1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
|
/**
* XML Security Library (http://www.aleksey.com/xmlsec).
*
* Implementation of AES/DES Key Transport algorithm
*
* This is free software; see Copyright file in the source
* distribution for preciese wording.
*
* Copyright (C) 2002-2016 Aleksey Sanin <aleksey@aleksey.com>. All Rights Reserved.
*/
#include "globals.h"
#include <stdlib.h>
#include <string.h>
#include <libxml/tree.h>
#include <xmlsec/xmlsec.h>
#include <xmlsec/errors.h>
#include "kw_aes_des.h"
#ifndef XMLSEC_NO_DES
static int xmlSecKWDes3BufferReverse (xmlSecByte *buf,
xmlSecSize size);
/********************************************************************
*
* CMS Triple DES Key Wrap
*
* http://www.w3.org/TR/xmlenc-core/#sec-Alg-SymmetricKeyWrap
*
* The following algorithm wraps (encrypts) a key (the wrapped key, WK)
* under a TRIPLEDES key-encryption-key (KEK) as specified in [CMS-Algorithms]:
*
* 1. Represent the key being wrapped as an octet sequence. If it is a
* TRIPLEDES key, this is 24 octets (192 bits) with odd parity bit as
* the bottom bit of each octet.
* 2. Compute the CMS key checksum (section 5.6.1) call this CKS.
* 3. Let WKCKS = WK || CKS, where || is concatenation.
* 4. Generate 8 random octets [RANDOM] and call this IV.
* 5. Encrypt WKCKS in CBC mode using KEK as the key and IV as the
* initialization vector. Call the results TEMP1.
* 6. Left TEMP2 = IV || TEMP1.
* 7. Reverse the order of the octets in TEMP2 and call the result TEMP3.
* 8. Encrypt TEMP3 in CBC mode using the KEK and an initialization vector
* of 0x4adda22c79e82105. The resulting cipher text is the desired result.
* It is 40 octets long if a 168 bit key is being wrapped.
*
* The following algorithm unwraps (decrypts) a key as specified in
* [CMS-Algorithms]:
*
* 1. Check if the length of the cipher text is reasonable given the key type.
* It must be 40 bytes for a 168 bit key and either 32, 40, or 48 bytes for
* a 128, 192, or 256 bit key. If the length is not supported or inconsistent
* with the algorithm for which the key is intended, return error.
* 2. Decrypt the cipher text with TRIPLEDES in CBC mode using the KEK and
* an initialization vector (IV) of 0x4adda22c79e82105. Call the output TEMP3.
* 3. Reverse the order of the octets in TEMP3 and call the result TEMP2.
* 4. Decompose TEMP2 into IV, the first 8 octets, and TEMP1, the remaining
* octets.
* 5. Decrypt TEMP1 using TRIPLEDES in CBC mode using the KEK and the IV found
* in the previous step. Call the result WKCKS.
* 6. Decompose WKCKS. CKS is the last 8 octets and WK, the wrapped key, are
* those octets before the CKS.
* 7. Calculate a CMS key checksum (section 5.6.1) over the WK and compare
* with the CKS extracted in the above step. If they are not equal, return
* error.
* 8. WK is the wrapped key, now extracted for use in data decryption.
*
********************************************************************/
static xmlSecByte xmlSecKWDes3Iv[XMLSEC_KW_DES3_IV_LENGTH] = {
0x4a, 0xdd, 0xa2, 0x2c, 0x79, 0xe8, 0x21, 0x05
};
int
xmlSecKWDes3Encode(xmlSecKWDes3Id kwDes3Id, void *context,
const xmlSecByte *in, xmlSecSize inSize,
xmlSecByte *out, xmlSecSize outSize) {
xmlSecByte sha1[XMLSEC_KW_DES3_SHA_DIGEST_LENGTH];
xmlSecByte iv[XMLSEC_KW_DES3_IV_LENGTH];
xmlSecSize s;
int ret;
xmlSecAssert2(xmlSecKWDes3CheckId(kwDes3Id), -1);
xmlSecAssert2(context != NULL, -1);
xmlSecAssert2(in != NULL, -1);
xmlSecAssert2(inSize > 0, -1);
xmlSecAssert2(out != NULL, -1);
xmlSecAssert2(outSize >= inSize + XMLSEC_KW_DES3_BLOCK_LENGTH + XMLSEC_KW_DES3_IV_LENGTH, -1);
/* step 2: calculate sha1 and CMS */
ret = kwDes3Id->sha1(context, in, inSize, sha1, sizeof(sha1));
if((ret < 0) || (ret != sizeof(sha1))) {
xmlSecError(XMLSEC_ERRORS_HERE,
NULL,
"kwDes3Id->sha1",
XMLSEC_ERRORS_R_XMLSEC_FAILED,
"ret=%d", ret);
return(-1);
}
/* step 3: construct WKCKS as WK || CKS */
memcpy(out, in, inSize);
memcpy(out + inSize, sha1, XMLSEC_KW_DES3_BLOCK_LENGTH);
/* step 4: generate random iv */
ret = kwDes3Id->generateRandom(context, iv, sizeof(iv));
if((ret < 0) || (ret != sizeof(iv))) {
xmlSecError(XMLSEC_ERRORS_HERE,
NULL,
"kwDes3Id->generateRandom",
XMLSEC_ERRORS_R_XMLSEC_FAILED,
"ret=%d", ret);
return(-1);
}
/* step 5: first encryption, result is TEMP1 */
ret = kwDes3Id->encrypt(context,
iv, sizeof(iv),
out, inSize + XMLSEC_KW_DES3_BLOCK_LENGTH,
out, outSize);
if((ret < 0) || ((xmlSecSize)ret != inSize + XMLSEC_KW_DES3_BLOCK_LENGTH)) {
xmlSecError(XMLSEC_ERRORS_HERE,
NULL,
"kwDes3Id->encrypt",
XMLSEC_ERRORS_R_XMLSEC_FAILED,
"ret=%d", ret);
return(-1);
}
/* step 6: construct TEMP2=IV || TEMP1 */
memmove(out + XMLSEC_KW_DES3_IV_LENGTH, out, inSize + XMLSEC_KW_DES3_BLOCK_LENGTH);
memcpy(out, iv, XMLSEC_KW_DES3_IV_LENGTH);
s = inSize + XMLSEC_KW_DES3_BLOCK_LENGTH + XMLSEC_KW_DES3_IV_LENGTH;
/* step 7: reverse octets order, result is TEMP3 */
ret = xmlSecKWDes3BufferReverse(out, s);
if(ret < 0) {
xmlSecError(XMLSEC_ERRORS_HERE,
NULL,
"xmlSecKWDes3BufferReverse",
XMLSEC_ERRORS_R_XMLSEC_FAILED,
"ret=%d", ret);
return(-1);
}
/* step 8: second encryption with static IV */
ret = kwDes3Id->encrypt(context,
xmlSecKWDes3Iv, sizeof(xmlSecKWDes3Iv),
out, s,
out, outSize);
if((ret < 0) || ((xmlSecSize)ret != s)) {
xmlSecError(XMLSEC_ERRORS_HERE,
NULL,
"kwDes3Id->encrypt",
XMLSEC_ERRORS_R_XMLSEC_FAILED,
"ret=%d", ret);
return(-1);
}
s = ret;
return(s);
}
int
xmlSecKWDes3Decode(xmlSecKWDes3Id kwDes3Id, void *context,
const xmlSecByte *in, xmlSecSize inSize,
xmlSecByte *out, xmlSecSize outSize)
{
xmlSecByte sha1[XMLSEC_KW_DES3_SHA_DIGEST_LENGTH];
xmlSecSize s;
int ret;
xmlSecAssert2(xmlSecKWDes3CheckId(kwDes3Id), -1);
xmlSecAssert2(context != NULL, -1);
xmlSecAssert2(in != NULL, -1);
xmlSecAssert2(inSize > 0, -1);
xmlSecAssert2(out != NULL, -1);
xmlSecAssert2(outSize >= inSize, -1);
/* step 2: first decryption with static IV, result is TEMP3 */
ret = kwDes3Id->decrypt(context,
xmlSecKWDes3Iv, sizeof(xmlSecKWDes3Iv),
in, inSize,
out, outSize);
if((ret < 0) || (ret < XMLSEC_KW_DES3_IV_LENGTH)) {
xmlSecError(XMLSEC_ERRORS_HERE,
NULL,
"kwDes3Id->decrypt",
XMLSEC_ERRORS_R_XMLSEC_FAILED,
"ret=%d", ret);
return(-1);
}
s = ret;
/* step 3: reverse octets order in TEMP3, result is TEMP2 */
ret = xmlSecKWDes3BufferReverse(out, s);
if(ret < 0) {
xmlSecError(XMLSEC_ERRORS_HERE,
NULL,
"xmlSecKWDes3BufferReverse",
XMLSEC_ERRORS_R_XMLSEC_FAILED,
"ret=%d", ret);
return(-1);
}
/* steps 4 and 5: get IV and decrypt second time, result is WKCKS */
ret = kwDes3Id->decrypt(context,
out, XMLSEC_KW_DES3_IV_LENGTH,
out + XMLSEC_KW_DES3_IV_LENGTH, s - XMLSEC_KW_DES3_IV_LENGTH,
out, outSize);
if((ret < 0) || (ret < XMLSEC_KW_DES3_BLOCK_LENGTH)) {
xmlSecError(XMLSEC_ERRORS_HERE,
NULL,
"kwDes3Id->decrypt",
XMLSEC_ERRORS_R_XMLSEC_FAILED,
"ret=%d", ret);
return(-1);
}
s = ret - XMLSEC_KW_DES3_BLOCK_LENGTH;
/* steps 6 and 7: calculate SHA1 and validate it */
ret = kwDes3Id->sha1(context,
out, s,
sha1, sizeof(sha1));
if((ret < 0) || (ret != sizeof(sha1))) {
xmlSecError(XMLSEC_ERRORS_HERE,
NULL,
"kwDes3Id->sha1",
XMLSEC_ERRORS_R_XMLSEC_FAILED,
"ret=%d", ret);
return(-1);
}
/* check sha1 */
xmlSecAssert2(XMLSEC_KW_DES3_BLOCK_LENGTH <= sizeof(sha1), -1);
if(memcmp(sha1, out + s, XMLSEC_KW_DES3_BLOCK_LENGTH) != 0) {
xmlSecError(XMLSEC_ERRORS_HERE,
NULL,
NULL,
XMLSEC_ERRORS_R_INVALID_DATA,
"SHA1 does not match");
return(-1);
}
/* done */
return(s);
}
static int
xmlSecKWDes3BufferReverse(xmlSecByte *buf, xmlSecSize size)
{
xmlSecByte * p;
xmlSecByte ch;
xmlSecAssert2(buf != NULL, -1);
xmlSecAssert2(size > 0, -1);
for(p = buf + size - 1; p >= buf; ++buf, --p) {
ch = (*p);
(*p) = (*buf);
(*buf) = ch;
}
return (0);
}
#endif /* XMLSEC_NO_DES */
#ifndef XMLSEC_NO_AES
/********************************************************************
*
* KT AES
*
* http://www.w3.org/TR/xmlenc-core/#sec-Alg-SymmetricKeyWrap:
*
* Assume that the data to be wrapped consists of N 64-bit data blocks
* denoted P(1), P(2), P(3) ... P(N). The result of wrapping will be N+1
* 64-bit blocks denoted C(0), C(1), C(2), ... C(N). The key encrypting
* key is represented by K. Assume integers i, j, and t and intermediate
* 64-bit register A, 128-bit register B, and array of 64-bit quantities
* R(1) through R(N).
*
* "|" represents concatentation so x|y, where x and y and 64-bit quantities,
* is the 128-bit quantity with x in the most significant bits and y in the
* least significant bits. AES(K)enc(x) is the operation of AES encrypting
* the 128-bit quantity x under the key K. AES(K)dec(x) is the corresponding
* decryption opteration. XOR(x,y) is the bitwise exclusive or of x and y.
* MSB(x) and LSB(y) are the most significant 64 bits and least significant
* 64 bits of x and y respectively.
*
* If N is 1, a single AES operation is performed for wrap or unwrap.
* If N>1, then 6*N AES operations are performed for wrap or unwrap.
*
* The key wrap algorithm is as follows:
*
* 1. If N is 1:
* * B=AES(K)enc(0xA6A6A6A6A6A6A6A6|P(1))
* * C(0)=MSB(B)
* * C(1)=LSB(B)
* If N>1, perform the following steps:
* 2. Initialize variables:
* * Set A to 0xA6A6A6A6A6A6A6A6
* * Fori=1 to N,
* R(i)=P(i)
* 3. Calculate intermediate values:
* * Forj=0 to 5,
* o For i=1 to N,
* t= i + j*N
* B=AES(K)enc(A|R(i))
* A=XOR(t,MSB(B))
* R(i)=LSB(B)
* 4. Output the results:
* * Set C(0)=A
* * For i=1 to N,
* C(i)=R(i)
*
* The key unwrap algorithm is as follows:
*
* 1. If N is 1:
* * B=AES(K)dec(C(0)|C(1))
* * P(1)=LSB(B)
* * If MSB(B) is 0xA6A6A6A6A6A6A6A6, return success. Otherwise,
* return an integrity check failure error.
* If N>1, perform the following steps:
* 2. Initialize the variables:
* * A=C(0)
* * For i=1 to N,
* R(i)=C(i)
* 3. Calculate intermediate values:
* * For j=5 to 0,
* o For i=N to 1,
* t= i + j*N
* B=AES(K)dec(XOR(t,A)|R(i))
* A=MSB(B)
* R(i)=LSB(B)
* 4. Output the results:
* * For i=1 to N,
* P(i)=R(i)
* * If A is 0xA6A6A6A6A6A6A6A6, return success. Otherwise, return
* an integrity check failure error.
********************************************************************/
static const xmlSecByte xmlSecKWAesMagicBlock[XMLSEC_KW_AES_MAGIC_BLOCK_SIZE] = {
0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6
};
int
xmlSecKWAesEncode(xmlSecKWAesId kwAesId, void *context,
const xmlSecByte *in, xmlSecSize inSize,
xmlSecByte *out, xmlSecSize outSize) {
xmlSecByte block[XMLSEC_KW_AES_BLOCK_SIZE];
xmlSecByte *p;
int N, i, j, t;
int ret;
xmlSecAssert2(kwAesId != NULL, -1);
xmlSecAssert2(kwAesId->encrypt != NULL, -1);
xmlSecAssert2(kwAesId->decrypt != NULL, -1);
xmlSecAssert2(context != NULL, -1);
xmlSecAssert2(in != NULL, -1);
xmlSecAssert2(inSize > 0, -1);
xmlSecAssert2(out != NULL, -1);
xmlSecAssert2(outSize >= inSize + XMLSEC_KW_AES_MAGIC_BLOCK_SIZE, -1);
/* prepend magic block */
if(in != out) {
memcpy(out + XMLSEC_KW_AES_MAGIC_BLOCK_SIZE, in, inSize);
} else {
memmove(out + XMLSEC_KW_AES_MAGIC_BLOCK_SIZE, out, inSize);
}
memcpy(out, xmlSecKWAesMagicBlock, XMLSEC_KW_AES_MAGIC_BLOCK_SIZE);
N = (inSize / 8);
if(N == 1) {
ret = kwAesId->encrypt(out, inSize + XMLSEC_KW_AES_MAGIC_BLOCK_SIZE, out, outSize, context);
if(ret < 0) {
xmlSecError(XMLSEC_ERRORS_HERE,
NULL,
"kwAesId->encrypt",
XMLSEC_ERRORS_R_XMLSEC_FAILED,
XMLSEC_ERRORS_NO_MESSAGE);
return(-1);
}
} else {
for(j = 0; j <= 5; ++j) {
for(i = 1; i <= N; ++i) {
t = i + (j * N);
p = out + i * 8;
memcpy(block, out, 8);
memcpy(block + 8, p, 8);
ret = kwAesId->encrypt(block, sizeof(block), block, sizeof(block), context);
if(ret < 0) {
xmlSecError(XMLSEC_ERRORS_HERE,
NULL,
"kwAesId->encrypt",
XMLSEC_ERRORS_R_XMLSEC_FAILED,
XMLSEC_ERRORS_NO_MESSAGE);
return(-1);
}
block[7] ^= t;
memcpy(out, block, 8);
memcpy(p, block + 8, 8);
}
}
}
return(inSize + 8);
}
int
xmlSecKWAesDecode(xmlSecKWAesId kwAesId, void *context,
const xmlSecByte *in, xmlSecSize inSize,
xmlSecByte *out, xmlSecSize outSize) {
xmlSecByte block[XMLSEC_KW_AES_BLOCK_SIZE];
xmlSecByte *p;
int N, i, j, t;
int ret;
xmlSecAssert2(kwAesId != NULL, -1);
xmlSecAssert2(kwAesId->encrypt != NULL, -1);
xmlSecAssert2(kwAesId->decrypt != NULL, -1);
xmlSecAssert2(context != NULL, -1);
xmlSecAssert2(in != NULL, -1);
xmlSecAssert2(inSize > 0, -1);
xmlSecAssert2(out != NULL, -1);
xmlSecAssert2(outSize >= inSize, -1);
/* copy input */
if(in != out) {
memcpy(out, in, inSize);
}
N = (inSize / 8) - 1;
if(N == 1) {
ret = kwAesId->decrypt(out, inSize, out, outSize, context);
if(ret < 0) {
xmlSecError(XMLSEC_ERRORS_HERE,
NULL,
"kwAesId->decrypt",
XMLSEC_ERRORS_R_XMLSEC_FAILED,
XMLSEC_ERRORS_NO_MESSAGE);
return(-1);
}
} else {
for(j = 5; j >= 0; --j) {
for(i = N; i > 0; --i) {
t = i + (j * N);
p = out + i * 8;
memcpy(block, out, 8);
memcpy(block + 8, p, 8);
block[7] ^= t;
ret = kwAesId->decrypt(block, sizeof(block), block, sizeof(block), context);
if(ret < 0) {
xmlSecError(XMLSEC_ERRORS_HERE,
NULL,
"kwAesId->decrypt",
XMLSEC_ERRORS_R_XMLSEC_FAILED,
XMLSEC_ERRORS_NO_MESSAGE);
return(-1);
}
memcpy(out, block, 8);
memcpy(p, block + 8, 8);
}
}
}
/* do not left data in memory */
memset(block, 0, sizeof(block));
/* check the output */
if(memcmp(xmlSecKWAesMagicBlock, out, XMLSEC_KW_AES_MAGIC_BLOCK_SIZE) != 0) {
xmlSecError(XMLSEC_ERRORS_HERE,
NULL,
NULL,
XMLSEC_ERRORS_R_INVALID_DATA,
"bad magic block");
return(-1);
}
/* get rid of magic block */
memmove(out, out + XMLSEC_KW_AES_MAGIC_BLOCK_SIZE, inSize - XMLSEC_KW_AES_MAGIC_BLOCK_SIZE);
return(inSize - XMLSEC_KW_AES_MAGIC_BLOCK_SIZE);
}
#endif /* XMLSEC_NO_AES */
|