summaryrefslogtreecommitdiff
path: root/drivers/net/au1000_eth.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/au1000_eth.c')
-rw-r--r--drivers/net/au1000_eth.c2273
1 files changed, 2273 insertions, 0 deletions
diff --git a/drivers/net/au1000_eth.c b/drivers/net/au1000_eth.c
new file mode 100644
index 000000000000..5a2efd343db4
--- /dev/null
+++ b/drivers/net/au1000_eth.c
@@ -0,0 +1,2273 @@
+/*
+ *
+ * Alchemy Au1x00 ethernet driver
+ *
+ * Copyright 2001,2002,2003 MontaVista Software Inc.
+ * Copyright 2002 TimeSys Corp.
+ * Added ethtool/mii-tool support,
+ * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
+ * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
+ * or riemer@riemer-nt.de: fixed the link beat detection with
+ * ioctls (SIOCGMIIPHY)
+ * Author: MontaVista Software, Inc.
+ * ppopov@mvista.com or source@mvista.com
+ *
+ * ########################################################################
+ *
+ * This program is free software; you can distribute it and/or modify it
+ * under the terms of the GNU General Public License (Version 2) as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
+ *
+ * ########################################################################
+ *
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/string.h>
+#include <linux/timer.h>
+#include <linux/errno.h>
+#include <linux/in.h>
+#include <linux/ioport.h>
+#include <linux/bitops.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+#include <linux/pci.h>
+#include <linux/init.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/ethtool.h>
+#include <linux/mii.h>
+#include <linux/skbuff.h>
+#include <linux/delay.h>
+#include <asm/mipsregs.h>
+#include <asm/irq.h>
+#include <asm/io.h>
+#include <asm/processor.h>
+
+#include <asm/mach-au1x00/au1000.h>
+#include <asm/cpu.h>
+#include "au1000_eth.h"
+
+#ifdef AU1000_ETH_DEBUG
+static int au1000_debug = 5;
+#else
+static int au1000_debug = 3;
+#endif
+
+#define DRV_NAME "au1000eth"
+#define DRV_VERSION "1.5"
+#define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
+#define DRV_DESC "Au1xxx on-chip Ethernet driver"
+
+MODULE_AUTHOR(DRV_AUTHOR);
+MODULE_DESCRIPTION(DRV_DESC);
+MODULE_LICENSE("GPL");
+
+// prototypes
+static void hard_stop(struct net_device *);
+static void enable_rx_tx(struct net_device *dev);
+static struct net_device * au1000_probe(u32 ioaddr, int irq, int port_num);
+static int au1000_init(struct net_device *);
+static int au1000_open(struct net_device *);
+static int au1000_close(struct net_device *);
+static int au1000_tx(struct sk_buff *, struct net_device *);
+static int au1000_rx(struct net_device *);
+static irqreturn_t au1000_interrupt(int, void *, struct pt_regs *);
+static void au1000_tx_timeout(struct net_device *);
+static int au1000_set_config(struct net_device *dev, struct ifmap *map);
+static void set_rx_mode(struct net_device *);
+static struct net_device_stats *au1000_get_stats(struct net_device *);
+static inline void update_tx_stats(struct net_device *, u32, u32);
+static inline void update_rx_stats(struct net_device *, u32);
+static void au1000_timer(unsigned long);
+static int au1000_ioctl(struct net_device *, struct ifreq *, int);
+static int mdio_read(struct net_device *, int, int);
+static void mdio_write(struct net_device *, int, int, u16);
+static void dump_mii(struct net_device *dev, int phy_id);
+
+// externs
+extern void ack_rise_edge_irq(unsigned int);
+extern int get_ethernet_addr(char *ethernet_addr);
+extern void str2eaddr(unsigned char *ea, unsigned char *str);
+extern char * __init prom_getcmdline(void);
+
+/*
+ * Theory of operation
+ *
+ * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
+ * There are four receive and four transmit descriptors. These
+ * descriptors are not in memory; rather, they are just a set of
+ * hardware registers.
+ *
+ * Since the Au1000 has a coherent data cache, the receive and
+ * transmit buffers are allocated from the KSEG0 segment. The
+ * hardware registers, however, are still mapped at KSEG1 to
+ * make sure there's no out-of-order writes, and that all writes
+ * complete immediately.
+ */
+
+/* These addresses are only used if yamon doesn't tell us what
+ * the mac address is, and the mac address is not passed on the
+ * command line.
+ */
+static unsigned char au1000_mac_addr[6] __devinitdata = {
+ 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
+};
+
+#define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0))
+#define RUN_AT(x) (jiffies + (x))
+
+// For reading/writing 32-bit words from/to DMA memory
+#define cpu_to_dma32 cpu_to_be32
+#define dma32_to_cpu be32_to_cpu
+
+struct au1000_private *au_macs[NUM_ETH_INTERFACES];
+
+/* FIXME
+ * All of the PHY code really should be detached from the MAC
+ * code.
+ */
+
+/* Default advertise */
+#define GENMII_DEFAULT_ADVERTISE \
+ ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
+ ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
+ ADVERTISED_Autoneg
+
+#define GENMII_DEFAULT_FEATURES \
+ SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
+ SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
+ SUPPORTED_Autoneg
+
+static char *phy_link[] =
+{ "unknown",
+ "10Base2", "10BaseT",
+ "AUI",
+ "100BaseT", "100BaseTX", "100BaseFX"
+};
+
+int bcm_5201_init(struct net_device *dev, int phy_addr)
+{
+ s16 data;
+
+ /* Stop auto-negotiation */
+ data = mdio_read(dev, phy_addr, MII_CONTROL);
+ mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);
+
+ /* Set advertisement to 10/100 and Half/Full duplex
+ * (full capabilities) */
+ data = mdio_read(dev, phy_addr, MII_ANADV);
+ data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
+ mdio_write(dev, phy_addr, MII_ANADV, data);
+
+ /* Restart auto-negotiation */
+ data = mdio_read(dev, phy_addr, MII_CONTROL);
+ data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
+ mdio_write(dev, phy_addr, MII_CONTROL, data);
+
+ if (au1000_debug > 4)
+ dump_mii(dev, phy_addr);
+ return 0;
+}
+
+int bcm_5201_reset(struct net_device *dev, int phy_addr)
+{
+ s16 mii_control, timeout;
+
+ mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
+ mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
+ mdelay(1);
+ for (timeout = 100; timeout > 0; --timeout) {
+ mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
+ if ((mii_control & MII_CNTL_RESET) == 0)
+ break;
+ mdelay(1);
+ }
+ if (mii_control & MII_CNTL_RESET) {
+ printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
+ return -1;
+ }
+ return 0;
+}
+
+int
+bcm_5201_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
+{
+ u16 mii_data;
+ struct au1000_private *aup;
+
+ if (!dev) {
+ printk(KERN_ERR "bcm_5201_status error: NULL dev\n");
+ return -1;
+ }
+ aup = (struct au1000_private *) dev->priv;
+
+ mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
+ if (mii_data & MII_STAT_LINK) {
+ *link = 1;
+ mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL);
+ if (mii_data & MII_AUX_100) {
+ if (mii_data & MII_AUX_FDX) {
+ *speed = IF_PORT_100BASEFX;
+ dev->if_port = IF_PORT_100BASEFX;
+ }
+ else {
+ *speed = IF_PORT_100BASETX;
+ dev->if_port = IF_PORT_100BASETX;
+ }
+ }
+ else {
+ *speed = IF_PORT_10BASET;
+ dev->if_port = IF_PORT_10BASET;
+ }
+
+ }
+ else {
+ *link = 0;
+ *speed = 0;
+ dev->if_port = IF_PORT_UNKNOWN;
+ }
+ return 0;
+}
+
+int lsi_80227_init(struct net_device *dev, int phy_addr)
+{
+ if (au1000_debug > 4)
+ printk("lsi_80227_init\n");
+
+ /* restart auto-negotiation */
+ mdio_write(dev, phy_addr, MII_CONTROL,
+ MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO); // | MII_CNTL_FDX);
+ mdelay(1);
+
+ /* set up LEDs to correct display */
+#ifdef CONFIG_MIPS_MTX1
+ mdio_write(dev, phy_addr, 17, 0xff80);
+#else
+ mdio_write(dev, phy_addr, 17, 0xffc0);
+#endif
+
+ if (au1000_debug > 4)
+ dump_mii(dev, phy_addr);
+ return 0;
+}
+
+int lsi_80227_reset(struct net_device *dev, int phy_addr)
+{
+ s16 mii_control, timeout;
+
+ if (au1000_debug > 4) {
+ printk("lsi_80227_reset\n");
+ dump_mii(dev, phy_addr);
+ }
+
+ mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
+ mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
+ mdelay(1);
+ for (timeout = 100; timeout > 0; --timeout) {
+ mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
+ if ((mii_control & MII_CNTL_RESET) == 0)
+ break;
+ mdelay(1);
+ }
+ if (mii_control & MII_CNTL_RESET) {
+ printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
+ return -1;
+ }
+ return 0;
+}
+
+int
+lsi_80227_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
+{
+ u16 mii_data;
+ struct au1000_private *aup;
+
+ if (!dev) {
+ printk(KERN_ERR "lsi_80227_status error: NULL dev\n");
+ return -1;
+ }
+ aup = (struct au1000_private *) dev->priv;
+
+ mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
+ if (mii_data & MII_STAT_LINK) {
+ *link = 1;
+ mii_data = mdio_read(dev, aup->phy_addr, MII_LSI_PHY_STAT);
+ if (mii_data & MII_LSI_PHY_STAT_SPD) {
+ if (mii_data & MII_LSI_PHY_STAT_FDX) {
+ *speed = IF_PORT_100BASEFX;
+ dev->if_port = IF_PORT_100BASEFX;
+ }
+ else {
+ *speed = IF_PORT_100BASETX;
+ dev->if_port = IF_PORT_100BASETX;
+ }
+ }
+ else {
+ *speed = IF_PORT_10BASET;
+ dev->if_port = IF_PORT_10BASET;
+ }
+
+ }
+ else {
+ *link = 0;
+ *speed = 0;
+ dev->if_port = IF_PORT_UNKNOWN;
+ }
+ return 0;
+}
+
+int am79c901_init(struct net_device *dev, int phy_addr)
+{
+ printk("am79c901_init\n");
+ return 0;
+}
+
+int am79c901_reset(struct net_device *dev, int phy_addr)
+{
+ printk("am79c901_reset\n");
+ return 0;
+}
+
+int
+am79c901_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
+{
+ return 0;
+}
+
+int am79c874_init(struct net_device *dev, int phy_addr)
+{
+ s16 data;
+
+ /* 79c874 has quit resembled bit assignments to BCM5201 */
+ if (au1000_debug > 4)
+ printk("am79c847_init\n");
+
+ /* Stop auto-negotiation */
+ data = mdio_read(dev, phy_addr, MII_CONTROL);
+ mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);
+
+ /* Set advertisement to 10/100 and Half/Full duplex
+ * (full capabilities) */
+ data = mdio_read(dev, phy_addr, MII_ANADV);
+ data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
+ mdio_write(dev, phy_addr, MII_ANADV, data);
+
+ /* Restart auto-negotiation */
+ data = mdio_read(dev, phy_addr, MII_CONTROL);
+ data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
+
+ mdio_write(dev, phy_addr, MII_CONTROL, data);
+
+ if (au1000_debug > 4) dump_mii(dev, phy_addr);
+ return 0;
+}
+
+int am79c874_reset(struct net_device *dev, int phy_addr)
+{
+ s16 mii_control, timeout;
+
+ if (au1000_debug > 4)
+ printk("am79c874_reset\n");
+
+ mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
+ mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
+ mdelay(1);
+ for (timeout = 100; timeout > 0; --timeout) {
+ mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
+ if ((mii_control & MII_CNTL_RESET) == 0)
+ break;
+ mdelay(1);
+ }
+ if (mii_control & MII_CNTL_RESET) {
+ printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
+ return -1;
+ }
+ return 0;
+}
+
+int
+am79c874_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
+{
+ u16 mii_data;
+ struct au1000_private *aup;
+
+ // printk("am79c874_status\n");
+ if (!dev) {
+ printk(KERN_ERR "am79c874_status error: NULL dev\n");
+ return -1;
+ }
+
+ aup = (struct au1000_private *) dev->priv;
+ mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
+
+ if (mii_data & MII_STAT_LINK) {
+ *link = 1;
+ mii_data = mdio_read(dev, aup->phy_addr, MII_AMD_PHY_STAT);
+ if (mii_data & MII_AMD_PHY_STAT_SPD) {
+ if (mii_data & MII_AMD_PHY_STAT_FDX) {
+ *speed = IF_PORT_100BASEFX;
+ dev->if_port = IF_PORT_100BASEFX;
+ }
+ else {
+ *speed = IF_PORT_100BASETX;
+ dev->if_port = IF_PORT_100BASETX;
+ }
+ }
+ else {
+ *speed = IF_PORT_10BASET;
+ dev->if_port = IF_PORT_10BASET;
+ }
+
+ }
+ else {
+ *link = 0;
+ *speed = 0;
+ dev->if_port = IF_PORT_UNKNOWN;
+ }
+ return 0;
+}
+
+int lxt971a_init(struct net_device *dev, int phy_addr)
+{
+ if (au1000_debug > 4)
+ printk("lxt971a_init\n");
+
+ /* restart auto-negotiation */
+ mdio_write(dev, phy_addr, MII_CONTROL,
+ MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO | MII_CNTL_FDX);
+
+ /* set up LEDs to correct display */
+ mdio_write(dev, phy_addr, 20, 0x0422);
+
+ if (au1000_debug > 4)
+ dump_mii(dev, phy_addr);
+ return 0;
+}
+
+int lxt971a_reset(struct net_device *dev, int phy_addr)
+{
+ s16 mii_control, timeout;
+
+ if (au1000_debug > 4) {
+ printk("lxt971a_reset\n");
+ dump_mii(dev, phy_addr);
+ }
+
+ mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
+ mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
+ mdelay(1);
+ for (timeout = 100; timeout > 0; --timeout) {
+ mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
+ if ((mii_control & MII_CNTL_RESET) == 0)
+ break;
+ mdelay(1);
+ }
+ if (mii_control & MII_CNTL_RESET) {
+ printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
+ return -1;
+ }
+ return 0;
+}
+
+int
+lxt971a_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
+{
+ u16 mii_data;
+ struct au1000_private *aup;
+
+ if (!dev) {
+ printk(KERN_ERR "lxt971a_status error: NULL dev\n");
+ return -1;
+ }
+ aup = (struct au1000_private *) dev->priv;
+
+ mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
+ if (mii_data & MII_STAT_LINK) {
+ *link = 1;
+ mii_data = mdio_read(dev, aup->phy_addr, MII_INTEL_PHY_STAT);
+ if (mii_data & MII_INTEL_PHY_STAT_SPD) {
+ if (mii_data & MII_INTEL_PHY_STAT_FDX) {
+ *speed = IF_PORT_100BASEFX;
+ dev->if_port = IF_PORT_100BASEFX;
+ }
+ else {
+ *speed = IF_PORT_100BASETX;
+ dev->if_port = IF_PORT_100BASETX;
+ }
+ }
+ else {
+ *speed = IF_PORT_10BASET;
+ dev->if_port = IF_PORT_10BASET;
+ }
+
+ }
+ else {
+ *link = 0;
+ *speed = 0;
+ dev->if_port = IF_PORT_UNKNOWN;
+ }
+ return 0;
+}
+
+int ks8995m_init(struct net_device *dev, int phy_addr)
+{
+ s16 data;
+
+// printk("ks8995m_init\n");
+ /* Stop auto-negotiation */
+ data = mdio_read(dev, phy_addr, MII_CONTROL);
+ mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);
+
+ /* Set advertisement to 10/100 and Half/Full duplex
+ * (full capabilities) */
+ data = mdio_read(dev, phy_addr, MII_ANADV);
+ data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
+ mdio_write(dev, phy_addr, MII_ANADV, data);
+
+ /* Restart auto-negotiation */
+ data = mdio_read(dev, phy_addr, MII_CONTROL);
+ data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
+ mdio_write(dev, phy_addr, MII_CONTROL, data);
+
+ if (au1000_debug > 4) dump_mii(dev, phy_addr);
+
+ return 0;
+}
+
+int ks8995m_reset(struct net_device *dev, int phy_addr)
+{
+ s16 mii_control, timeout;
+
+// printk("ks8995m_reset\n");
+ mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
+ mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
+ mdelay(1);
+ for (timeout = 100; timeout > 0; --timeout) {
+ mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
+ if ((mii_control & MII_CNTL_RESET) == 0)
+ break;
+ mdelay(1);
+ }
+ if (mii_control & MII_CNTL_RESET) {
+ printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
+ return -1;
+ }
+ return 0;
+}
+
+int ks8995m_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
+{
+ u16 mii_data;
+ struct au1000_private *aup;
+
+ if (!dev) {
+ printk(KERN_ERR "ks8995m_status error: NULL dev\n");
+ return -1;
+ }
+ aup = (struct au1000_private *) dev->priv;
+
+ mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
+ if (mii_data & MII_STAT_LINK) {
+ *link = 1;
+ mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL);
+ if (mii_data & MII_AUX_100) {
+ if (mii_data & MII_AUX_FDX) {
+ *speed = IF_PORT_100BASEFX;
+ dev->if_port = IF_PORT_100BASEFX;
+ }
+ else {
+ *speed = IF_PORT_100BASETX;
+ dev->if_port = IF_PORT_100BASETX;
+ }
+ }
+ else {
+ *speed = IF_PORT_10BASET;
+ dev->if_port = IF_PORT_10BASET;
+ }
+
+ }
+ else {
+ *link = 0;
+ *speed = 0;
+ dev->if_port = IF_PORT_UNKNOWN;
+ }
+ return 0;
+}
+
+int
+smsc_83C185_init (struct net_device *dev, int phy_addr)
+{
+ s16 data;
+
+ if (au1000_debug > 4)
+ printk("smsc_83C185_init\n");
+
+ /* Stop auto-negotiation */
+ data = mdio_read(dev, phy_addr, MII_CONTROL);
+ mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);
+
+ /* Set advertisement to 10/100 and Half/Full duplex
+ * (full capabilities) */
+ data = mdio_read(dev, phy_addr, MII_ANADV);
+ data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
+ mdio_write(dev, phy_addr, MII_ANADV, data);
+
+ /* Restart auto-negotiation */
+ data = mdio_read(dev, phy_addr, MII_CONTROL);
+ data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
+
+ mdio_write(dev, phy_addr, MII_CONTROL, data);
+
+ if (au1000_debug > 4) dump_mii(dev, phy_addr);
+ return 0;
+}
+
+int
+smsc_83C185_reset (struct net_device *dev, int phy_addr)
+{
+ s16 mii_control, timeout;
+
+ if (au1000_debug > 4)
+ printk("smsc_83C185_reset\n");
+
+ mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
+ mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
+ mdelay(1);
+ for (timeout = 100; timeout > 0; --timeout) {
+ mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
+ if ((mii_control & MII_CNTL_RESET) == 0)
+ break;
+ mdelay(1);
+ }
+ if (mii_control & MII_CNTL_RESET) {
+ printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
+ return -1;
+ }
+ return 0;
+}
+
+int
+smsc_83C185_status (struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
+{
+ u16 mii_data;
+ struct au1000_private *aup;
+
+ if (!dev) {
+ printk(KERN_ERR "smsc_83C185_status error: NULL dev\n");
+ return -1;
+ }
+
+ aup = (struct au1000_private *) dev->priv;
+ mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
+
+ if (mii_data & MII_STAT_LINK) {
+ *link = 1;
+ mii_data = mdio_read(dev, aup->phy_addr, 0x1f);
+ if (mii_data & (1<<3)) {
+ if (mii_data & (1<<4)) {
+ *speed = IF_PORT_100BASEFX;
+ dev->if_port = IF_PORT_100BASEFX;
+ }
+ else {
+ *speed = IF_PORT_100BASETX;
+ dev->if_port = IF_PORT_100BASETX;
+ }
+ }
+ else {
+ *speed = IF_PORT_10BASET;
+ dev->if_port = IF_PORT_10BASET;
+ }
+ }
+ else {
+ *link = 0;
+ *speed = 0;
+ dev->if_port = IF_PORT_UNKNOWN;
+ }
+ return 0;
+}
+
+
+#ifdef CONFIG_MIPS_BOSPORUS
+int stub_init(struct net_device *dev, int phy_addr)
+{
+ //printk("PHY stub_init\n");
+ return 0;
+}
+
+int stub_reset(struct net_device *dev, int phy_addr)
+{
+ //printk("PHY stub_reset\n");
+ return 0;
+}
+
+int
+stub_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
+{
+ //printk("PHY stub_status\n");
+ *link = 1;
+ /* hmmm, revisit */
+ *speed = IF_PORT_100BASEFX;
+ dev->if_port = IF_PORT_100BASEFX;
+ return 0;
+}
+#endif
+
+struct phy_ops bcm_5201_ops = {
+ bcm_5201_init,
+ bcm_5201_reset,
+ bcm_5201_status,
+};
+
+struct phy_ops am79c874_ops = {
+ am79c874_init,
+ am79c874_reset,
+ am79c874_status,
+};
+
+struct phy_ops am79c901_ops = {
+ am79c901_init,
+ am79c901_reset,
+ am79c901_status,
+};
+
+struct phy_ops lsi_80227_ops = {
+ lsi_80227_init,
+ lsi_80227_reset,
+ lsi_80227_status,
+};
+
+struct phy_ops lxt971a_ops = {
+ lxt971a_init,
+ lxt971a_reset,
+ lxt971a_status,
+};
+
+struct phy_ops ks8995m_ops = {
+ ks8995m_init,
+ ks8995m_reset,
+ ks8995m_status,
+};
+
+struct phy_ops smsc_83C185_ops = {
+ smsc_83C185_init,
+ smsc_83C185_reset,
+ smsc_83C185_status,
+};
+
+#ifdef CONFIG_MIPS_BOSPORUS
+struct phy_ops stub_ops = {
+ stub_init,
+ stub_reset,
+ stub_status,
+};
+#endif
+
+static struct mii_chip_info {
+ const char * name;
+ u16 phy_id0;
+ u16 phy_id1;
+ struct phy_ops *phy_ops;
+ int dual_phy;
+} mii_chip_table[] = {
+ {"Broadcom BCM5201 10/100 BaseT PHY",0x0040,0x6212, &bcm_5201_ops,0},
+ {"Broadcom BCM5221 10/100 BaseT PHY",0x0040,0x61e4, &bcm_5201_ops,0},
+ {"Broadcom BCM5222 10/100 BaseT PHY",0x0040,0x6322, &bcm_5201_ops,1},
+ {"AMD 79C901 HomePNA PHY",0x0000,0x35c8, &am79c901_ops,0},
+ {"AMD 79C874 10/100 BaseT PHY",0x0022,0x561b, &am79c874_ops,0},
+ {"LSI 80227 10/100 BaseT PHY",0x0016,0xf840, &lsi_80227_ops,0},
+ {"Intel LXT971A Dual Speed PHY",0x0013,0x78e2, &lxt971a_ops,0},
+ {"Kendin KS8995M 10/100 BaseT PHY",0x0022,0x1450, &ks8995m_ops,0},
+ {"SMSC LAN83C185 10/100 BaseT PHY",0x0007,0xc0a3, &smsc_83C185_ops,0},
+#ifdef CONFIG_MIPS_BOSPORUS
+ {"Stub", 0x1234, 0x5678, &stub_ops },
+#endif
+ {0,},
+};
+
+static int mdio_read(struct net_device *dev, int phy_id, int reg)
+{
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+ volatile u32 *mii_control_reg;
+ volatile u32 *mii_data_reg;
+ u32 timedout = 20;
+ u32 mii_control;
+
+ #ifdef CONFIG_BCM5222_DUAL_PHY
+ /* First time we probe, it's for the mac0 phy.
+ * Since we haven't determined yet that we have a dual phy,
+ * aup->mii->mii_control_reg won't be setup and we'll
+ * default to the else statement.
+ * By the time we probe for the mac1 phy, the mii_control_reg
+ * will be setup to be the address of the mac0 phy control since
+ * both phys are controlled through mac0.
+ */
+ if (aup->mii && aup->mii->mii_control_reg) {
+ mii_control_reg = aup->mii->mii_control_reg;
+ mii_data_reg = aup->mii->mii_data_reg;
+ }
+ else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) {
+ /* assume both phys are controlled through mac0 */
+ mii_control_reg = au_macs[0]->mii->mii_control_reg;
+ mii_data_reg = au_macs[0]->mii->mii_data_reg;
+ }
+ else
+ #endif
+ {
+ /* default control and data reg addresses */
+ mii_control_reg = &aup->mac->mii_control;
+ mii_data_reg = &aup->mac->mii_data;
+ }
+
+ while (*mii_control_reg & MAC_MII_BUSY) {
+ mdelay(1);
+ if (--timedout == 0) {
+ printk(KERN_ERR "%s: read_MII busy timeout!!\n",
+ dev->name);
+ return -1;
+ }
+ }
+
+ mii_control = MAC_SET_MII_SELECT_REG(reg) |
+ MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_READ;
+
+ *mii_control_reg = mii_control;
+
+ timedout = 20;
+ while (*mii_control_reg & MAC_MII_BUSY) {
+ mdelay(1);
+ if (--timedout == 0) {
+ printk(KERN_ERR "%s: mdio_read busy timeout!!\n",
+ dev->name);
+ return -1;
+ }
+ }
+ return (int)*mii_data_reg;
+}
+
+static void mdio_write(struct net_device *dev, int phy_id, int reg, u16 value)
+{
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+ volatile u32 *mii_control_reg;
+ volatile u32 *mii_data_reg;
+ u32 timedout = 20;
+ u32 mii_control;
+
+ #ifdef CONFIG_BCM5222_DUAL_PHY
+ if (aup->mii && aup->mii->mii_control_reg) {
+ mii_control_reg = aup->mii->mii_control_reg;
+ mii_data_reg = aup->mii->mii_data_reg;
+ }
+ else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) {
+ /* assume both phys are controlled through mac0 */
+ mii_control_reg = au_macs[0]->mii->mii_control_reg;
+ mii_data_reg = au_macs[0]->mii->mii_data_reg;
+ }
+ else
+ #endif
+ {
+ /* default control and data reg addresses */
+ mii_control_reg = &aup->mac->mii_control;
+ mii_data_reg = &aup->mac->mii_data;
+ }
+
+ while (*mii_control_reg & MAC_MII_BUSY) {
+ mdelay(1);
+ if (--timedout == 0) {
+ printk(KERN_ERR "%s: mdio_write busy timeout!!\n",
+ dev->name);
+ return;
+ }
+ }
+
+ mii_control = MAC_SET_MII_SELECT_REG(reg) |
+ MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_WRITE;
+
+ *mii_data_reg = value;
+ *mii_control_reg = mii_control;
+}
+
+
+static void dump_mii(struct net_device *dev, int phy_id)
+{
+ int i, val;
+
+ for (i = 0; i < 7; i++) {
+ if ((val = mdio_read(dev, phy_id, i)) >= 0)
+ printk("%s: MII Reg %d=%x\n", dev->name, i, val);
+ }
+ for (i = 16; i < 25; i++) {
+ if ((val = mdio_read(dev, phy_id, i)) >= 0)
+ printk("%s: MII Reg %d=%x\n", dev->name, i, val);
+ }
+}
+
+static int mii_probe (struct net_device * dev)
+{
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+ int phy_addr;
+#ifdef CONFIG_MIPS_BOSPORUS
+ int phy_found=0;
+#endif
+
+ /* search for total of 32 possible mii phy addresses */
+ for (phy_addr = 0; phy_addr < 32; phy_addr++) {
+ u16 mii_status;
+ u16 phy_id0, phy_id1;
+ int i;
+
+ #ifdef CONFIG_BCM5222_DUAL_PHY
+ /* Mask the already found phy, try next one */
+ if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) {
+ if (au_macs[0]->phy_addr == phy_addr)
+ continue;
+ }
+ #endif
+
+ mii_status = mdio_read(dev, phy_addr, MII_STATUS);
+ if (mii_status == 0xffff || mii_status == 0x0000)
+ /* the mii is not accessable, try next one */
+ continue;
+
+ phy_id0 = mdio_read(dev, phy_addr, MII_PHY_ID0);
+ phy_id1 = mdio_read(dev, phy_addr, MII_PHY_ID1);
+
+ /* search our mii table for the current mii */
+ for (i = 0; mii_chip_table[i].phy_id1; i++) {
+ if (phy_id0 == mii_chip_table[i].phy_id0 &&
+ phy_id1 == mii_chip_table[i].phy_id1) {
+ struct mii_phy * mii_phy = aup->mii;
+
+ printk(KERN_INFO "%s: %s at phy address %d\n",
+ dev->name, mii_chip_table[i].name,
+ phy_addr);
+#ifdef CONFIG_MIPS_BOSPORUS
+ phy_found = 1;
+#endif
+ mii_phy->chip_info = mii_chip_table+i;
+ aup->phy_addr = phy_addr;
+ aup->want_autoneg = 1;
+ aup->phy_ops = mii_chip_table[i].phy_ops;
+ aup->phy_ops->phy_init(dev,phy_addr);
+
+ // Check for dual-phy and then store required
+ // values and set indicators. We need to do
+ // this now since mdio_{read,write} need the
+ // control and data register addresses.
+ #ifdef CONFIG_BCM5222_DUAL_PHY
+ if ( mii_chip_table[i].dual_phy) {
+
+ /* assume both phys are controlled
+ * through MAC0. Board specific? */
+
+ /* sanity check */
+ if (!au_macs[0] || !au_macs[0]->mii)
+ return -1;
+ aup->mii->mii_control_reg = (u32 *)
+ &au_macs[0]->mac->mii_control;
+ aup->mii->mii_data_reg = (u32 *)
+ &au_macs[0]->mac->mii_data;
+ }
+ #endif
+ goto found;
+ }
+ }
+ }
+found:
+
+#ifdef CONFIG_MIPS_BOSPORUS
+ /* This is a workaround for the Micrel/Kendin 5 port switch
+ The second MAC doesn't see a PHY connected... so we need to
+ trick it into thinking we have one.
+
+ If this kernel is run on another Au1500 development board
+ the stub will be found as well as the actual PHY. However,
+ the last found PHY will be used... usually at Addr 31 (Db1500).
+ */
+ if ( (!phy_found) )
+ {
+ u16 phy_id0, phy_id1;
+ int i;
+
+ phy_id0 = 0x1234;
+ phy_id1 = 0x5678;
+
+ /* search our mii table for the current mii */
+ for (i = 0; mii_chip_table[i].phy_id1; i++) {
+ if (phy_id0 == mii_chip_table[i].phy_id0 &&
+ phy_id1 == mii_chip_table[i].phy_id1) {
+ struct mii_phy * mii_phy;
+
+ printk(KERN_INFO "%s: %s at phy address %d\n",
+ dev->name, mii_chip_table[i].name,
+ phy_addr);
+ mii_phy = kmalloc(sizeof(struct mii_phy),
+ GFP_KERNEL);
+ if (mii_phy) {
+ mii_phy->chip_info = mii_chip_table+i;
+ aup->phy_addr = phy_addr;
+ mii_phy->next = aup->mii;
+ aup->phy_ops =
+ mii_chip_table[i].phy_ops;
+ aup->mii = mii_phy;
+ aup->phy_ops->phy_init(dev,phy_addr);
+ } else {
+ printk(KERN_ERR "%s: out of memory\n",
+ dev->name);
+ return -1;
+ }
+ mii_phy->chip_info = mii_chip_table+i;
+ aup->phy_addr = phy_addr;
+ aup->phy_ops = mii_chip_table[i].phy_ops;
+ aup->phy_ops->phy_init(dev,phy_addr);
+ break;
+ }
+ }
+ }
+ if (aup->mac_id == 0) {
+ /* the Bosporus phy responds to addresses 0-5 but
+ * 5 is the correct one.
+ */
+ aup->phy_addr = 5;
+ }
+#endif
+
+ if (aup->mii->chip_info == NULL) {
+ printk(KERN_ERR "%s: Au1x No MII transceivers found!\n",
+ dev->name);
+ return -1;
+ }
+
+ printk(KERN_INFO "%s: Using %s as default\n",
+ dev->name, aup->mii->chip_info->name);
+
+ return 0;
+}
+
+
+/*
+ * Buffer allocation/deallocation routines. The buffer descriptor returned
+ * has the virtual and dma address of a buffer suitable for
+ * both, receive and transmit operations.
+ */
+static db_dest_t *GetFreeDB(struct au1000_private *aup)
+{
+ db_dest_t *pDB;
+ pDB = aup->pDBfree;
+
+ if (pDB) {
+ aup->pDBfree = pDB->pnext;
+ }
+ return pDB;
+}
+
+void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
+{
+ db_dest_t *pDBfree = aup->pDBfree;
+ if (pDBfree)
+ pDBfree->pnext = pDB;
+ aup->pDBfree = pDB;
+}
+
+static void enable_rx_tx(struct net_device *dev)
+{
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+
+ if (au1000_debug > 4)
+ printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);
+
+ aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
+ au_sync_delay(10);
+}
+
+static void hard_stop(struct net_device *dev)
+{
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+
+ if (au1000_debug > 4)
+ printk(KERN_INFO "%s: hard stop\n", dev->name);
+
+ aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
+ au_sync_delay(10);
+}
+
+
+static void reset_mac(struct net_device *dev)
+{
+ int i;
+ u32 flags;
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+
+ if (au1000_debug > 4)
+ printk(KERN_INFO "%s: reset mac, aup %x\n",
+ dev->name, (unsigned)aup);
+
+ spin_lock_irqsave(&aup->lock, flags);
+ if (aup->timer.function == &au1000_timer) {/* check if timer initted */
+ del_timer(&aup->timer);
+ }
+
+ hard_stop(dev);
+ #ifdef CONFIG_BCM5222_DUAL_PHY
+ if (aup->mac_id != 0) {
+ #endif
+ /* If BCM5222, we can't leave MAC0 in reset because then
+ * we can't access the dual phy for ETH1 */
+ *aup->enable = MAC_EN_CLOCK_ENABLE;
+ au_sync_delay(2);
+ *aup->enable = 0;
+ au_sync_delay(2);
+ #ifdef CONFIG_BCM5222_DUAL_PHY
+ }
+ #endif
+ aup->tx_full = 0;
+ for (i = 0; i < NUM_RX_DMA; i++) {
+ /* reset control bits */
+ aup->rx_dma_ring[i]->buff_stat &= ~0xf;
+ }
+ for (i = 0; i < NUM_TX_DMA; i++) {
+ /* reset control bits */
+ aup->tx_dma_ring[i]->buff_stat &= ~0xf;
+ }
+ spin_unlock_irqrestore(&aup->lock, flags);
+}
+
+
+/*
+ * Setup the receive and transmit "rings". These pointers are the addresses
+ * of the rx and tx MAC DMA registers so they are fixed by the hardware --
+ * these are not descriptors sitting in memory.
+ */
+static void
+setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
+{
+ int i;
+
+ for (i = 0; i < NUM_RX_DMA; i++) {
+ aup->rx_dma_ring[i] =
+ (volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
+ }
+ for (i = 0; i < NUM_TX_DMA; i++) {
+ aup->tx_dma_ring[i] =
+ (volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
+ }
+}
+
+static struct {
+ int port;
+ u32 base_addr;
+ u32 macen_addr;
+ int irq;
+ struct net_device *dev;
+} iflist[2];
+
+static int num_ifs;
+
+/*
+ * Setup the base address and interupt of the Au1xxx ethernet macs
+ * based on cpu type and whether the interface is enabled in sys_pinfunc
+ * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
+ */
+static int __init au1000_init_module(void)
+{
+ struct cpuinfo_mips *c = &current_cpu_data;
+ int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4);
+ struct net_device *dev;
+ int i, found_one = 0;
+
+ switch (c->cputype) {
+#ifdef CONFIG_SOC_AU1000
+ case CPU_AU1000:
+ num_ifs = 2 - ni;
+ iflist[0].base_addr = AU1000_ETH0_BASE;
+ iflist[1].base_addr = AU1000_ETH1_BASE;
+ iflist[0].macen_addr = AU1000_MAC0_ENABLE;
+ iflist[1].macen_addr = AU1000_MAC1_ENABLE;
+ iflist[0].irq = AU1000_MAC0_DMA_INT;
+ iflist[1].irq = AU1000_MAC1_DMA_INT;
+ break;
+#endif
+#ifdef CONFIG_SOC_AU1100
+ case CPU_AU1100:
+ num_ifs = 1 - ni;
+ iflist[0].base_addr = AU1100_ETH0_BASE;
+ iflist[0].macen_addr = AU1100_MAC0_ENABLE;
+ iflist[0].irq = AU1100_MAC0_DMA_INT;
+ break;
+#endif
+#ifdef CONFIG_SOC_AU1500
+ case CPU_AU1500:
+ num_ifs = 2 - ni;
+ iflist[0].base_addr = AU1500_ETH0_BASE;
+ iflist[1].base_addr = AU1500_ETH1_BASE;
+ iflist[0].macen_addr = AU1500_MAC0_ENABLE;
+ iflist[1].macen_addr = AU1500_MAC1_ENABLE;
+ iflist[0].irq = AU1500_MAC0_DMA_INT;
+ iflist[1].irq = AU1500_MAC1_DMA_INT;
+ break;
+#endif
+#ifdef CONFIG_SOC_AU1550
+ case CPU_AU1550:
+ num_ifs = 2 - ni;
+ iflist[0].base_addr = AU1550_ETH0_BASE;
+ iflist[1].base_addr = AU1550_ETH1_BASE;
+ iflist[0].macen_addr = AU1550_MAC0_ENABLE;
+ iflist[1].macen_addr = AU1550_MAC1_ENABLE;
+ iflist[0].irq = AU1550_MAC0_DMA_INT;
+ iflist[1].irq = AU1550_MAC1_DMA_INT;
+ break;
+#endif
+ default:
+ num_ifs = 0;
+ }
+ for(i = 0; i < num_ifs; i++) {
+ dev = au1000_probe(iflist[i].base_addr, iflist[i].irq, i);
+ iflist[i].dev = dev;
+ if (dev)
+ found_one++;
+ }
+ if (!found_one)
+ return -ENODEV;
+ return 0;
+}
+
+static int au1000_setup_aneg(struct net_device *dev, u32 advertise)
+{
+ struct au1000_private *aup = (struct au1000_private *)dev->priv;
+ u16 ctl, adv;
+
+ /* Setup standard advertise */
+ adv = mdio_read(dev, aup->phy_addr, MII_ADVERTISE);
+ adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
+ if (advertise & ADVERTISED_10baseT_Half)
+ adv |= ADVERTISE_10HALF;
+ if (advertise & ADVERTISED_10baseT_Full)
+ adv |= ADVERTISE_10FULL;
+ if (advertise & ADVERTISED_100baseT_Half)
+ adv |= ADVERTISE_100HALF;
+ if (advertise & ADVERTISED_100baseT_Full)
+ adv |= ADVERTISE_100FULL;
+ mdio_write(dev, aup->phy_addr, MII_ADVERTISE, adv);
+
+ /* Start/Restart aneg */
+ ctl = mdio_read(dev, aup->phy_addr, MII_BMCR);
+ ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
+ mdio_write(dev, aup->phy_addr, MII_BMCR, ctl);
+
+ return 0;
+}
+
+static int au1000_setup_forced(struct net_device *dev, int speed, int fd)
+{
+ struct au1000_private *aup = (struct au1000_private *)dev->priv;
+ u16 ctl;
+
+ ctl = mdio_read(dev, aup->phy_addr, MII_BMCR);
+ ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | BMCR_ANENABLE);
+
+ /* First reset the PHY */
+ mdio_write(dev, aup->phy_addr, MII_BMCR, ctl | BMCR_RESET);
+
+ /* Select speed & duplex */
+ switch (speed) {
+ case SPEED_10:
+ break;
+ case SPEED_100:
+ ctl |= BMCR_SPEED100;
+ break;
+ case SPEED_1000:
+ default:
+ return -EINVAL;
+ }
+ if (fd == DUPLEX_FULL)
+ ctl |= BMCR_FULLDPLX;
+ mdio_write(dev, aup->phy_addr, MII_BMCR, ctl);
+
+ return 0;
+}
+
+
+static void
+au1000_start_link(struct net_device *dev, struct ethtool_cmd *cmd)
+{
+ struct au1000_private *aup = (struct au1000_private *)dev->priv;
+ u32 advertise;
+ int autoneg;
+ int forced_speed;
+ int forced_duplex;
+
+ /* Default advertise */
+ advertise = GENMII_DEFAULT_ADVERTISE;
+ autoneg = aup->want_autoneg;
+ forced_speed = SPEED_100;
+ forced_duplex = DUPLEX_FULL;
+
+ /* Setup link parameters */
+ if (cmd) {
+ if (cmd->autoneg == AUTONEG_ENABLE) {
+ advertise = cmd->advertising;
+ autoneg = 1;
+ } else {
+ autoneg = 0;
+
+ forced_speed = cmd->speed;
+ forced_duplex = cmd->duplex;
+ }
+ }
+
+ /* Configure PHY & start aneg */
+ aup->want_autoneg = autoneg;
+ if (autoneg)
+ au1000_setup_aneg(dev, advertise);
+ else
+ au1000_setup_forced(dev, forced_speed, forced_duplex);
+ mod_timer(&aup->timer, jiffies + HZ);
+}
+
+static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
+{
+ struct au1000_private *aup = (struct au1000_private *)dev->priv;
+ u16 link, speed;
+
+ cmd->supported = GENMII_DEFAULT_FEATURES;
+ cmd->advertising = GENMII_DEFAULT_ADVERTISE;
+ cmd->port = PORT_MII;
+ cmd->transceiver = XCVR_EXTERNAL;
+ cmd->phy_address = aup->phy_addr;
+ spin_lock_irq(&aup->lock);
+ cmd->autoneg = aup->want_autoneg;
+ aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed);
+ if ((speed == IF_PORT_100BASETX) || (speed == IF_PORT_100BASEFX))
+ cmd->speed = SPEED_100;
+ else if (speed == IF_PORT_10BASET)
+ cmd->speed = SPEED_10;
+ if (link && (dev->if_port == IF_PORT_100BASEFX))
+ cmd->duplex = DUPLEX_FULL;
+ else
+ cmd->duplex = DUPLEX_HALF;
+ spin_unlock_irq(&aup->lock);
+ return 0;
+}
+
+static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
+{
+ struct au1000_private *aup = (struct au1000_private *)dev->priv;
+ unsigned long features = GENMII_DEFAULT_FEATURES;
+
+ if (!capable(CAP_NET_ADMIN))
+ return -EPERM;
+
+ if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
+ return -EINVAL;
+ if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
+ return -EINVAL;
+ if (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL)
+ return -EINVAL;
+ if (cmd->autoneg == AUTONEG_DISABLE)
+ switch (cmd->speed) {
+ case SPEED_10:
+ if (cmd->duplex == DUPLEX_HALF &&
+ (features & SUPPORTED_10baseT_Half) == 0)
+ return -EINVAL;
+ if (cmd->duplex == DUPLEX_FULL &&
+ (features & SUPPORTED_10baseT_Full) == 0)
+ return -EINVAL;
+ break;
+ case SPEED_100:
+ if (cmd->duplex == DUPLEX_HALF &&
+ (features & SUPPORTED_100baseT_Half) == 0)
+ return -EINVAL;
+ if (cmd->duplex == DUPLEX_FULL &&
+ (features & SUPPORTED_100baseT_Full) == 0)
+ return -EINVAL;
+ break;
+ default:
+ return -EINVAL;
+ }
+ else if ((features & SUPPORTED_Autoneg) == 0)
+ return -EINVAL;
+
+ spin_lock_irq(&aup->lock);
+ au1000_start_link(dev, cmd);
+ spin_unlock_irq(&aup->lock);
+ return 0;
+}
+
+static int au1000_nway_reset(struct net_device *dev)
+{
+ struct au1000_private *aup = (struct au1000_private *)dev->priv;
+
+ if (!aup->want_autoneg)
+ return -EINVAL;
+ spin_lock_irq(&aup->lock);
+ au1000_start_link(dev, NULL);
+ spin_unlock_irq(&aup->lock);
+ return 0;
+}
+
+static void
+au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
+{
+ struct au1000_private *aup = (struct au1000_private *)dev->priv;
+
+ strcpy(info->driver, DRV_NAME);
+ strcpy(info->version, DRV_VERSION);
+ info->fw_version[0] = '\0';
+ sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
+ info->regdump_len = 0;
+}
+
+static u32 au1000_get_link(struct net_device *dev)
+{
+ return netif_carrier_ok(dev);
+}
+
+static struct ethtool_ops au1000_ethtool_ops = {
+ .get_settings = au1000_get_settings,
+ .set_settings = au1000_set_settings,
+ .get_drvinfo = au1000_get_drvinfo,
+ .nway_reset = au1000_nway_reset,
+ .get_link = au1000_get_link
+};
+
+static struct net_device *
+au1000_probe(u32 ioaddr, int irq, int port_num)
+{
+ static unsigned version_printed = 0;
+ struct au1000_private *aup = NULL;
+ struct net_device *dev = NULL;
+ db_dest_t *pDB, *pDBfree;
+ char *pmac, *argptr;
+ char ethaddr[6];
+ int i, err;
+
+ if (!request_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE, "Au1x00 ENET"))
+ return NULL;
+
+ if (version_printed++ == 0)
+ printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
+
+ dev = alloc_etherdev(sizeof(struct au1000_private));
+ if (!dev) {
+ printk (KERN_ERR "au1000 eth: alloc_etherdev failed\n");
+ return NULL;
+ }
+
+ if ((err = register_netdev(dev))) {
+ printk(KERN_ERR "Au1x_eth Cannot register net device err %d\n",
+ err);
+ free_netdev(dev);
+ return NULL;
+ }
+
+ printk("%s: Au1x Ethernet found at 0x%x, irq %d\n",
+ dev->name, ioaddr, irq);
+
+ aup = dev->priv;
+
+ /* Allocate the data buffers */
+ /* Snooping works fine with eth on all au1xxx */
+ aup->vaddr = (u32)dma_alloc_noncoherent(NULL,
+ MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS),
+ &aup->dma_addr,
+ 0);
+ if (!aup->vaddr) {
+ free_netdev(dev);
+ release_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE);
+ return NULL;
+ }
+
+ /* aup->mac is the base address of the MAC's registers */
+ aup->mac = (volatile mac_reg_t *)((unsigned long)ioaddr);
+ /* Setup some variables for quick register address access */
+ if (ioaddr == iflist[0].base_addr)
+ {
+ /* check env variables first */
+ if (!get_ethernet_addr(ethaddr)) {
+ memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
+ } else {
+ /* Check command line */
+ argptr = prom_getcmdline();
+ if ((pmac = strstr(argptr, "ethaddr=")) == NULL) {
+ printk(KERN_INFO "%s: No mac address found\n",
+ dev->name);
+ /* use the hard coded mac addresses */
+ } else {
+ str2eaddr(ethaddr, pmac + strlen("ethaddr="));
+ memcpy(au1000_mac_addr, ethaddr,
+ sizeof(au1000_mac_addr));
+ }
+ }
+ aup->enable = (volatile u32 *)
+ ((unsigned long)iflist[0].macen_addr);
+ memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
+ setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
+ aup->mac_id = 0;
+ au_macs[0] = aup;
+ }
+ else
+ if (ioaddr == iflist[1].base_addr)
+ {
+ aup->enable = (volatile u32 *)
+ ((unsigned long)iflist[1].macen_addr);
+ memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
+ dev->dev_addr[4] += 0x10;
+ setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
+ aup->mac_id = 1;
+ au_macs[1] = aup;
+ }
+ else
+ {
+ printk(KERN_ERR "%s: bad ioaddr\n", dev->name);
+ }
+
+ /* bring the device out of reset, otherwise probing the mii
+ * will hang */
+ *aup->enable = MAC_EN_CLOCK_ENABLE;
+ au_sync_delay(2);
+ *aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 |
+ MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE;
+ au_sync_delay(2);
+
+ aup->mii = kmalloc(sizeof(struct mii_phy), GFP_KERNEL);
+ if (!aup->mii) {
+ printk(KERN_ERR "%s: out of memory\n", dev->name);
+ goto err_out;
+ }
+ aup->mii->mii_control_reg = 0;
+ aup->mii->mii_data_reg = 0;
+
+ if (mii_probe(dev) != 0) {
+ goto err_out;
+ }
+
+ pDBfree = NULL;
+ /* setup the data buffer descriptors and attach a buffer to each one */
+ pDB = aup->db;
+ for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
+ pDB->pnext = pDBfree;
+ pDBfree = pDB;
+ pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
+ pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
+ pDB++;
+ }
+ aup->pDBfree = pDBfree;
+
+ for (i = 0; i < NUM_RX_DMA; i++) {
+ pDB = GetFreeDB(aup);
+ if (!pDB) {
+ goto err_out;
+ }
+ aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
+ aup->rx_db_inuse[i] = pDB;
+ }
+ for (i = 0; i < NUM_TX_DMA; i++) {
+ pDB = GetFreeDB(aup);
+ if (!pDB) {
+ goto err_out;
+ }
+ aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
+ aup->tx_dma_ring[i]->len = 0;
+ aup->tx_db_inuse[i] = pDB;
+ }
+
+ spin_lock_init(&aup->lock);
+ dev->base_addr = ioaddr;
+ dev->irq = irq;
+ dev->open = au1000_open;
+ dev->hard_start_xmit = au1000_tx;
+ dev->stop = au1000_close;
+ dev->get_stats = au1000_get_stats;
+ dev->set_multicast_list = &set_rx_mode;
+ dev->do_ioctl = &au1000_ioctl;
+ SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
+ dev->set_config = &au1000_set_config;
+ dev->tx_timeout = au1000_tx_timeout;
+ dev->watchdog_timeo = ETH_TX_TIMEOUT;
+
+ /*
+ * The boot code uses the ethernet controller, so reset it to start
+ * fresh. au1000_init() expects that the device is in reset state.
+ */
+ reset_mac(dev);
+
+ return dev;
+
+err_out:
+ /* here we should have a valid dev plus aup-> register addresses
+ * so we can reset the mac properly.*/
+ reset_mac(dev);
+ if (aup->mii)
+ kfree(aup->mii);
+ for (i = 0; i < NUM_RX_DMA; i++) {
+ if (aup->rx_db_inuse[i])
+ ReleaseDB(aup, aup->rx_db_inuse[i]);
+ }
+ for (i = 0; i < NUM_TX_DMA; i++) {
+ if (aup->tx_db_inuse[i])
+ ReleaseDB(aup, aup->tx_db_inuse[i]);
+ }
+ dma_free_noncoherent(NULL,
+ MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS),
+ (void *)aup->vaddr,
+ aup->dma_addr);
+ unregister_netdev(dev);
+ free_netdev(dev);
+ release_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE);
+ return NULL;
+}
+
+/*
+ * Initialize the interface.
+ *
+ * When the device powers up, the clocks are disabled and the
+ * mac is in reset state. When the interface is closed, we
+ * do the same -- reset the device and disable the clocks to
+ * conserve power. Thus, whenever au1000_init() is called,
+ * the device should already be in reset state.
+ */
+static int au1000_init(struct net_device *dev)
+{
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+ u32 flags;
+ int i;
+ u32 control;
+ u16 link, speed;
+
+ if (au1000_debug > 4)
+ printk("%s: au1000_init\n", dev->name);
+
+ spin_lock_irqsave(&aup->lock, flags);
+
+ /* bring the device out of reset */
+ *aup->enable = MAC_EN_CLOCK_ENABLE;
+ au_sync_delay(2);
+ *aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 |
+ MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE;
+ au_sync_delay(20);
+
+ aup->mac->control = 0;
+ aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
+ aup->tx_tail = aup->tx_head;
+ aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
+
+ aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
+ aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
+ dev->dev_addr[1]<<8 | dev->dev_addr[0];
+
+ for (i = 0; i < NUM_RX_DMA; i++) {
+ aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
+ }
+ au_sync();
+
+ aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed);
+ control = MAC_DISABLE_RX_OWN | MAC_RX_ENABLE | MAC_TX_ENABLE;
+#ifndef CONFIG_CPU_LITTLE_ENDIAN
+ control |= MAC_BIG_ENDIAN;
+#endif
+ if (link && (dev->if_port == IF_PORT_100BASEFX)) {
+ control |= MAC_FULL_DUPLEX;
+ }
+
+ /* fix for startup without cable */
+ if (!link)
+ dev->flags &= ~IFF_RUNNING;
+
+ aup->mac->control = control;
+ aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
+ au_sync();
+
+ spin_unlock_irqrestore(&aup->lock, flags);
+ return 0;
+}
+
+static void au1000_timer(unsigned long data)
+{
+ struct net_device *dev = (struct net_device *)data;
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+ unsigned char if_port;
+ u16 link, speed;
+
+ if (!dev) {
+ /* fatal error, don't restart the timer */
+ printk(KERN_ERR "au1000_timer error: NULL dev\n");
+ return;
+ }
+
+ if_port = dev->if_port;
+ if (aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed) == 0) {
+ if (link) {
+ if (!(dev->flags & IFF_RUNNING)) {
+ netif_carrier_on(dev);
+ dev->flags |= IFF_RUNNING;
+ printk(KERN_INFO "%s: link up\n", dev->name);
+ }
+ }
+ else {
+ if (dev->flags & IFF_RUNNING) {
+ netif_carrier_off(dev);
+ dev->flags &= ~IFF_RUNNING;
+ dev->if_port = 0;
+ printk(KERN_INFO "%s: link down\n", dev->name);
+ }
+ }
+ }
+
+ if (link && (dev->if_port != if_port) &&
+ (dev->if_port != IF_PORT_UNKNOWN)) {
+ hard_stop(dev);
+ if (dev->if_port == IF_PORT_100BASEFX) {
+ printk(KERN_INFO "%s: going to full duplex\n",
+ dev->name);
+ aup->mac->control |= MAC_FULL_DUPLEX;
+ au_sync_delay(1);
+ }
+ else {
+ aup->mac->control &= ~MAC_FULL_DUPLEX;
+ au_sync_delay(1);
+ }
+ enable_rx_tx(dev);
+ }
+
+ aup->timer.expires = RUN_AT((1*HZ));
+ aup->timer.data = (unsigned long)dev;
+ aup->timer.function = &au1000_timer; /* timer handler */
+ add_timer(&aup->timer);
+
+}
+
+static int au1000_open(struct net_device *dev)
+{
+ int retval;
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+
+ if (au1000_debug > 4)
+ printk("%s: open: dev=%p\n", dev->name, dev);
+
+ if ((retval = au1000_init(dev))) {
+ printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
+ free_irq(dev->irq, dev);
+ return retval;
+ }
+ netif_start_queue(dev);
+
+ if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,
+ dev->name, dev))) {
+ printk(KERN_ERR "%s: unable to get IRQ %d\n",
+ dev->name, dev->irq);
+ return retval;
+ }
+
+ init_timer(&aup->timer); /* used in ioctl() */
+ aup->timer.expires = RUN_AT((3*HZ));
+ aup->timer.data = (unsigned long)dev;
+ aup->timer.function = &au1000_timer; /* timer handler */
+ add_timer(&aup->timer);
+
+ if (au1000_debug > 4)
+ printk("%s: open: Initialization done.\n", dev->name);
+
+ return 0;
+}
+
+static int au1000_close(struct net_device *dev)
+{
+ u32 flags;
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+
+ if (au1000_debug > 4)
+ printk("%s: close: dev=%p\n", dev->name, dev);
+
+ reset_mac(dev);
+
+ spin_lock_irqsave(&aup->lock, flags);
+
+ /* stop the device */
+ netif_stop_queue(dev);
+
+ /* disable the interrupt */
+ free_irq(dev->irq, dev);
+ spin_unlock_irqrestore(&aup->lock, flags);
+
+ return 0;
+}
+
+static void __exit au1000_cleanup_module(void)
+{
+ int i, j;
+ struct net_device *dev;
+ struct au1000_private *aup;
+
+ for (i = 0; i < num_ifs; i++) {
+ dev = iflist[i].dev;
+ if (dev) {
+ aup = (struct au1000_private *) dev->priv;
+ unregister_netdev(dev);
+ if (aup->mii)
+ kfree(aup->mii);
+ for (j = 0; j < NUM_RX_DMA; j++) {
+ if (aup->rx_db_inuse[j])
+ ReleaseDB(aup, aup->rx_db_inuse[j]);
+ }
+ for (j = 0; j < NUM_TX_DMA; j++) {
+ if (aup->tx_db_inuse[j])
+ ReleaseDB(aup, aup->tx_db_inuse[j]);
+ }
+ dma_free_noncoherent(NULL,
+ MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS),
+ (void *)aup->vaddr,
+ aup->dma_addr);
+ free_netdev(dev);
+ release_mem_region(CPHYSADDR(iflist[i].base_addr), MAC_IOSIZE);
+ }
+ }
+}
+
+
+static inline void
+update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
+{
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+ struct net_device_stats *ps = &aup->stats;
+
+ ps->tx_packets++;
+ ps->tx_bytes += pkt_len;
+
+ if (status & TX_FRAME_ABORTED) {
+ if (dev->if_port == IF_PORT_100BASEFX) {
+ if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
+ /* any other tx errors are only valid
+ * in half duplex mode */
+ ps->tx_errors++;
+ ps->tx_aborted_errors++;
+ }
+ }
+ else {
+ ps->tx_errors++;
+ ps->tx_aborted_errors++;
+ if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
+ ps->tx_carrier_errors++;
+ }
+ }
+}
+
+
+/*
+ * Called from the interrupt service routine to acknowledge
+ * the TX DONE bits. This is a must if the irq is setup as
+ * edge triggered.
+ */
+static void au1000_tx_ack(struct net_device *dev)
+{
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+ volatile tx_dma_t *ptxd;
+
+ ptxd = aup->tx_dma_ring[aup->tx_tail];
+
+ while (ptxd->buff_stat & TX_T_DONE) {
+ update_tx_stats(dev, ptxd->status, ptxd->len & 0x3ff);
+ ptxd->buff_stat &= ~TX_T_DONE;
+ ptxd->len = 0;
+ au_sync();
+
+ aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
+ ptxd = aup->tx_dma_ring[aup->tx_tail];
+
+ if (aup->tx_full) {
+ aup->tx_full = 0;
+ netif_wake_queue(dev);
+ }
+ }
+}
+
+
+/*
+ * Au1000 transmit routine.
+ */
+static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
+{
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+ volatile tx_dma_t *ptxd;
+ u32 buff_stat;
+ db_dest_t *pDB;
+ int i;
+
+ if (au1000_debug > 5)
+ printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
+ dev->name, (unsigned)aup, skb->len,
+ skb->data, aup->tx_head);
+
+ ptxd = aup->tx_dma_ring[aup->tx_head];
+ buff_stat = ptxd->buff_stat;
+ if (buff_stat & TX_DMA_ENABLE) {
+ /* We've wrapped around and the transmitter is still busy */
+ netif_stop_queue(dev);
+ aup->tx_full = 1;
+ return 1;
+ }
+ else if (buff_stat & TX_T_DONE) {
+ update_tx_stats(dev, ptxd->status, ptxd->len & 0x3ff);
+ ptxd->len = 0;
+ }
+
+ if (aup->tx_full) {
+ aup->tx_full = 0;
+ netif_wake_queue(dev);
+ }
+
+ pDB = aup->tx_db_inuse[aup->tx_head];
+ memcpy((void *)pDB->vaddr, skb->data, skb->len);
+ if (skb->len < ETH_ZLEN) {
+ for (i=skb->len; i<ETH_ZLEN; i++) {
+ ((char *)pDB->vaddr)[i] = 0;
+ }
+ ptxd->len = ETH_ZLEN;
+ }
+ else
+ ptxd->len = skb->len;
+
+ ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
+ au_sync();
+ dev_kfree_skb(skb);
+ aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
+ dev->trans_start = jiffies;
+ return 0;
+}
+
+
+static inline void update_rx_stats(struct net_device *dev, u32 status)
+{
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+ struct net_device_stats *ps = &aup->stats;
+
+ ps->rx_packets++;
+ if (status & RX_MCAST_FRAME)
+ ps->multicast++;
+
+ if (status & RX_ERROR) {
+ ps->rx_errors++;
+ if (status & RX_MISSED_FRAME)
+ ps->rx_missed_errors++;
+ if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR))
+ ps->rx_length_errors++;
+ if (status & RX_CRC_ERROR)
+ ps->rx_crc_errors++;
+ if (status & RX_COLL)
+ ps->collisions++;
+ }
+ else
+ ps->rx_bytes += status & RX_FRAME_LEN_MASK;
+
+}
+
+/*
+ * Au1000 receive routine.
+ */
+static int au1000_rx(struct net_device *dev)
+{
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+ struct sk_buff *skb;
+ volatile rx_dma_t *prxd;
+ u32 buff_stat, status;
+ db_dest_t *pDB;
+ u32 frmlen;
+
+ if (au1000_debug > 5)
+ printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);
+
+ prxd = aup->rx_dma_ring[aup->rx_head];
+ buff_stat = prxd->buff_stat;
+ while (buff_stat & RX_T_DONE) {
+ status = prxd->status;
+ pDB = aup->rx_db_inuse[aup->rx_head];
+ update_rx_stats(dev, status);
+ if (!(status & RX_ERROR)) {
+
+ /* good frame */
+ frmlen = (status & RX_FRAME_LEN_MASK);
+ frmlen -= 4; /* Remove FCS */
+ skb = dev_alloc_skb(frmlen + 2);
+ if (skb == NULL) {
+ printk(KERN_ERR
+ "%s: Memory squeeze, dropping packet.\n",
+ dev->name);
+ aup->stats.rx_dropped++;
+ continue;
+ }
+ skb->dev = dev;
+ skb_reserve(skb, 2); /* 16 byte IP header align */
+ eth_copy_and_sum(skb,
+ (unsigned char *)pDB->vaddr, frmlen, 0);
+ skb_put(skb, frmlen);
+ skb->protocol = eth_type_trans(skb, dev);
+ netif_rx(skb); /* pass the packet to upper layers */
+ }
+ else {
+ if (au1000_debug > 4) {
+ if (status & RX_MISSED_FRAME)
+ printk("rx miss\n");
+ if (status & RX_WDOG_TIMER)
+ printk("rx wdog\n");
+ if (status & RX_RUNT)
+ printk("rx runt\n");
+ if (status & RX_OVERLEN)
+ printk("rx overlen\n");
+ if (status & RX_COLL)
+ printk("rx coll\n");
+ if (status & RX_MII_ERROR)
+ printk("rx mii error\n");
+ if (status & RX_CRC_ERROR)
+ printk("rx crc error\n");
+ if (status & RX_LEN_ERROR)
+ printk("rx len error\n");
+ if (status & RX_U_CNTRL_FRAME)
+ printk("rx u control frame\n");
+ if (status & RX_MISSED_FRAME)
+ printk("rx miss\n");
+ }
+ }
+ prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
+ aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
+ au_sync();
+
+ /* next descriptor */
+ prxd = aup->rx_dma_ring[aup->rx_head];
+ buff_stat = prxd->buff_stat;
+ dev->last_rx = jiffies;
+ }
+ return 0;
+}
+
+
+/*
+ * Au1000 interrupt service routine.
+ */
+static irqreturn_t au1000_interrupt(int irq, void *dev_id, struct pt_regs *regs)
+{
+ struct net_device *dev = (struct net_device *) dev_id;
+
+ if (dev == NULL) {
+ printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
+ return IRQ_RETVAL(1);
+ }
+
+ /* Handle RX interrupts first to minimize chance of overrun */
+
+ au1000_rx(dev);
+ au1000_tx_ack(dev);
+ return IRQ_RETVAL(1);
+}
+
+
+/*
+ * The Tx ring has been full longer than the watchdog timeout
+ * value. The transmitter must be hung?
+ */
+static void au1000_tx_timeout(struct net_device *dev)
+{
+ printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
+ reset_mac(dev);
+ au1000_init(dev);
+ dev->trans_start = jiffies;
+ netif_wake_queue(dev);
+}
+
+
+static unsigned const ethernet_polynomial = 0x04c11db7U;
+static inline u32 ether_crc(int length, unsigned char *data)
+{
+ int crc = -1;
+
+ while(--length >= 0) {
+ unsigned char current_octet = *data++;
+ int bit;
+ for (bit = 0; bit < 8; bit++, current_octet >>= 1)
+ crc = (crc << 1) ^
+ ((crc < 0) ^ (current_octet & 1) ?
+ ethernet_polynomial : 0);
+ }
+ return crc;
+}
+
+static void set_rx_mode(struct net_device *dev)
+{
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+
+ if (au1000_debug > 4)
+ printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags);
+
+ if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
+ aup->mac->control |= MAC_PROMISCUOUS;
+ printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
+ } else if ((dev->flags & IFF_ALLMULTI) ||
+ dev->mc_count > MULTICAST_FILTER_LIMIT) {
+ aup->mac->control |= MAC_PASS_ALL_MULTI;
+ aup->mac->control &= ~MAC_PROMISCUOUS;
+ printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
+ } else {
+ int i;
+ struct dev_mc_list *mclist;
+ u32 mc_filter[2]; /* Multicast hash filter */
+
+ mc_filter[1] = mc_filter[0] = 0;
+ for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
+ i++, mclist = mclist->next) {
+ set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26,
+ (long *)mc_filter);
+ }
+ aup->mac->multi_hash_high = mc_filter[1];
+ aup->mac->multi_hash_low = mc_filter[0];
+ aup->mac->control &= ~MAC_PROMISCUOUS;
+ aup->mac->control |= MAC_HASH_MODE;
+ }
+}
+
+
+static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
+{
+ struct au1000_private *aup = (struct au1000_private *)dev->priv;
+ u16 *data = (u16 *)&rq->ifr_ifru;
+
+ switch(cmd) {
+ case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */
+ case SIOCGMIIPHY:
+ if (!netif_running(dev)) return -EINVAL;
+ data[0] = aup->phy_addr;
+ case SIOCDEVPRIVATE+1: /* Read the specified MII register. */
+ case SIOCGMIIREG:
+ data[3] = mdio_read(dev, data[0], data[1]);
+ return 0;
+ case SIOCDEVPRIVATE+2: /* Write the specified MII register */
+ case SIOCSMIIREG:
+ if (!capable(CAP_NET_ADMIN))
+ return -EPERM;
+ mdio_write(dev, data[0], data[1],data[2]);
+ return 0;
+ default:
+ return -EOPNOTSUPP;
+ }
+
+}
+
+
+static int au1000_set_config(struct net_device *dev, struct ifmap *map)
+{
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+ u16 control;
+
+ if (au1000_debug > 4) {
+ printk("%s: set_config called: dev->if_port %d map->port %x\n",
+ dev->name, dev->if_port, map->port);
+ }
+
+ switch(map->port){
+ case IF_PORT_UNKNOWN: /* use auto here */
+ printk(KERN_INFO "%s: config phy for aneg\n",
+ dev->name);
+ dev->if_port = map->port;
+ /* Link Down: the timer will bring it up */
+ netif_carrier_off(dev);
+
+ /* read current control */
+ control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
+ control &= ~(MII_CNTL_FDX | MII_CNTL_F100);
+
+ /* enable auto negotiation and reset the negotiation */
+ mdio_write(dev, aup->phy_addr, MII_CONTROL,
+ control | MII_CNTL_AUTO |
+ MII_CNTL_RST_AUTO);
+
+ break;
+
+ case IF_PORT_10BASET: /* 10BaseT */
+ printk(KERN_INFO "%s: config phy for 10BaseT\n",
+ dev->name);
+ dev->if_port = map->port;
+
+ /* Link Down: the timer will bring it up */
+ netif_carrier_off(dev);
+
+ /* set Speed to 10Mbps, Half Duplex */
+ control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
+ control &= ~(MII_CNTL_F100 | MII_CNTL_AUTO |
+ MII_CNTL_FDX);
+
+ /* disable auto negotiation and force 10M/HD mode*/
+ mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
+ break;
+
+ case IF_PORT_100BASET: /* 100BaseT */
+ case IF_PORT_100BASETX: /* 100BaseTx */
+ printk(KERN_INFO "%s: config phy for 100BaseTX\n",
+ dev->name);
+ dev->if_port = map->port;
+
+ /* Link Down: the timer will bring it up */
+ netif_carrier_off(dev);
+
+ /* set Speed to 100Mbps, Half Duplex */
+ /* disable auto negotiation and enable 100MBit Mode */
+ control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
+ control &= ~(MII_CNTL_AUTO | MII_CNTL_FDX);
+ control |= MII_CNTL_F100;
+ mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
+ break;
+
+ case IF_PORT_100BASEFX: /* 100BaseFx */
+ printk(KERN_INFO "%s: config phy for 100BaseFX\n",
+ dev->name);
+ dev->if_port = map->port;
+
+ /* Link Down: the timer will bring it up */
+ netif_carrier_off(dev);
+
+ /* set Speed to 100Mbps, Full Duplex */
+ /* disable auto negotiation and enable 100MBit Mode */
+ control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
+ control &= ~MII_CNTL_AUTO;
+ control |= MII_CNTL_F100 | MII_CNTL_FDX;
+ mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
+ break;
+ case IF_PORT_10BASE2: /* 10Base2 */
+ case IF_PORT_AUI: /* AUI */
+ /* These Modes are not supported (are they?)*/
+ printk(KERN_ERR "%s: 10Base2/AUI not supported",
+ dev->name);
+ return -EOPNOTSUPP;
+ break;
+
+ default:
+ printk(KERN_ERR "%s: Invalid media selected",
+ dev->name);
+ return -EINVAL;
+ }
+ return 0;
+}
+
+static struct net_device_stats *au1000_get_stats(struct net_device *dev)
+{
+ struct au1000_private *aup = (struct au1000_private *) dev->priv;
+
+ if (au1000_debug > 4)
+ printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev);
+
+ if (netif_device_present(dev)) {
+ return &aup->stats;
+ }
+ return 0;
+}
+
+module_init(au1000_init_module);
+module_exit(au1000_cleanup_module);