/* -*-c-*- */ /********************************************************************** thread_win32.c - $Author: ko1 $ Copyright (C) 2004-2007 Koichi Sasada **********************************************************************/ #ifdef THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION #include #define TIME_QUANTUM_USEC (100 * 1000) #define RB_CONDATTR_CLOCK_MONOTONIC 1 /* no effect */ #undef Sleep #define native_thread_yield() Sleep(0) #define remove_signal_thread_list(th) static volatile DWORD ruby_native_thread_key = TLS_OUT_OF_INDEXES; static int w32_wait_events(HANDLE *events, int count, DWORD timeout, rb_thread_t *th); static int native_mutex_lock(rb_thread_lock_t *lock); static int native_mutex_unlock(rb_thread_lock_t *lock); static void w32_error(const char *func) { LPVOID lpMsgBuf; DWORD err = GetLastError(); if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, err, MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), (LPTSTR) & lpMsgBuf, 0, NULL) == 0) FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPTSTR) & lpMsgBuf, 0, NULL); rb_bug("%s: %s", func, (char*)lpMsgBuf); } static int w32_mutex_lock(HANDLE lock) { DWORD result; while (1) { thread_debug("native_mutex_lock: %p\n", lock); result = w32_wait_events(&lock, 1, INFINITE, 0); switch (result) { case WAIT_OBJECT_0: /* get mutex object */ thread_debug("acquire mutex: %p\n", lock); return 0; case WAIT_OBJECT_0 + 1: /* interrupt */ errno = EINTR; thread_debug("acquire mutex interrupted: %p\n", lock); return 0; case WAIT_TIMEOUT: thread_debug("timeout mutex: %p\n", lock); break; case WAIT_ABANDONED: rb_bug("win32_mutex_lock: WAIT_ABANDONED"); break; default: rb_bug("win32_mutex_lock: unknown result (%ld)", result); break; } } return 0; } static HANDLE w32_mutex_create(void) { HANDLE lock = CreateMutex(NULL, FALSE, NULL); if (lock == NULL) { w32_error("native_mutex_initialize"); } return lock; } #define GVL_DEBUG 0 static void gvl_acquire(rb_vm_t *vm, rb_thread_t *th) { w32_mutex_lock(vm->gvl.lock); if (GVL_DEBUG) fprintf(stderr, "gvl acquire (%p): acquire\n", th); } static void gvl_release(rb_vm_t *vm) { ReleaseMutex(vm->gvl.lock); } static void gvl_yield(rb_vm_t *vm, rb_thread_t *th) { gvl_release(th->vm); native_thread_yield(); gvl_acquire(vm, th); } static void gvl_atfork(rb_vm_t *vm) { rb_bug("gvl_atfork() is called on win32"); } static void gvl_init(rb_vm_t *vm) { if (GVL_DEBUG) fprintf(stderr, "gvl init\n"); vm->gvl.lock = w32_mutex_create(); } static void gvl_destroy(rb_vm_t *vm) { if (GVL_DEBUG) fprintf(stderr, "gvl destroy\n"); CloseHandle(vm->gvl.lock); } static rb_thread_t * ruby_thread_from_native(void) { return TlsGetValue(ruby_native_thread_key); } static int ruby_thread_set_native(rb_thread_t *th) { return TlsSetValue(ruby_native_thread_key, th); } void Init_native_thread(void) { rb_thread_t *th = GET_THREAD(); ruby_native_thread_key = TlsAlloc(); ruby_thread_set_native(th); DuplicateHandle(GetCurrentProcess(), GetCurrentThread(), GetCurrentProcess(), &th->thread_id, 0, FALSE, DUPLICATE_SAME_ACCESS); th->native_thread_data.interrupt_event = CreateEvent(0, TRUE, FALSE, 0); thread_debug("initial thread (th: %p, thid: %p, event: %p)\n", th, GET_THREAD()->thread_id, th->native_thread_data.interrupt_event); } static void w32_set_event(HANDLE handle) { if (SetEvent(handle) == 0) { w32_error("w32_set_event"); } } static void w32_reset_event(HANDLE handle) { if (ResetEvent(handle) == 0) { w32_error("w32_reset_event"); } } static int w32_wait_events(HANDLE *events, int count, DWORD timeout, rb_thread_t *th) { HANDLE *targets = events; HANDLE intr; DWORD ret; thread_debug(" w32_wait_events events:%p, count:%d, timeout:%ld, th:%p\n", events, count, timeout, th); if (th && (intr = th->native_thread_data.interrupt_event)) { gvl_acquire(th->vm, th); if (intr == th->native_thread_data.interrupt_event) { w32_reset_event(intr); if (RUBY_VM_INTERRUPTED(th)) { w32_set_event(intr); } targets = ALLOCA_N(HANDLE, count + 1); memcpy(targets, events, sizeof(HANDLE) * count); targets[count++] = intr; thread_debug(" * handle: %p (count: %d, intr)\n", intr, count); } gvl_release(th->vm); } thread_debug(" WaitForMultipleObjects start (count: %d)\n", count); ret = WaitForMultipleObjects(count, targets, FALSE, timeout); thread_debug(" WaitForMultipleObjects end (ret: %lu)\n", ret); if (ret == (DWORD)(WAIT_OBJECT_0 + count - 1) && th) { errno = EINTR; } if (ret == WAIT_FAILED && THREAD_DEBUG) { int i; DWORD dmy; for (i = 0; i < count; i++) { thread_debug(" * error handle %d - %s\n", i, GetHandleInformation(targets[i], &dmy) ? "OK" : "NG"); } } return ret; } static void ubf_handle(void *ptr); #define ubf_select ubf_handle int rb_w32_wait_events_blocking(HANDLE *events, int num, DWORD timeout) { return w32_wait_events(events, num, timeout, GET_THREAD()); } int rb_w32_wait_events(HANDLE *events, int num, DWORD timeout) { int ret; BLOCKING_REGION(ret = rb_w32_wait_events_blocking(events, num, timeout), ubf_handle, GET_THREAD()); return ret; } static void w32_close_handle(HANDLE handle) { if (CloseHandle(handle) == 0) { w32_error("w32_close_handle"); } } static void w32_resume_thread(HANDLE handle) { if (ResumeThread(handle) == (DWORD)-1) { w32_error("w32_resume_thread"); } } #ifdef _MSC_VER #define HAVE__BEGINTHREADEX 1 #else #undef HAVE__BEGINTHREADEX #endif #ifdef HAVE__BEGINTHREADEX #define start_thread (HANDLE)_beginthreadex #define thread_errno errno typedef unsigned long (_stdcall *w32_thread_start_func)(void*); #else #define start_thread CreateThread #define thread_errno rb_w32_map_errno(GetLastError()) typedef LPTHREAD_START_ROUTINE w32_thread_start_func; #endif static HANDLE w32_create_thread(DWORD stack_size, w32_thread_start_func func, void *val) { return start_thread(0, stack_size, func, val, CREATE_SUSPENDED, 0); } int rb_w32_sleep(unsigned long msec) { return w32_wait_events(0, 0, msec, GET_THREAD()); } int WINAPI rb_w32_Sleep(unsigned long msec) { int ret; BLOCKING_REGION(ret = rb_w32_sleep(msec), ubf_handle, GET_THREAD()); return ret; } static void native_sleep(rb_thread_t *th, struct timeval *tv) { DWORD msec; if (tv) { msec = tv->tv_sec * 1000 + tv->tv_usec / 1000; } else { msec = INFINITE; } GVL_UNLOCK_BEGIN(); { DWORD ret; native_mutex_lock(&th->interrupt_lock); th->unblock.func = ubf_handle; th->unblock.arg = th; native_mutex_unlock(&th->interrupt_lock); if (RUBY_VM_INTERRUPTED(th)) { /* interrupted. return immediate */ } else { thread_debug("native_sleep start (%lu)\n", msec); ret = w32_wait_events(0, 0, msec, th); thread_debug("native_sleep done (%lu)\n", ret); } native_mutex_lock(&th->interrupt_lock); th->unblock.func = 0; th->unblock.arg = 0; native_mutex_unlock(&th->interrupt_lock); } GVL_UNLOCK_END(); } static int native_mutex_lock(rb_thread_lock_t *lock) { #if USE_WIN32_MUTEX w32_mutex_lock(*lock); #else EnterCriticalSection(lock); return 0; #endif } static int native_mutex_unlock(rb_thread_lock_t *lock) { #if USE_WIN32_MUTEX thread_debug("release mutex: %p\n", *lock); return ReleaseMutex(*lock); #else LeaveCriticalSection(lock); return 0; #endif } static int native_mutex_trylock(rb_thread_lock_t *lock) { #if USE_WIN32_MUTEX int result; thread_debug("native_mutex_trylock: %p\n", *lock); result = w32_wait_events(&*lock, 1, 1, 0); thread_debug("native_mutex_trylock result: %d\n", result); switch (result) { case WAIT_OBJECT_0: return 0; case WAIT_TIMEOUT: return EBUSY; } return EINVAL; #else return TryEnterCriticalSection(lock) == 0; #endif } static void native_mutex_initialize(rb_thread_lock_t *lock) { #if USE_WIN32_MUTEX *lock = w32_mutex_create(); /* thread_debug("initialize mutex: %p\n", *lock); */ #else InitializeCriticalSection(lock); #endif } static void native_mutex_destroy(rb_thread_lock_t *lock) { #if USE_WIN32_MUTEX w32_close_handle(lock); #else DeleteCriticalSection(lock); #endif } struct cond_event_entry { struct cond_event_entry* next; struct cond_event_entry* prev; HANDLE event; }; static void native_cond_signal(rb_thread_cond_t *cond) { /* cond is guarded by mutex */ struct cond_event_entry *e = cond->next; struct cond_event_entry *head = (struct cond_event_entry*)cond; if (e != head) { struct cond_event_entry *next = e->next; struct cond_event_entry *prev = e->prev; prev->next = next; next->prev = prev; e->next = e->prev = e; SetEvent(e->event); } } static void native_cond_broadcast(rb_thread_cond_t *cond) { /* cond is guarded by mutex */ struct cond_event_entry *e = cond->next; struct cond_event_entry *head = (struct cond_event_entry*)cond; while (e != head) { struct cond_event_entry *next = e->next; struct cond_event_entry *prev = e->prev; SetEvent(e->event); prev->next = next; next->prev = prev; e->next = e->prev = e; e = next; } } static int __cond_timedwait(rb_thread_cond_t *cond, rb_thread_lock_t *mutex, unsigned long msec) { DWORD r; struct cond_event_entry entry; struct cond_event_entry *head = (struct cond_event_entry*)cond; entry.event = CreateEvent(0, FALSE, FALSE, 0); /* cond is guarded by mutex */ entry.next = head; entry.prev = head->prev; head->prev->next = &entry; head->prev = &entry; native_mutex_unlock(mutex); { r = WaitForSingleObject(entry.event, msec); if ((r != WAIT_OBJECT_0) && (r != WAIT_TIMEOUT)) { rb_bug("native_cond_wait: WaitForSingleObject returns %lu", r); } } native_mutex_lock(mutex); entry.prev->next = entry.next; entry.next->prev = entry.prev; w32_close_handle(entry.event); return (r == WAIT_OBJECT_0) ? 0 : ETIMEDOUT; } static int native_cond_wait(rb_thread_cond_t *cond, rb_thread_lock_t *mutex) { return __cond_timedwait(cond, mutex, INFINITE); } static unsigned long abs_timespec_to_timeout_ms(struct timespec *ts) { struct timeval tv; struct timeval now; gettimeofday(&now, NULL); tv.tv_sec = ts->tv_sec; tv.tv_usec = ts->tv_nsec / 1000; if (!rb_w32_time_subtract(&tv, &now)) return 0; return (tv.tv_sec * 1000) + (tv.tv_usec / 1000); } static int native_cond_timedwait(rb_thread_cond_t *cond, rb_thread_lock_t *mutex, struct timespec *ts) { unsigned long timeout_ms; timeout_ms = abs_timespec_to_timeout_ms(ts); if (!timeout_ms) return ETIMEDOUT; return __cond_timedwait(cond, mutex, timeout_ms); } #if SIZEOF_TIME_T == SIZEOF_LONG typedef unsigned long unsigned_time_t; #elif SIZEOF_TIME_T == SIZEOF_INT typedef unsigned int unsigned_time_t; #elif SIZEOF_TIME_T == SIZEOF_LONG_LONG typedef unsigned LONG_LONG unsigned_time_t; #else # error cannot find integer type which size is same as time_t. #endif #define TIMET_MAX (~(time_t)0 <= 0 ? (time_t)((~(unsigned_time_t)0) >> 1) : (time_t)(~(unsigned_time_t)0)) static struct timespec native_cond_timeout(rb_thread_cond_t *cond, struct timespec timeout_rel) { int ret; struct timeval tv; struct timespec timeout; struct timespec now; ret = gettimeofday(&tv, 0); if (ret != 0) rb_sys_fail(0); now.tv_sec = tv.tv_sec; now.tv_nsec = tv.tv_usec * 1000; timeout.tv_sec = now.tv_sec; timeout.tv_nsec = now.tv_nsec; timeout.tv_sec += timeout_rel.tv_sec; timeout.tv_nsec += timeout_rel.tv_nsec; if (timeout.tv_nsec >= 1000*1000*1000) { timeout.tv_sec++; timeout.tv_nsec -= 1000*1000*1000; } if (timeout.tv_sec < now.tv_sec) timeout.tv_sec = TIMET_MAX; return timeout; } static void native_cond_initialize(rb_thread_cond_t *cond, int flags) { cond->next = (struct cond_event_entry *)cond; cond->prev = (struct cond_event_entry *)cond; } static void native_cond_destroy(rb_thread_cond_t *cond) { /* */ } void ruby_init_stack(volatile VALUE *addr) { } #define CHECK_ERR(expr) \ {if (!(expr)) {rb_bug("err: %lu - %s", GetLastError(), #expr);}} static void native_thread_init_stack(rb_thread_t *th) { MEMORY_BASIC_INFORMATION mi; char *base, *end; DWORD size, space; CHECK_ERR(VirtualQuery(&mi, &mi, sizeof(mi))); base = mi.AllocationBase; end = mi.BaseAddress; end += mi.RegionSize; size = end - base; space = size / 5; if (space > 1024*1024) space = 1024*1024; th->machine_stack_start = (VALUE *)end - 1; th->machine_stack_maxsize = size - space; } #ifndef InterlockedExchangePointer #define InterlockedExchangePointer(t, v) \ (void *)InterlockedExchange((long *)(t), (long)(v)) #endif static void native_thread_destroy(rb_thread_t *th) { HANDLE intr = InterlockedExchangePointer(&th->native_thread_data.interrupt_event, 0); thread_debug("close handle - intr: %p, thid: %p\n", intr, th->thread_id); w32_close_handle(intr); } static unsigned long _stdcall thread_start_func_1(void *th_ptr) { rb_thread_t *th = th_ptr; volatile HANDLE thread_id = th->thread_id; native_thread_init_stack(th); th->native_thread_data.interrupt_event = CreateEvent(0, TRUE, FALSE, 0); /* run */ thread_debug("thread created (th: %p, thid: %p, event: %p)\n", th, th->thread_id, th->native_thread_data.interrupt_event); thread_start_func_2(th, th->machine_stack_start, rb_ia64_bsp()); w32_close_handle(thread_id); thread_debug("thread deleted (th: %p)\n", th); return 0; } static int native_thread_create(rb_thread_t *th) { size_t stack_size = 4 * 1024; /* 4KB */ th->thread_id = w32_create_thread(stack_size, thread_start_func_1, th); if ((th->thread_id) == 0) { return thread_errno; } w32_resume_thread(th->thread_id); if (THREAD_DEBUG) { Sleep(0); thread_debug("create: (th: %p, thid: %p, intr: %p), stack size: %"PRIdSIZE"\n", th, th->thread_id, th->native_thread_data.interrupt_event, stack_size); } return 0; } static void native_thread_join(HANDLE th) { w32_wait_events(&th, 1, INFINITE, 0); } #if USE_NATIVE_THREAD_PRIORITY static void native_thread_apply_priority(rb_thread_t *th) { int priority = th->priority; if (th->priority > 0) { priority = THREAD_PRIORITY_ABOVE_NORMAL; } else if (th->priority < 0) { priority = THREAD_PRIORITY_BELOW_NORMAL; } else { priority = THREAD_PRIORITY_NORMAL; } SetThreadPriority(th->thread_id, priority); } #endif /* USE_NATIVE_THREAD_PRIORITY */ int rb_w32_select_with_thread(int, fd_set *, fd_set *, fd_set *, struct timeval *, void *); /* @internal */ static int native_fd_select(int n, rb_fdset_t *readfds, rb_fdset_t *writefds, rb_fdset_t *exceptfds, struct timeval *timeout, rb_thread_t *th) { fd_set *r = NULL, *w = NULL, *e = NULL; if (readfds) { rb_fd_resize(n - 1, readfds); r = rb_fd_ptr(readfds); } if (writefds) { rb_fd_resize(n - 1, writefds); w = rb_fd_ptr(writefds); } if (exceptfds) { rb_fd_resize(n - 1, exceptfds); e = rb_fd_ptr(exceptfds); } return rb_w32_select_with_thread(n, r, w, e, timeout, th); } /* @internal */ int rb_w32_check_interrupt(rb_thread_t *th) { return w32_wait_events(0, 0, 0, th); } static void ubf_handle(void *ptr) { rb_thread_t *th = (rb_thread_t *)ptr; thread_debug("ubf_handle: %p\n", th); w32_set_event(th->native_thread_data.interrupt_event); } static HANDLE timer_thread_id = 0; static HANDLE timer_thread_lock; static unsigned long _stdcall timer_thread_func(void *dummy) { thread_debug("timer_thread\n"); while (WaitForSingleObject(timer_thread_lock, TIME_QUANTUM_USEC/1000) == WAIT_TIMEOUT) { timer_thread_function(dummy); } thread_debug("timer killed\n"); return 0; } void rb_thread_wakeup_timer_thread(void) { /* do nothing */ } static void rb_thread_create_timer_thread(void) { if (timer_thread_id == 0) { if (!timer_thread_lock) { timer_thread_lock = CreateEvent(0, TRUE, FALSE, 0); } timer_thread_id = w32_create_thread(1024 + (THREAD_DEBUG ? BUFSIZ : 0), timer_thread_func, 0); w32_resume_thread(timer_thread_id); } } static int native_stop_timer_thread(int close_anyway) { int stopped = --system_working <= 0; if (stopped) { SetEvent(timer_thread_lock); native_thread_join(timer_thread_id); CloseHandle(timer_thread_lock); timer_thread_lock = 0; } return stopped; } static void native_reset_timer_thread(void) { if (timer_thread_id) { CloseHandle(timer_thread_id); timer_thread_id = 0; } } #ifdef RUBY_ALLOCA_CHKSTK void ruby_alloca_chkstk(size_t len, void *sp) { if (ruby_stack_length(NULL) * sizeof(VALUE) >= len) { rb_thread_t *th = GET_THREAD(); if (!rb_thread_raised_p(th, RAISED_STACKOVERFLOW)) { rb_thread_raised_set(th, RAISED_STACKOVERFLOW); rb_exc_raise(sysstack_error); } } } #endif int rb_reserved_fd_p(int fd) { return 0; } #endif /* THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION */