODE_INTER_16X8] = intel_format_lutvalue(m_cost, 0x8f);
		m_costf = lambda * 3.5;
		m_cost = m_costf;
		vme_state_message[MODE_INTER_8X8] = intel_format_lutvalue(m_cost, 0x6f);
		m_costf = lambda * 5.0;
		m_cost = m_costf;
		vme_state_message[MODE_INTER_8X4] = intel_format_lutvalue(m_cost, 0x6f);
		m_costf = lambda * 6.5;
		m_cost = m_costf;
		vme_state_message[MODE_INTER_4X4] = intel_format_lutvalue(m_cost, 0x6f);
		m_costf = lambda * 1.5;
		m_cost = m_costf;
		vme_state_message[MODE_INTER_BWD] = intel_format_lutvalue(m_cost, 0x6f);
	}
    }
}


#define		MB_SCOREBOARD_A		(1 << 0)
#define		MB_SCOREBOARD_B		(1 << 1)
#define		MB_SCOREBOARD_C		(1 << 2)
void 
gen7_vme_scoreboard_init(VADriverContextP ctx, struct gen6_vme_context *vme_context)
{
    vme_context->gpe_context.vfe_desc5.scoreboard0.enable = 1;
    vme_context->gpe_context.vfe_desc5.scoreboard0.type = SCOREBOARD_STALLING;
    vme_context->gpe_context.vfe_desc5.scoreboard0.mask = (MB_SCOREBOARD_A |
								MB_SCOREBOARD_B |
								MB_SCOREBOARD_C);

    /* In VME prediction the current mb depends on the neighbour 
     * A/B/C macroblock. So the left/up/up-right dependency should
     * be considered.
     */
    vme_context->gpe_context.vfe_desc6.scoreboard1.delta_x0 = -1;
    vme_context->gpe_context.vfe_desc6.scoreboard1.delta_y0 = 0;
    vme_context->gpe_context.vfe_desc6.scoreboard1.delta_x1 = 0;
    vme_context->gpe_context.vfe_desc6.scoreboard1.delta_y1 = -1;
    vme_context->gpe_context.vfe_desc6.scoreboard1.delta_x2 = 1;
    vme_context->gpe_context.vfe_desc6.scoreboard1.delta_y2 = -1;
	
    vme_context->gpe_context.vfe_desc7.dword = 0;
    return;
}

/* check whether the mb of (x_index, y_index) is out of bound */
static inline int loop_in_bounds(int x_index, int y_index, int first_mb, int num_mb, int mb_width, int mb_height)
{
	int mb_index;
	if (x_index < 0 || x_index >= mb_width)
		return -1;
	if (y_index < 0 || y_index >= mb_height)
		return -1;
	
	mb_index = y_index * mb_width + x_index;
	if (mb_index < first_mb || mb_index > (first_mb + num_mb))
		return -1;
	return 0;
}

void
gen7_vme_walker_fill_vme_batchbuffer(VADriverContextP ctx, 
                              struct encode_state *encode_state,
                              int mb_width, int mb_height,
                              int kernel,
                              int transform_8x8_mode_flag,
                              struct intel_encoder_context *encoder_context)
{
    struct gen6_vme_context *vme_context = encoder_context->vme_context;
    int mb_row;
    int s;
    unsigned int *command_ptr;

#define		USE_SCOREBOARD		(1 << 21)
 
    dri_bo_map(vme_context->vme_batchbuffer.bo, 1);
    command_ptr = vme_context->vme_batchbuffer.bo->virtual;

    for (s = 0; s < encode_state->num_slice_params_ext; s++) {
	VAEncSliceParameterBufferH264 *pSliceParameter = (VAEncSliceParameterBufferH264 *)encode_state->slice_params_ext[s]->buffer;
	int first_mb = pSliceParameter->macroblock_address;
	int num_mb = pSliceParameter->num_macroblocks;
	unsigned int mb_intra_ub, score_dep;
	int x_outer, y_outer, x_inner, y_inner;
	int xtemp_outer = 0;

	x_outer = first_mb % mb_width;
	y_outer = first_mb / mb_width;
	mb_row = y_outer;
				 
	for (; x_outer < (mb_width -2 ) && !loop_in_bounds(x_outer, y_outer, first_mb, num_mb, mb_width, mb_height); ) {
	    x_inner = x_outer;
	    y_inner = y_outer;
	    for (; !loop_in_bounds(x_inner, y_inner, first_mb, num_mb, mb_width, mb_height);) {
		mb_intra_ub = 0;
		score_dep = 0;
		if (x_inner != 0) {
		    mb_intra_ub |= INTRA_PRED_AVAIL_FLAG_AE;
		    score_dep |= MB_SCOREBOARD_A; 
		}
		if (y_inner != mb_row) {
		    mb_intra_ub |= INTRA_PRED_AVAIL_FLAG_B;
		    score_dep |= MB_SCOREBOARD_B;
		    if (x_inner != 0)
			mb_intra_ub |= INTRA_PRED_AVAIL_FLAG_D;
		    if (x_inner != (mb_width -1)) {
			mb_intra_ub |= INTRA_PRED_AVAIL_FLAG_C;
			score_dep |= MB_SCOREBOARD_C;
		     }
		}
							
            	*command_ptr++ = (CMD_MEDIA_OBJECT | (8 - 2));
		*command_ptr++ = kernel;
		*command_ptr++ = USE_SCOREBOARD;
		/* Indirect data */
		*command_ptr++ = 0;
		/* the (X, Y) term of scoreboard */
		*command_ptr++ = ((y_inner << 16) | x_inner);
		*command_ptr++ = score_dep;
		/*inline data */
		*command_ptr++ = (mb_width << 16 | y_inner << 8 | x_inner);
		*command_ptr++ = ((1 << 18) | (1 << 16) | transform_8x8_mode_flag | (mb_intra_ub << 8));
		x_inner -= 2;
		y_inner += 1;
	    }
	    x_outer += 1;
	}

	xtemp_outer = mb_width - 2;
	if (xtemp_outer < 0)
		xtemp_outer = 0;
	x_outer = xtemp_outer;
	y_outer = first_mb / mb_width;
	for (;!loop_in_bounds(x_outer, y_outer, first_mb, num_mb, mb_width, mb_height); ) { 
	    y_inner = y_outer;
	    x_inner = x_outer;
	    for (; !loop_in_bounds(x_inner, y_inner, first_mb, num_mb, mb_width, mb_height);) {
	    	mb_intra_ub = 0;
		score_dep = 0;
		if (x_inner != 0) {
		    mb_intra_ub |= INTRA_PRED_AVAIL_FLAG_AE;
		    score_dep |= MB_SCOREBOARD_A; 
		}
		if (y_inner != mb_row) {
		    mb_intra_ub |= INTRA_PRED_AVAIL_FLAG_B;
		    score_dep |= MB_SCOREBOARD_B;
		    if (x_inner != 0)
			mb_intra_ub |= INTRA_PRED_AVAIL_FLAG_D;

		    if (x_inner != (mb_width -1)) {
			mb_intra_ub |= INTRA_PRED_AVAIL_FLAG_C;
			score_dep |= MB_SCOREBOARD_C;
		     }
		}

            	*command_ptr++ = (CMD_MEDIA_OBJECT | (8 - 2));
		*command_ptr++ = kernel;
		*command_ptr++ = USE_SCOREBOARD;
		/* Indirect data */
		*command_ptr++ = 0;
		/* the (X, Y) term of scoreboard */
		*command_ptr++ = ((y_inner << 16) | x_inner);
		*command_ptr++ = score_dep;
		/*inline data */
		*command_ptr++ = (mb_width << 16 | y_inner << 8 | x_inner);
		*command_ptr++ = ((1 << 18) | (1 << 16) | transform_8x8_mode_flag | (mb_intra_ub << 8));

		x_inner -= 2;
		y_inner += 1;
	    }
	    x_outer++;
	    if (x_outer >= mb_width) {
		y_outer += 1;
		x_outer = xtemp_outer;
	    }		
	}
    }

    *command_ptr++ = 0;
    *command_ptr++ = MI_BATCH_BUFFER_END;

    dri_bo_unmap(vme_context->vme_batchbuffer.bo);
}