summaryrefslogtreecommitdiff
path: root/ICSharpCode.Decompiler/ILAst/ILAstOptimizer.cs
blob: 876718bcafa897c98a74681ac29343a24a66b057 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
// Copyright (c) 2011 AlphaSierraPapa for the SharpDevelop Team
// 
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
// 
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using ICSharpCode.Decompiler.FlowAnalysis;
using ICSharpCode.NRefactory.Utils;
using Mono.Cecil;
using Mono.Cecil.Cil;
using Mono.CSharp;

namespace ICSharpCode.Decompiler.ILAst
{
	public enum ILAstOptimizationStep
	{
		RemoveRedundantCode,
		ReduceBranchInstructionSet,
		InlineVariables,
		CopyPropagation,
		YieldReturn,
		AsyncAwait,
		PropertyAccessInstructions,
		SplitToMovableBlocks,
		TypeInference,
		HandlePointerArithmetic,
		SimplifyShortCircuit,
		SimplifyTernaryOperator,
		SimplifyNullCoalescing,
		JoinBasicBlocks,
		SimplifyLogicNot,
		SimplifyShiftOperators,
		TypeConversionSimplifications,
		SimplifyLdObjAndStObj,
		SimplifyCustomShortCircuit,
		SimplifyLiftedOperators,
		TransformArrayInitializers,
		TransformMultidimensionalArrayInitializers,
		TransformObjectInitializers,
		MakeAssignmentExpression,
		IntroducePostIncrement,
		InlineExpressionTreeParameterDeclarations,
		InlineVariables2,
		FindLoops,
		FindConditions,
		FlattenNestedMovableBlocks,
		RemoveEndFinally,
		RemoveRedundantCode2,
		GotoRemoval,
		DuplicateReturns,
		GotoRemoval2,
		ReduceIfNesting,
		InlineVariables3,
		CachedDelegateInitialization,
		IntroduceFixedStatements,
		RecombineVariables,
		TypeInference2,
		RemoveRedundantCode3,
		None
	}
	
	public partial class ILAstOptimizer
	{
		int nextLabelIndex = 0;
		
		DecompilerContext context;
		TypeSystem typeSystem;
		ILBlock method;
		
		public void Optimize(DecompilerContext context, ILBlock method, ILAstOptimizationStep abortBeforeStep = ILAstOptimizationStep.None)
		{
			this.context = context;
			typeSystem = context.CurrentMethod.Module.TypeSystem;
			this.method = method;
			
			if (abortBeforeStep == ILAstOptimizationStep.RemoveRedundantCode) return;
			RemoveRedundantCode(method);
			
			if (abortBeforeStep == ILAstOptimizationStep.ReduceBranchInstructionSet) return;
			foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
				ReduceBranchInstructionSet(block);
			}
			// ReduceBranchInstructionSet runs before inlining because the non-aggressive inlining heuristic
			// looks at which type of instruction consumes the inlined variable.
			
			if (abortBeforeStep == ILAstOptimizationStep.InlineVariables) return;
			// Works better after simple goto removal because of the following debug pattern: stloc X; br Next; Next:; ldloc X
			ILInlining inlining1 = new ILInlining(method);
			inlining1.InlineAllVariables();
			
			if (abortBeforeStep == ILAstOptimizationStep.CopyPropagation) return;
			inlining1.CopyPropagation();
			
			if (abortBeforeStep == ILAstOptimizationStep.YieldReturn) return;
			YieldReturnDecompiler.Run(context, method);
			AsyncDecompiler.RunStep1(context, method);
			
			if (abortBeforeStep == ILAstOptimizationStep.AsyncAwait) return;
			AsyncDecompiler.RunStep2(context, method);
			
			if (abortBeforeStep == ILAstOptimizationStep.PropertyAccessInstructions) return;
			IntroducePropertyAccessInstructions(method);
			
			if (abortBeforeStep == ILAstOptimizationStep.SplitToMovableBlocks) return;
			foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
				SplitToBasicBlocks(block);
			}
			
			if (abortBeforeStep == ILAstOptimizationStep.TypeInference) return;
			// Types are needed for the ternary operator optimization
			TypeAnalysis.Run(context, method);
			
			if (abortBeforeStep == ILAstOptimizationStep.HandlePointerArithmetic) return;
			HandlePointerArithmetic(method);

			foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
				bool modified;
				do {
					modified = false;
					
					if (abortBeforeStep == ILAstOptimizationStep.SimplifyShortCircuit) return;
					modified |= block.RunOptimization(new SimpleControlFlow(context, method).SimplifyShortCircuit);
					
					if (abortBeforeStep == ILAstOptimizationStep.SimplifyTernaryOperator) return;
					modified |= block.RunOptimization(new SimpleControlFlow(context, method).SimplifyTernaryOperator);
					
					if (abortBeforeStep == ILAstOptimizationStep.SimplifyNullCoalescing) return;
					modified |= block.RunOptimization(new SimpleControlFlow(context, method).SimplifyNullCoalescing);
					
					if (abortBeforeStep == ILAstOptimizationStep.JoinBasicBlocks) return;
					modified |= block.RunOptimization(new SimpleControlFlow(context, method).JoinBasicBlocks);

					if (abortBeforeStep == ILAstOptimizationStep.SimplifyLogicNot) return;
					modified |= block.RunOptimization(SimplifyLogicNot);

					if (abortBeforeStep == ILAstOptimizationStep.SimplifyShiftOperators) return;
					modified |= block.RunOptimization(SimplifyShiftOperators);

					if (abortBeforeStep == ILAstOptimizationStep.TypeConversionSimplifications) return;
					modified |= block.RunOptimization(TypeConversionSimplifications);
					
					if (abortBeforeStep == ILAstOptimizationStep.SimplifyLdObjAndStObj) return;
					modified |= block.RunOptimization(SimplifyLdObjAndStObj);
					
					if (abortBeforeStep == ILAstOptimizationStep.SimplifyCustomShortCircuit) return;
					modified |= block.RunOptimization(new SimpleControlFlow(context, method).SimplifyCustomShortCircuit);

					if (abortBeforeStep == ILAstOptimizationStep.SimplifyLiftedOperators) return;
					modified |= block.RunOptimization(SimplifyLiftedOperators);
					
					if (abortBeforeStep == ILAstOptimizationStep.TransformArrayInitializers) return;
					modified |= block.RunOptimization(TransformArrayInitializers);

					if (abortBeforeStep == ILAstOptimizationStep.TransformMultidimensionalArrayInitializers) return;
					modified |= block.RunOptimization(TransformMultidimensionalArrayInitializers);
					
					if (abortBeforeStep == ILAstOptimizationStep.TransformObjectInitializers) return;
					modified |= block.RunOptimization(TransformObjectInitializers);
					
					if (abortBeforeStep == ILAstOptimizationStep.MakeAssignmentExpression) return;
					if (context.Settings.MakeAssignmentExpressions) {
						modified |= block.RunOptimization(MakeAssignmentExpression);
					}
					modified |= block.RunOptimization(MakeCompoundAssignments);
					
					if (abortBeforeStep == ILAstOptimizationStep.IntroducePostIncrement) return;
					if (context.Settings.IntroduceIncrementAndDecrement) {
						modified |= block.RunOptimization(IntroducePostIncrement);
					}
					
					if (abortBeforeStep == ILAstOptimizationStep.InlineExpressionTreeParameterDeclarations) return;
					if (context.Settings.ExpressionTrees) {
						modified |= block.RunOptimization(InlineExpressionTreeParameterDeclarations);
					}
					
					if (abortBeforeStep == ILAstOptimizationStep.InlineVariables2) return;
					modified |= new ILInlining(method).InlineAllInBlock(block);
					new ILInlining(method).CopyPropagation();
					
				} while(modified);
			}
			
			if (abortBeforeStep == ILAstOptimizationStep.FindLoops) return;
			foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
				new LoopsAndConditions(context).FindLoops(block);
			}
			
			if (abortBeforeStep == ILAstOptimizationStep.FindConditions) return;
			foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
				new LoopsAndConditions(context).FindConditions(block);
			}
			
			if (abortBeforeStep == ILAstOptimizationStep.FlattenNestedMovableBlocks) return;
			FlattenBasicBlocks(method);
			
			if (abortBeforeStep == ILAstOptimizationStep.RemoveEndFinally) return;
			RemoveEndFinally(method);
			
			if (abortBeforeStep == ILAstOptimizationStep.RemoveRedundantCode2) return;
			RemoveRedundantCode(method);
			
			if (abortBeforeStep == ILAstOptimizationStep.GotoRemoval) return;
			new GotoRemoval().RemoveGotos(method);
			
			if (abortBeforeStep == ILAstOptimizationStep.DuplicateReturns) return;
			DuplicateReturnStatements(method);
			
			if (abortBeforeStep == ILAstOptimizationStep.GotoRemoval2) return;
			new GotoRemoval().RemoveGotos(method);
			
			if (abortBeforeStep == ILAstOptimizationStep.ReduceIfNesting) return;
			ReduceIfNesting(method);
			
			if (abortBeforeStep == ILAstOptimizationStep.InlineVariables3) return;
			// The 2nd inlining pass is necessary because DuplicateReturns and the introduction of ternary operators
			// open up additional inlining possibilities.
			new ILInlining(method).InlineAllVariables();
			
			if (abortBeforeStep == ILAstOptimizationStep.CachedDelegateInitialization) return;
			if (context.Settings.AnonymousMethods) {
				foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
					for (int i = 0; i < block.Body.Count; i++) {
						// TODO: Move before loops
						CachedDelegateInitializationWithField(block, ref i);
						CachedDelegateInitializationWithLocal(block, ref i);
					}
				}
			}
			
			if (abortBeforeStep == ILAstOptimizationStep.IntroduceFixedStatements) return;
			// we need post-order traversal, not pre-order, for "fixed" to work correctly
			foreach (ILBlock block in TreeTraversal.PostOrder<ILNode>(method, n => n.GetChildren()).OfType<ILBlock>()) {
				for (int i = block.Body.Count - 1; i >= 0; i--) {
					// TODO: Move before loops
					if (i < block.Body.Count)
						IntroduceFixedStatements(block.Body, i);
				}
			}
			
			if (abortBeforeStep == ILAstOptimizationStep.RecombineVariables) return;
			RecombineVariables(method);
			
			if (abortBeforeStep == ILAstOptimizationStep.TypeInference2) return;
			TypeAnalysis.Reset(method);
			TypeAnalysis.Run(context, method);
			
			if (abortBeforeStep == ILAstOptimizationStep.RemoveRedundantCode3) return;
			GotoRemoval.RemoveRedundantCode(method);
			
			// ReportUnassignedILRanges(method);
		}
		
		/// <summary>
		/// Removes redundatant Br, Nop, Dup, Pop
		/// Ignore arguments of 'leave'
		/// </summary>
		/// <param name="method"></param>
		internal static void RemoveRedundantCode(ILBlock method)
		{
			Dictionary<ILLabel, int> labelRefCount = new Dictionary<ILLabel, int>();
			foreach (ILLabel target in method.GetSelfAndChildrenRecursive<ILExpression>(e => e.IsBranch()).SelectMany(e => e.GetBranchTargets())) {
				labelRefCount[target] = labelRefCount.GetOrDefault(target) + 1;
			}
			
			foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
				List<ILNode> body = block.Body;
				List<ILNode> newBody = new List<ILNode>(body.Count);
				for (int i = 0; i < body.Count; i++) {
					ILLabel target;
					ILExpression popExpr;
					if (body[i].Match(ILCode.Br, out target) && i+1 < body.Count && body[i+1] == target) {
						// Ignore the branch
						if (labelRefCount[target] == 1)
							i++;  // Ignore the label as well
					} else if (body[i].Match(ILCode.Nop)){
						// Ignore nop
					} else if (body[i].Match(ILCode.Pop, out popExpr)) {
						ILVariable v;
						if (!popExpr.Match(ILCode.Ldloc, out v))
							throw new Exception("Pop should have just ldloc at this stage");
						// Best effort to move the ILRange to previous statement
						ILVariable prevVar;
						ILExpression prevExpr;
						if (i - 1 >= 0 && body[i - 1].Match(ILCode.Stloc, out prevVar, out prevExpr) && prevVar == v)
							prevExpr.ILRanges.AddRange(((ILExpression)body[i]).ILRanges);
						// Ignore pop
					} else {
						ILLabel label = body[i] as ILLabel;
						if (label != null) {
							if (labelRefCount.GetOrDefault(label) > 0)
								newBody.Add(label);
						} else {
							newBody.Add(body[i]);
						}
					}
				}
				block.Body = newBody;
			}
			
			// Ignore arguments of 'leave'
			foreach (ILExpression expr in method.GetSelfAndChildrenRecursive<ILExpression>(e => e.Code == ILCode.Leave)) {
				if (expr.Arguments.Any(arg => !arg.Match(ILCode.Ldloc)))
					throw new Exception("Leave should have just ldloc at this stage");
				expr.Arguments.Clear();
			}
			
			// 'dup' removal
			foreach (ILExpression expr in method.GetSelfAndChildrenRecursive<ILExpression>()) {
				for (int i = 0; i < expr.Arguments.Count; i++) {
					ILExpression child;
					if (expr.Arguments[i].Match(ILCode.Dup, out child)) {
						child.ILRanges.AddRange(expr.Arguments[i].ILRanges);
						expr.Arguments[i] = child;
					}
				}
			}
		}
		
		/// <summary>
		/// Reduces the branch codes to just br and brtrue.
		/// Moves ILRanges to the branch argument
		/// </summary>
		void ReduceBranchInstructionSet(ILBlock block)
		{
			for (int i = 0; i < block.Body.Count; i++) {
				ILExpression expr = block.Body[i] as ILExpression;
				if (expr != null && expr.Prefixes == null) {
					ILCode op;
					switch(expr.Code) {
						case ILCode.Switch:
						case ILCode.Brtrue:
							expr.Arguments.Single().ILRanges.AddRange(expr.ILRanges);
							expr.ILRanges.Clear();
							continue;
							case ILCode.__Brfalse:  op = ILCode.LogicNot; break;
							case ILCode.__Beq:      op = ILCode.Ceq; break;
							case ILCode.__Bne_Un:   op = ILCode.Cne; break;
							case ILCode.__Bgt:      op = ILCode.Cgt; break;
							case ILCode.__Bgt_Un:   op = ILCode.Cgt_Un; break;
							case ILCode.__Ble:      op = ILCode.Cle; break;
							case ILCode.__Ble_Un:   op = ILCode.Cle_Un; break;
							case ILCode.__Blt:      op = ILCode.Clt; break;
							case ILCode.__Blt_Un:   op = ILCode.Clt_Un; break;
							case ILCode.__Bge:	    op = ILCode.Cge; break;
							case ILCode.__Bge_Un:   op = ILCode.Cge_Un; break;
						default:
							continue;
					}
					var newExpr = new ILExpression(op, null, expr.Arguments);
					block.Body[i] = new ILExpression(ILCode.Brtrue, expr.Operand, newExpr);
					newExpr.ILRanges = expr.ILRanges;
				}
			}
		}
		
		/// <summary>
		/// Converts call and callvirt instructions that read/write properties into CallGetter/CallSetter instructions.
		/// 
		/// CallGetter/CallSetter is used to allow the ILAst to represent "while ((SomeProperty = value) != null)".
		/// 
		/// Also simplifies 'newobj(SomeDelegate, target, ldvirtftn(F, target))' to 'newobj(SomeDelegate, target, ldvirtftn(F))'
		/// </summary>
		void IntroducePropertyAccessInstructions(ILNode node)
		{
			ILExpression parentExpr = node as ILExpression;
			if (parentExpr != null) {
				for (int i = 0; i < parentExpr.Arguments.Count; i++) {
					ILExpression expr = parentExpr.Arguments[i];
					IntroducePropertyAccessInstructions(expr);
					IntroducePropertyAccessInstructions(expr, parentExpr, i);
				}
			} else {
				foreach (ILNode child in node.GetChildren()) {
					IntroducePropertyAccessInstructions(child);
					ILExpression expr = child as ILExpression;
					if (expr != null) {
						IntroducePropertyAccessInstructions(expr, null, -1);
					}
				}
			}
		}
		
		void IntroducePropertyAccessInstructions(ILExpression expr, ILExpression parentExpr, int posInParent)
		{
			if (expr.Code == ILCode.Call || expr.Code == ILCode.Callvirt) {
				MethodReference cecilMethod = (MethodReference)expr.Operand;
				if (cecilMethod.DeclaringType is ArrayType) {
					switch (cecilMethod.Name) {
						case "Get":
							expr.Code = ILCode.CallGetter;
							break;
						case "Set":
							expr.Code = ILCode.CallSetter;
							break;
						case "Address":
							ByReferenceType brt = cecilMethod.ReturnType as ByReferenceType;
							if (brt != null) {
								MethodReference getMethod = new MethodReference("Get", brt.ElementType, cecilMethod.DeclaringType);
								foreach (var p in cecilMethod.Parameters)
									getMethod.Parameters.Add(p);
								getMethod.HasThis = cecilMethod.HasThis;
								expr.Operand = getMethod;
							}
							expr.Code = ILCode.CallGetter;
							if (parentExpr != null) {
								parentExpr.Arguments[posInParent] = new ILExpression(ILCode.AddressOf, null, expr);
							}
							break;
					}
				} else {
					MethodDefinition cecilMethodDef = cecilMethod.Resolve();
					if (cecilMethodDef != null) {
						if (cecilMethodDef.IsGetter)
							expr.Code = (expr.Code == ILCode.Call) ? ILCode.CallGetter : ILCode.CallvirtGetter;
						else if (cecilMethodDef.IsSetter)
							expr.Code = (expr.Code == ILCode.Call) ? ILCode.CallSetter : ILCode.CallvirtSetter;
					}
				}
			} else if (expr.Code == ILCode.Newobj && expr.Arguments.Count == 2) {
				// Might be 'newobj(SomeDelegate, target, ldvirtftn(F, target))'.
				ILVariable target;
				if (expr.Arguments[0].Match(ILCode.Ldloc, out target)
				    && expr.Arguments[1].Code == ILCode.Ldvirtftn
				    && expr.Arguments[1].Arguments.Count == 1
				    && expr.Arguments[1].Arguments[0].MatchLdloc(target))
				{
					// Remove the 'target' argument from the ldvirtftn instruction.
					// It's not needed in the translation to C#, and needs to be eliminated so that the target expression
					// can be inlined.
					expr.Arguments[1].Arguments.Clear();
				}
			}
		}
		
		/// <summary>
		/// Group input into a set of blocks that can be later arbitraliby schufled.
		/// The method adds necessary branches to make control flow between blocks
		/// explicit and thus order independent.
		/// </summary>
		void SplitToBasicBlocks(ILBlock block)
		{
			List<ILNode> basicBlocks = new List<ILNode>();
			
			ILLabel entryLabel = block.Body.FirstOrDefault() as ILLabel ?? new ILLabel() { Name = "Block_" + (nextLabelIndex++) };
			ILBasicBlock basicBlock = new ILBasicBlock();
			basicBlocks.Add(basicBlock);
			basicBlock.Body.Add(entryLabel);
			block.EntryGoto = new ILExpression(ILCode.Br, entryLabel);
			
			if (block.Body.Count > 0) {
				if (block.Body[0] != entryLabel)
					basicBlock.Body.Add(block.Body[0]);
				
				for (int i = 1; i < block.Body.Count; i++) {
					ILNode lastNode = block.Body[i - 1];
					ILNode currNode = block.Body[i];
					
					// Start a new basic block if necessary
					if (currNode is ILLabel ||
					    currNode is ILTryCatchBlock || // Counts as label
					    lastNode.IsConditionalControlFlow() ||
					    lastNode.IsUnconditionalControlFlow())
					{
						// Try to reuse the label
						ILLabel label = currNode as ILLabel ?? new ILLabel() { Name = "Block_" + (nextLabelIndex++).ToString() };
						
						// Terminate the last block
						if (!lastNode.IsUnconditionalControlFlow()) {
							// Explicit branch from one block to other
							basicBlock.Body.Add(new ILExpression(ILCode.Br, label));
						}
						
						// Start the new block
						basicBlock = new ILBasicBlock();
						basicBlocks.Add(basicBlock);
						basicBlock.Body.Add(label);
						
						// Add the node to the basic block
						if (currNode != label)
							basicBlock.Body.Add(currNode);
					} else {
						basicBlock.Body.Add(currNode);
					}
				}
			}
			
			block.Body = basicBlocks;
			return;
		}
		
		void DuplicateReturnStatements(ILBlock method)
		{
			Dictionary<ILLabel, ILNode> nextSibling = new Dictionary<ILLabel, ILNode>();
			
			// Build navigation data
			foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
				for (int i = 0; i < block.Body.Count - 1; i++) {
					ILLabel curr = block.Body[i] as ILLabel;
					if (curr != null) {
						nextSibling[curr] = block.Body[i + 1];
					}
				}
			}
			
			// Duplicate returns
			foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
				for (int i = 0; i < block.Body.Count; i++) {
					ILLabel targetLabel;
					if (block.Body[i].Match(ILCode.Br, out targetLabel) || block.Body[i].Match(ILCode.Leave, out targetLabel)) {
						// Skip extra labels
						while(nextSibling.ContainsKey(targetLabel) && nextSibling[targetLabel] is ILLabel) {
							targetLabel = (ILLabel)nextSibling[targetLabel];
						}
						
						// Inline return statement
						ILNode target;
						List<ILExpression> retArgs;
						if (nextSibling.TryGetValue(targetLabel, out target)) {
							if (target.Match(ILCode.Ret, out retArgs)) {
								ILVariable locVar;
								object constValue;
								if (retArgs.Count == 0) {
									block.Body[i] = new ILExpression(ILCode.Ret, null);
								} else if (retArgs.Single().Match(ILCode.Ldloc, out locVar)) {
									block.Body[i] = new ILExpression(ILCode.Ret, null, new ILExpression(ILCode.Ldloc, locVar));
								} else if (retArgs.Single().Match(ILCode.Ldc_I4, out constValue)) {
									block.Body[i] = new ILExpression(ILCode.Ret, null, new ILExpression(ILCode.Ldc_I4, constValue));
								}
							}
						} else {
							if (method.Body.Count > 0 && method.Body.Last() == targetLabel) {
								// It exits the main method - so it is same as return;
								block.Body[i] = new ILExpression(ILCode.Ret, null);
							}
						}
					}
				}
			}
		}
		
		/// <summary>
		/// Flattens all nested basic blocks, except the the top level 'node' argument
		/// </summary>
		void FlattenBasicBlocks(ILNode node)
		{
			ILBlock block = node as ILBlock;
			if (block != null) {
				List<ILNode> flatBody = new List<ILNode>();
				foreach (ILNode child in block.GetChildren()) {
					FlattenBasicBlocks(child);
					ILBasicBlock childAsBB = child as ILBasicBlock;
					if (childAsBB != null) {
						if (!(childAsBB.Body.FirstOrDefault() is ILLabel))
							throw new Exception("Basic block has to start with a label. \n" + childAsBB.ToString());
						if (childAsBB.Body.LastOrDefault() is ILExpression && !childAsBB.Body.LastOrDefault().IsUnconditionalControlFlow())
							throw new Exception("Basci block has to end with unconditional control flow. \n" + childAsBB.ToString());
						flatBody.AddRange(childAsBB.GetChildren());
					} else {
						flatBody.Add(child);
					}
				}
				block.EntryGoto = null;
				block.Body = flatBody;
			} else if (node is ILExpression) {
				// Optimization - no need to check expressions
			} else if (node != null) {
				// Recursively find all ILBlocks
				foreach(ILNode child in node.GetChildren()) {
					FlattenBasicBlocks(child);
				}
			}
		}
		
		/// <summary>
		/// Replace endfinally with jump to the end of the finally block
		/// </summary>
		void RemoveEndFinally(ILBlock method)
		{
			// Go thought the list in reverse so that we do the nested blocks first
			foreach(var tryCatch in method.GetSelfAndChildrenRecursive<ILTryCatchBlock>(tc => tc.FinallyBlock != null).Reverse()) {
				ILLabel label = new ILLabel() { Name = "EndFinally_" + nextLabelIndex++ };
				tryCatch.FinallyBlock.Body.Add(label);
				foreach(var block in tryCatch.FinallyBlock.GetSelfAndChildrenRecursive<ILBlock>()) {
					for (int i = 0; i < block.Body.Count; i++) {
						if (block.Body[i].Match(ILCode.Endfinally)) {
							block.Body[i] = new ILExpression(ILCode.Br, label).WithILRanges(((ILExpression)block.Body[i]).ILRanges);
						}
					}
				}
			}
		}
		
		/// <summary>
		/// Reduce the nesting of conditions.
		/// It should be done on flat data that already had most gotos removed
		/// </summary>
		void ReduceIfNesting(ILNode node)
		{
			ILBlock block = node as ILBlock;
			if (block != null) {
				for (int i = 0; i < block.Body.Count; i++) {
					ILCondition cond = block.Body[i] as ILCondition;
					if (cond != null) {
						bool trueExits = cond.TrueBlock.Body.LastOrDefault().IsUnconditionalControlFlow();
						bool falseExits = cond.FalseBlock.Body.LastOrDefault().IsUnconditionalControlFlow();
						
						if (trueExits) {
							// Move the false block after the condition
							block.Body.InsertRange(i + 1, cond.FalseBlock.GetChildren());
							cond.FalseBlock = new ILBlock();
						} else if (falseExits) {
							// Move the true block after the condition
							block.Body.InsertRange(i + 1, cond.TrueBlock.GetChildren());
							cond.TrueBlock = new ILBlock();
						}
						
						// Eliminate empty true block
						if (!cond.TrueBlock.GetChildren().Any() && cond.FalseBlock.GetChildren().Any()) {
							// Swap bodies
							ILBlock tmp = cond.TrueBlock;
							cond.TrueBlock = cond.FalseBlock;
							cond.FalseBlock = tmp;
							cond.Condition = new ILExpression(ILCode.LogicNot, null, cond.Condition);
						}
					}
				}
			}
			
			// We are changing the number of blocks so we use plain old recursion to get all blocks
			foreach(ILNode child in node.GetChildren()) {
				if (child != null && !(child is ILExpression))
					ReduceIfNesting(child);
			}
		}
		
		void RecombineVariables(ILBlock method)
		{
			// Recombine variables that were split when the ILAst was created
			// This ensures that a single IL variable is a single C# variable (gets assigned only one name)
			// The DeclareVariables transformation might then split up the C# variable again if it is used indendently in two separate scopes.
			Dictionary<VariableDefinition, ILVariable> dict = new Dictionary<VariableDefinition, ILVariable>();
			ReplaceVariables(
				method,
				delegate(ILVariable v) {
					if (v.OriginalVariable == null)
						return v;
					ILVariable combinedVariable;
					if (!dict.TryGetValue(v.OriginalVariable, out combinedVariable)) {
						dict.Add(v.OriginalVariable, v);
						combinedVariable = v;
					}
					return combinedVariable;
				});
		}

		static void HandlePointerArithmetic(ILNode method)
		{
			foreach (ILExpression expr in method.GetSelfAndChildrenRecursive<ILExpression>()) {
				List<ILExpression> args = expr.Arguments;
				switch (expr.Code) {
					case ILCode.Localloc:
						args[0] = DivideBySize(args[0], ((PointerType)expr.InferredType).ElementType);
						break;
					case ILCode.Add:
					case ILCode.Add_Ovf:
					case ILCode.Add_Ovf_Un:
						if (expr.InferredType is PointerType) {
							if (args[0].ExpectedType is PointerType)
								args[1] = DivideBySize(args[1], ((PointerType)expr.InferredType).ElementType);
							else if (args[1].ExpectedType is PointerType)
								args[0] = DivideBySize(args[0], ((PointerType)expr.InferredType).ElementType);
						}
						break;
					case ILCode.Sub:
					case ILCode.Sub_Ovf:
					case ILCode.Sub_Ovf_Un:
						if (expr.InferredType is PointerType) {
							if (args[0].ExpectedType is PointerType)
								args[1] = DivideBySize(args[1], ((PointerType)expr.InferredType).ElementType);
						}
						break;
				}
			}
		}

		static ILExpression UnwrapIntPtrCast(ILExpression expr)
		{
			if (expr.Code != ILCode.Conv_I && expr.Code != ILCode.Conv_U)
				return expr;

			ILExpression arg = expr.Arguments[0];
			switch (arg.InferredType.MetadataType) {
				case MetadataType.Byte:
				case MetadataType.SByte:
				case MetadataType.UInt16:
				case MetadataType.Int16:
				case MetadataType.UInt32:
				case MetadataType.Int32:
				case MetadataType.UInt64:
				case MetadataType.Int64:
					return arg;
			}

			return expr;
		}

		static ILExpression DivideBySize(ILExpression expr, TypeReference type)
		{
			expr = UnwrapIntPtrCast(expr);

			ILExpression sizeOfExpression;
			switch (TypeAnalysis.GetInformationAmount(type)) {
				case 1:
				case 8:
					sizeOfExpression = new ILExpression(ILCode.Ldc_I4, 1);
					break;
				case 16:
					sizeOfExpression = new ILExpression(ILCode.Ldc_I4, 2);
					break;
				case 32:
					sizeOfExpression = new ILExpression(ILCode.Ldc_I4, 4);
					break;
				case 64:
					sizeOfExpression = new ILExpression(ILCode.Ldc_I4, 8);
					break;
				default:
					sizeOfExpression = new ILExpression(ILCode.Sizeof, type);
					break;
			}

			if (expr.Code == ILCode.Mul || expr.Code == ILCode.Mul_Ovf || expr.Code == ILCode.Mul_Ovf_Un) {
				ILExpression mulArg = expr.Arguments[1];
				if (mulArg.Code == sizeOfExpression.Code && sizeOfExpression.Operand.Equals(mulArg.Operand))
					return UnwrapIntPtrCast(expr.Arguments[0]);
			}

			if (expr.Code == sizeOfExpression.Code) {
				if (sizeOfExpression.Operand.Equals(expr.Operand))
					return new ILExpression(ILCode.Ldc_I4, 1);

				if (expr.Code == ILCode.Ldc_I4) {
					int offsetInBytes = (int)expr.Operand;
					int elementSize = (int)sizeOfExpression.Operand;
					int offsetInElements = offsetInBytes / elementSize;

					// ensure integer division
					if (offsetInElements * elementSize == offsetInBytes) {
						expr.Operand = offsetInElements;
						return expr;
					}
				}
			}

			return new ILExpression(ILCode.Div_Un, null, expr, sizeOfExpression);
		}
		
		public static void ReplaceVariables(ILNode node, Func<ILVariable, ILVariable> variableMapping)
		{
			ILExpression expr = node as ILExpression;
			if (expr != null) {
				ILVariable v = expr.Operand as ILVariable;
				if (v != null)
					expr.Operand = variableMapping(v);
				foreach (ILExpression child in expr.Arguments)
					ReplaceVariables(child, variableMapping);
			} else {
				var catchBlock = node as ILTryCatchBlock.CatchBlock;
				if (catchBlock != null && catchBlock.ExceptionVariable != null) {
					catchBlock.ExceptionVariable = variableMapping(catchBlock.ExceptionVariable);
				}
				
				foreach (ILNode child in node.GetChildren())
					ReplaceVariables(child, variableMapping);
			}
		}
		
		void ReportUnassignedILRanges(ILBlock method)
		{
			var unassigned = ILRange.Invert(method.GetSelfAndChildrenRecursive<ILExpression>().SelectMany(e => e.ILRanges), context.CurrentMethod.Body.CodeSize).ToList();
			if (unassigned.Count > 0)
				Debug.WriteLine(string.Format("Unassigned ILRanges for {0}.{1}: {2}", context.CurrentMethod.DeclaringType.Name, context.CurrentMethod.Name, string.Join(", ", unassigned.Select(r => r.ToString()))));
		}
	}
	
	public static class ILAstOptimizerExtensionMethods
	{
		/// <summary>
		/// Perform one pass of a given optimization on this block.
		/// This block must consist of only basicblocks.
		/// </summary>
		public static bool RunOptimization(this ILBlock block, Func<List<ILNode>, ILBasicBlock, int, bool> optimization)
		{
			bool modified = false;
			List<ILNode> body = block.Body;
			for (int i = body.Count - 1; i >= 0; i--) {
				if (i < body.Count && optimization(body, (ILBasicBlock)body[i], i)) {
					modified = true;
				}
			}
			return modified;
		}
		
		public static bool RunOptimization(this ILBlock block, Func<List<ILNode>, ILExpression, int, bool> optimization)
		{
			bool modified = false;
			foreach (ILBasicBlock bb in block.Body) {
				for (int i = bb.Body.Count - 1; i >= 0; i--) {
					ILExpression expr = bb.Body.ElementAtOrDefault(i) as ILExpression;
					if (expr != null && optimization(bb.Body, expr, i)) {
						modified = true;
					}
				}
			}
			return modified;
		}
		
		public static bool IsConditionalControlFlow(this ILNode node)
		{
			ILExpression expr = node as ILExpression;
			return expr != null && expr.Code.IsConditionalControlFlow();
		}
		
		public static bool IsUnconditionalControlFlow(this ILNode node)
		{
			ILExpression expr = node as ILExpression;
			return expr != null && expr.Code.IsUnconditionalControlFlow();
		}
		
		/// <summary>
		/// The expression has no effect on the program and can be removed
		/// if its return value is not needed.
		/// </summary>
		public static bool HasNoSideEffects(this ILExpression expr)
		{
			// Remember that if expression can throw an exception, it is a side effect
			
			switch(expr.Code) {
				case ILCode.Ldloc:
				case ILCode.Ldloca:
				case ILCode.Ldstr:
				case ILCode.Ldnull:
				case ILCode.Ldc_I4:
				case ILCode.Ldc_I8:
				case ILCode.Ldc_R4:
				case ILCode.Ldc_R8:
				case ILCode.Ldc_Decimal:
					return true;
				default:
					return false;
			}
		}
		
		public static bool IsStoreToArray(this ILCode code)
		{
			switch (code) {
				case ILCode.Stelem_Any:
				case ILCode.Stelem_I:
				case ILCode.Stelem_I1:
				case ILCode.Stelem_I2:
				case ILCode.Stelem_I4:
				case ILCode.Stelem_I8:
				case ILCode.Stelem_R4:
				case ILCode.Stelem_R8:
				case ILCode.Stelem_Ref:
					return true;
				default:
					return false;
			}
		}
		
		public static bool IsLoadFromArray(this ILCode code)
		{
			switch (code) {
				case ILCode.Ldelem_Any:
				case ILCode.Ldelem_I:
				case ILCode.Ldelem_I1:
				case ILCode.Ldelem_I2:
				case ILCode.Ldelem_I4:
				case ILCode.Ldelem_I8:
				case ILCode.Ldelem_U1:
				case ILCode.Ldelem_U2:
				case ILCode.Ldelem_U4:
				case ILCode.Ldelem_R4:
				case ILCode.Ldelem_R8:
				case ILCode.Ldelem_Ref:
					return true;
				default:
					return false;
			}
		}
		
		/// <summary>
		/// Can the expression be used as a statement in C#?
		/// </summary>
		public static bool CanBeExpressionStatement(this ILExpression expr)
		{
			switch(expr.Code) {
				case ILCode.Call:
				case ILCode.Callvirt:
					// property getters can't be expression statements, but all other method calls can be
					MethodReference mr = (MethodReference)expr.Operand;
					return !mr.Name.StartsWith("get_", StringComparison.Ordinal);
				case ILCode.CallSetter:
				case ILCode.CallvirtSetter:
				case ILCode.Newobj:
				case ILCode.Newarr:
				case ILCode.Stloc:
				case ILCode.Stobj:
				case ILCode.Stsfld:
				case ILCode.Stfld:
				case ILCode.Stind_Ref:
				case ILCode.Stelem_Any:
				case ILCode.Stelem_I:
				case ILCode.Stelem_I1:
				case ILCode.Stelem_I2:
				case ILCode.Stelem_I4:
				case ILCode.Stelem_I8:
				case ILCode.Stelem_R4:
				case ILCode.Stelem_R8:
				case ILCode.Stelem_Ref:
					return true;
				default:
					return false;
			}
		}
		
		public static ILExpression WithILRanges(this ILExpression expr, IEnumerable<ILRange> ilranges)
		{
			expr.ILRanges.AddRange(ilranges);
			return expr;
		}
		
		public static void RemoveTail(this List<ILNode> body, params ILCode[] codes)
		{
			for (int i = 0; i < codes.Length; i++) {
				if (((ILExpression)body[body.Count - codes.Length + i]).Code != codes[i])
					throw new Exception("Tailing code does not match expected.");
			}
			body.RemoveRange(body.Count - codes.Length, codes.Length);
		}
		
		public static V GetOrDefault<K,V>(this Dictionary<K, V> dict, K key)
		{
			V ret;
			dict.TryGetValue(key, out ret);
			return ret;
		}
		
		public static void RemoveOrThrow<T>(this ICollection<T> collection, T item)
		{
			if (!collection.Remove(item))
				throw new Exception("The item was not found in the collection");
		}
		
		public static void RemoveOrThrow<K,V>(this Dictionary<K,V> collection, K key)
		{
			if (!collection.Remove(key))
				throw new Exception("The key was not found in the dictionary");
		}
		
		public static bool ContainsReferenceTo(this ILExpression expr, ILVariable v)
		{
			if (expr.Operand == v)
				return true;
			foreach (var arg in expr.Arguments) {
				if (ContainsReferenceTo(arg, v))
					return true;
			}
			return false;
		}
	}
}