summaryrefslogtreecommitdiff
path: root/ICSharpCode.Decompiler/FlowAnalysis/ControlFlowGraphBuilder.cs
blob: 7570884ae7e693e0aec9a561bf16e2316cba9266 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
// Copyright (c) 2011 AlphaSierraPapa for the SharpDevelop Team
// 
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
// 
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;

using Mono.Cecil.Cil;

namespace ICSharpCode.Decompiler.FlowAnalysis
{
	/// <summary>
	/// Constructs the Control Flow Graph from a Cecil method body.
	/// </summary>
	public sealed class ControlFlowGraphBuilder
	{
		public static ControlFlowGraph Build(MethodBody methodBody)
		{
			return new ControlFlowGraphBuilder(methodBody).Build();
		}
		
		// This option controls how finally blocks are handled:
		// false means that the endfinally instruction will jump to any of the leave targets (EndFinally edge type).
		// true means that a copy of the whole finally block is created for each leave target. In this case, each endfinally node will be connected with the leave
		//   target using a normal edge.
		bool copyFinallyBlocks = false;
		
		MethodBody methodBody;
		int[] offsets; // array index = instruction index; value = IL offset
		bool[] hasIncomingJumps; // array index = instruction index
		List<ControlFlowNode> nodes = new List<ControlFlowNode>();
		ControlFlowNode entryPoint;
		ControlFlowNode regularExit;
		ControlFlowNode exceptionalExit;

		ControlFlowGraphBuilder(MethodBody methodBody)
		{
			this.methodBody = methodBody;
			offsets = methodBody.Instructions.Select(i => i.Offset).ToArray();
			hasIncomingJumps = new bool[methodBody.Instructions.Count];
			
			entryPoint = new ControlFlowNode(0, 0, ControlFlowNodeType.EntryPoint);
			nodes.Add(entryPoint);
			regularExit = new ControlFlowNode(1, -1, ControlFlowNodeType.RegularExit);
			nodes.Add(regularExit);
			exceptionalExit = new ControlFlowNode(2, -1, ControlFlowNodeType.ExceptionalExit);
			nodes.Add(exceptionalExit);
			Debug.Assert(nodes.Count == 3);
		}
		
		/// <summary>
		/// Determines the index of the instruction (for use with the hasIncomingJumps array)
		/// </summary>
		int GetInstructionIndex(Instruction inst)
		{
			int index = Array.BinarySearch(offsets, inst.Offset);
			Debug.Assert(index >= 0);
			return index;
		}
		
		/// <summary>
		/// Builds the ControlFlowGraph.
		/// </summary>
		public ControlFlowGraph Build()
		{
			CalculateHasIncomingJumps();
			CreateNodes();
			CreateRegularControlFlow();
			CreateExceptionalControlFlow();
			if (copyFinallyBlocks)
				CopyFinallyBlocksIntoLeaveEdges();
			else
				TransformLeaveEdges();
			return new ControlFlowGraph(nodes.ToArray());
		}
		
		#region Step 1: calculate which instructions are the targets of jump instructions.
		void CalculateHasIncomingJumps()
		{
			foreach (Instruction inst in methodBody.Instructions) {
				if (inst.OpCode.OperandType == OperandType.InlineBrTarget || inst.OpCode.OperandType == OperandType.ShortInlineBrTarget) {
					hasIncomingJumps[GetInstructionIndex((Instruction)inst.Operand)] = true;
				} else if (inst.OpCode.OperandType == OperandType.InlineSwitch) {
					foreach (Instruction i in (Instruction[])inst.Operand)
						hasIncomingJumps[GetInstructionIndex(i)] = true;
				}
			}
			foreach (ExceptionHandler eh in methodBody.ExceptionHandlers) {
				if (eh.FilterStart != null) {
					hasIncomingJumps[GetInstructionIndex(eh.FilterStart)] = true;
				}
				hasIncomingJumps[GetInstructionIndex(eh.HandlerStart)] = true;
			}
		}
		#endregion
		
		#region Step 2: create nodes
		void CreateNodes()
		{
			// Step 2a: find basic blocks and create nodes for them
			for (int i = 0; i < methodBody.Instructions.Count; i++) {
				Instruction blockStart = methodBody.Instructions[i];
				ExceptionHandler blockStartEH = FindInnermostExceptionHandler(blockStart.Offset);
				// try and see how big we can make that block:
				for (; i + 1 < methodBody.Instructions.Count; i++) {
					Instruction inst = methodBody.Instructions[i];
					if (IsBranch(inst.OpCode) || CanThrowException(inst.OpCode))
						break;
					if (hasIncomingJumps[i + 1])
						break;
					if (inst.Next != null) {
						// ensure that blocks never contain instructions from different try blocks
						ExceptionHandler instEH = FindInnermostExceptionHandler(inst.Next.Offset);
						if (instEH != blockStartEH)
							break;
					}
				}
				
				nodes.Add(new ControlFlowNode(nodes.Count, blockStart, methodBody.Instructions[i]));
			}
			// Step 2b: Create special nodes for the exception handling constructs
			foreach (ExceptionHandler handler in methodBody.ExceptionHandlers) {
				if (handler.HandlerType == ExceptionHandlerType.Filter)
					throw new NotSupportedException();
				ControlFlowNode endFinallyOrFaultNode = null;
				if (handler.HandlerType == ExceptionHandlerType.Finally || handler.HandlerType == ExceptionHandlerType.Fault) {
					endFinallyOrFaultNode = new ControlFlowNode(nodes.Count, handler.HandlerEnd.Offset, ControlFlowNodeType.EndFinallyOrFault);
					nodes.Add(endFinallyOrFaultNode);
				}
				nodes.Add(new ControlFlowNode(nodes.Count, handler, endFinallyOrFaultNode));
			}
		}
		#endregion
		
		#region Step 3: create edges for the normal flow of control (assuming no exceptions thrown)
		void CreateRegularControlFlow()
		{
			CreateEdge(entryPoint, methodBody.Instructions[0], JumpType.Normal);
			foreach (ControlFlowNode node in nodes) {
				if (node.End != null) {
					// create normal edges from one instruction to the next
					if (!OpCodeInfo.IsUnconditionalBranch(node.End.OpCode))
						CreateEdge(node, node.End.Next, JumpType.Normal);
					
					// create edges for branch instructions
					if (node.End.OpCode.OperandType == OperandType.InlineBrTarget || node.End.OpCode.OperandType == OperandType.ShortInlineBrTarget) {
						if (node.End.OpCode == OpCodes.Leave || node.End.OpCode == OpCodes.Leave_S) {
							var handlerBlock = FindInnermostHandlerBlock(node.End.Offset);
							if (handlerBlock.NodeType == ControlFlowNodeType.FinallyOrFaultHandler)
								CreateEdge(node, (Instruction)node.End.Operand, JumpType.LeaveTry);
							else
								CreateEdge(node, (Instruction)node.End.Operand, JumpType.Normal);
						} else {
							CreateEdge(node, (Instruction)node.End.Operand, JumpType.Normal);
						}
					} else if (node.End.OpCode.OperandType == OperandType.InlineSwitch) {
						foreach (Instruction i in (Instruction[])node.End.Operand)
							CreateEdge(node, i, JumpType.Normal);
					}
					
					// create edges for return instructions
					if (node.End.OpCode.FlowControl == FlowControl.Return) {
						switch (node.End.OpCode.Code) {
							case Code.Ret:
								CreateEdge(node, regularExit, JumpType.Normal);
								break;
							case Code.Endfinally:
								ControlFlowNode handlerBlock = FindInnermostHandlerBlock(node.End.Offset);
								if (handlerBlock.EndFinallyOrFaultNode == null)
									throw new InvalidProgramException("Found endfinally in block " + handlerBlock);
								CreateEdge(node, handlerBlock.EndFinallyOrFaultNode, JumpType.Normal);
								break;
							default:
								throw new NotSupportedException(node.End.OpCode.ToString());
						}
					}
				}
			}
		}
		#endregion
		
		#region Step 4: create edges for the exceptional control flow (from instructions that might throw, to the innermost containing exception handler)
		void CreateExceptionalControlFlow()
		{
			foreach (ControlFlowNode node in nodes) {
				if (node.End != null && CanThrowException(node.End.OpCode)) {
					CreateEdge(node, FindInnermostExceptionHandlerNode(node.End.Offset), JumpType.JumpToExceptionHandler);
				}
				if (node.ExceptionHandler != null) {
					if (node.EndFinallyOrFaultNode != null) {
						// For Fault and Finally blocks, create edge from "EndFinally" to next exception handler.
						// This represents the exception bubbling up after finally block was executed.
						CreateEdge(node.EndFinallyOrFaultNode, FindParentExceptionHandlerNode(node), JumpType.JumpToExceptionHandler);
					} else {
						// For Catch blocks, create edge from "CatchHandler" block (at beginning) to next exception handler.
						// This represents the exception bubbling up because it did not match the type of the catch block.
						CreateEdge(node, FindParentExceptionHandlerNode(node), JumpType.JumpToExceptionHandler);
					}
					CreateEdge(node, node.ExceptionHandler.HandlerStart, JumpType.Normal);
				}
			}
		}
		
		ExceptionHandler FindInnermostExceptionHandler(int instructionOffsetInTryBlock)
		{
			foreach (ExceptionHandler h in methodBody.ExceptionHandlers) {
				if (h.TryStart.Offset <= instructionOffsetInTryBlock && instructionOffsetInTryBlock < h.TryEnd.Offset) {
					return h;
				}
			}
			return null;
		}
		
		ControlFlowNode FindInnermostExceptionHandlerNode(int instructionOffsetInTryBlock)
		{
			ExceptionHandler h = FindInnermostExceptionHandler(instructionOffsetInTryBlock);
			if (h != null)
				return nodes.Single(n => n.ExceptionHandler == h && n.CopyFrom == null);
			else
				return exceptionalExit;
		}
		
		ControlFlowNode FindInnermostHandlerBlock(int instructionOffset)
		{
			foreach (ExceptionHandler h in methodBody.ExceptionHandlers) {
				if (h.TryStart.Offset <= instructionOffset && instructionOffset < h.TryEnd.Offset
				    || h.HandlerStart.Offset <= instructionOffset && instructionOffset < h.HandlerEnd.Offset)
				{
					return nodes.Single(n => n.ExceptionHandler == h && n.CopyFrom == null);
				}
			}
			return exceptionalExit;
		}
		
		ControlFlowNode FindParentExceptionHandlerNode(ControlFlowNode exceptionHandler)
		{
			Debug.Assert(exceptionHandler.NodeType == ControlFlowNodeType.CatchHandler
			             || exceptionHandler.NodeType == ControlFlowNodeType.FinallyOrFaultHandler);
			int offset = exceptionHandler.ExceptionHandler.TryStart.Offset;
			for (int i = exceptionHandler.BlockIndex + 1; i < nodes.Count; i++) {
				ExceptionHandler h = nodes[i].ExceptionHandler;
				if (h != null && h.TryStart.Offset <= offset && offset < h.TryEnd.Offset)
					return nodes[i];
			}
			return exceptionalExit;
		}
		#endregion
		
		#region Step 5a: replace LeaveTry edges with EndFinally edges
		// this is used only for copyFinallyBlocks==false; see Step 5b otherwise
		void TransformLeaveEdges()
		{
			for (int i = nodes.Count - 1; i >= 0; i--) {
				ControlFlowNode node = nodes[i];
				if (node.End != null && node.Outgoing.Count == 1 && node.Outgoing[0].Type == JumpType.LeaveTry) {
					Debug.Assert(node.End.OpCode == OpCodes.Leave || node.End.OpCode == OpCodes.Leave_S);
					
					ControlFlowNode target = node.Outgoing[0].Target;
					// remove the edge
					target.Incoming.Remove(node.Outgoing[0]);
					node.Outgoing.Clear();
					
					ControlFlowNode handler = FindInnermostExceptionHandlerNode(node.End.Offset);
					Debug.Assert(handler.NodeType == ControlFlowNodeType.FinallyOrFaultHandler);
					
					CreateEdge(node, handler, JumpType.Normal);
					CreateEdge(handler.EndFinallyOrFaultNode, target, JumpType.EndFinally);
				}
			}
		}
		#endregion
		
		#region Step 5b: copy finally blocks into the LeaveTry edges
		void CopyFinallyBlocksIntoLeaveEdges()
		{
			// We need to process try-finally blocks inside-out.
			// We'll do that by going through all instructions in reverse order
			for (int i = nodes.Count - 1; i >= 0; i--) {
				ControlFlowNode node = nodes[i];
				if (node.End != null && node.Outgoing.Count == 1 && node.Outgoing[0].Type == JumpType.LeaveTry) {
					Debug.Assert(node.End.OpCode == OpCodes.Leave || node.End.OpCode == OpCodes.Leave_S);
					
					ControlFlowNode target = node.Outgoing[0].Target;
					// remove the edge
					target.Incoming.Remove(node.Outgoing[0]);
					node.Outgoing.Clear();
					
					ControlFlowNode handler = FindInnermostExceptionHandlerNode(node.End.Offset);
					Debug.Assert(handler.NodeType == ControlFlowNodeType.FinallyOrFaultHandler);
					
					ControlFlowNode copy = CopyFinallySubGraph(handler, handler.EndFinallyOrFaultNode, target);
					CreateEdge(node, copy, JumpType.Normal);
				}
			}
		}
		
		/// <summary>
		/// Creates a copy of all nodes pointing to 'end' and replaces those references with references to 'newEnd'.
		/// Nodes pointing to the copied node are copied recursively to update those references, too.
		/// This recursion stops at 'start'. The modified version of start is returned.
		/// </summary>
		ControlFlowNode CopyFinallySubGraph(ControlFlowNode start, ControlFlowNode end, ControlFlowNode newEnd)
		{
			return new CopyFinallySubGraphLogic(this, start, end, newEnd).CopyFinallySubGraph();
		}
		
		class CopyFinallySubGraphLogic
		{
			readonly ControlFlowGraphBuilder builder;
			readonly Dictionary<ControlFlowNode, ControlFlowNode> oldToNew = new Dictionary<ControlFlowNode, ControlFlowNode>();
			readonly ControlFlowNode start;
			readonly ControlFlowNode end;
			readonly ControlFlowNode newEnd;
			
			public CopyFinallySubGraphLogic(ControlFlowGraphBuilder builder, ControlFlowNode start, ControlFlowNode end, ControlFlowNode newEnd)
			{
				this.builder = builder;
				this.start = start;
				this.end = end;
				this.newEnd = newEnd;
			}
			
			internal ControlFlowNode CopyFinallySubGraph()
			{
				foreach (ControlFlowNode n in end.Predecessors) {
					CollectNodes(n);
				}
				foreach (var pair in oldToNew)
					ReconstructEdges(pair.Key, pair.Value);
				return GetNew(start);
			}
			
			void CollectNodes(ControlFlowNode node)
			{
				if (node == end || node == newEnd)
					throw new InvalidOperationException("unexpected cycle involving finally construct");
				if (!oldToNew.ContainsKey(node)) {
					int newBlockIndex = builder.nodes.Count;
					ControlFlowNode copy;
					switch (node.NodeType) {
						case ControlFlowNodeType.Normal:
							copy = new ControlFlowNode(newBlockIndex, node.Start, node.End);
							break;
						case ControlFlowNodeType.FinallyOrFaultHandler:
							copy = new ControlFlowNode(newBlockIndex, node.ExceptionHandler, node.EndFinallyOrFaultNode);
							break;
						default:
							// other nodes shouldn't occur when copying finally blocks
							throw new NotSupportedException(node.NodeType.ToString());
					}
					copy.CopyFrom = node;
					builder.nodes.Add(copy);
					oldToNew.Add(node, copy);
					
					if (node != start) {
						foreach (ControlFlowNode n in node.Predecessors) {
							CollectNodes(n);
						}
					}
				}
			}
			
			void ReconstructEdges(ControlFlowNode oldNode, ControlFlowNode newNode)
			{
				foreach (ControlFlowEdge oldEdge in oldNode.Outgoing) {
					builder.CreateEdge(newNode, GetNew(oldEdge.Target), oldEdge.Type);
				}
			}
			
			ControlFlowNode GetNew(ControlFlowNode oldNode)
			{
				if (oldNode == end)
					return newEnd;
				ControlFlowNode newNode;
				if (oldToNew.TryGetValue(oldNode, out newNode))
					return newNode;
				return oldNode;
			}
		}
		#endregion
		
		#region CreateEdge methods
		void CreateEdge(ControlFlowNode fromNode, Instruction toInstruction, JumpType type)
		{
			CreateEdge(fromNode, nodes.Single(n => n.Start == toInstruction), type);
		}
		
		void CreateEdge(ControlFlowNode fromNode, ControlFlowNode toNode, JumpType type)
		{
			ControlFlowEdge edge = new ControlFlowEdge(fromNode, toNode, type);
			fromNode.Outgoing.Add(edge);
			toNode.Incoming.Add(edge);
		}
		#endregion
		
		#region OpCode info
		static bool CanThrowException(OpCode opcode)
		{
			if (opcode.OpCodeType == OpCodeType.Prefix)
				return false;
			return OpCodeInfo.Get(opcode).CanThrow;
		}
		
		static bool IsBranch(OpCode opcode)
		{
			if (opcode.OpCodeType == OpCodeType.Prefix)
				return false;
			switch (opcode.FlowControl) {
				case FlowControl.Cond_Branch:
				case FlowControl.Branch:
				case FlowControl.Throw:
				case FlowControl.Return:
					return true;
				case FlowControl.Next:
				case FlowControl.Call:
					return false;
				default:
					throw new NotSupportedException(opcode.FlowControl.ToString());
			}
		}
		#endregion
	}
}