/********************************************************************** object.c - $Author: naruse $ created at: Thu Jul 15 12:01:24 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby/ruby.h" #include "ruby/st.h" #include "ruby/util.h" #include #include #include #include #include #include "constant.h" #include "internal.h" VALUE rb_cBasicObject; VALUE rb_mKernel; VALUE rb_cObject; VALUE rb_cModule; VALUE rb_cClass; VALUE rb_cData; VALUE rb_cNilClass; VALUE rb_cTrueClass; VALUE rb_cFalseClass; static ID id_eq, id_eql, id_match, id_inspect; static ID id_init_copy, id_init_clone, id_init_dup; /* * call-seq: * obj === other -> true or false * * Case Equality---For class Object, effectively the same * as calling #==, but typically overridden by descendants * to provide meaningful semantics in case statements. */ VALUE rb_equal(VALUE obj1, VALUE obj2) { VALUE result; if (obj1 == obj2) return Qtrue; result = rb_funcall(obj1, id_eq, 1, obj2); if (RTEST(result)) return Qtrue; return Qfalse; } int rb_eql(VALUE obj1, VALUE obj2) { return RTEST(rb_funcall(obj1, id_eql, 1, obj2)); } /* * call-seq: * obj == other -> true or false * obj.equal?(other) -> true or false * obj.eql?(other) -> true or false * * Equality---At the Object level, == returns * true only if obj and other are the * same object. Typically, this method is overridden in descendant * classes to provide class-specific meaning. * * Unlike ==, the equal? method should never be * overridden by subclasses: it is used to determine object identity * (that is, a.equal?(b) iff a is the same * object as b). * * The eql? method returns true if * obj and anObject have the same value. Used by * Hash to test members for equality. For objects of * class Object, eql? is synonymous with * ==. Subclasses normally continue this tradition, but * there are exceptions. Numeric types, for example, * perform type conversion across ==, but not across * eql?, so: * * 1 == 1.0 #=> true * 1.eql? 1.0 #=> false */ VALUE rb_obj_equal(VALUE obj1, VALUE obj2) { if (obj1 == obj2) return Qtrue; return Qfalse; } /* * Generates a Fixnum hash value for this object. * This function must have the property that a.eql?(b) implies * a.hash == b.hash. * The hash value is used by class Hash. * Any hash value that exceeds the capacity of a Fixnum will be * truncated before being used. * * "waffle".hash #=> -910576647 */ VALUE rb_obj_hash(VALUE obj) { VALUE oid = rb_obj_id(obj); st_index_t h = rb_hash_end(rb_hash_start(NUM2LONG(oid))); return LONG2FIX(h); } /* * call-seq: * !obj -> true or false * * Boolean negate. */ VALUE rb_obj_not(VALUE obj) { return RTEST(obj) ? Qfalse : Qtrue; } /* * call-seq: * obj != other -> true or false * * Returns true if two objects are not-equal, otherwise false. */ VALUE rb_obj_not_equal(VALUE obj1, VALUE obj2) { VALUE result = rb_funcall(obj1, id_eq, 1, obj2); return RTEST(result) ? Qfalse : Qtrue; } VALUE rb_class_real(VALUE cl) { if (cl == 0) return 0; while ((RBASIC(cl)->flags & FL_SINGLETON) || BUILTIN_TYPE(cl) == T_ICLASS) { cl = RCLASS_SUPER(cl); } return cl; } /* * call-seq: * obj.class -> class * * Returns the class of obj. This method must always be * called with an explicit receiver, as class is also a * reserved word in Ruby. * * 1.class #=> Fixnum * self.class #=> Object */ VALUE rb_obj_class(VALUE obj) { return rb_class_real(CLASS_OF(obj)); } /* * call-seq: * obj.singleton_class -> class * * Returns the singleton class of obj. This method creates * a new singleton class if obj does not have it. * * If obj is nil, true, or * false, it returns NilClass, TrueClass, or FalseClass, * respectively. * If obj is a Fixnum or a Symbol, it raises a TypeError. * * Object.new.singleton_class #=> #> * String.singleton_class #=> # * nil.singleton_class #=> NilClass */ static VALUE rb_obj_singleton_class(VALUE obj) { return rb_singleton_class(obj); } static void init_copy(VALUE dest, VALUE obj) { if (OBJ_FROZEN(dest)) { rb_raise(rb_eTypeError, "[bug] frozen object (%s) allocated", rb_obj_classname(dest)); } RBASIC(dest)->flags &= ~(T_MASK|FL_EXIVAR); RBASIC(dest)->flags |= RBASIC(obj)->flags & (T_MASK|FL_EXIVAR|FL_TAINT|FL_UNTRUSTED); rb_copy_generic_ivar(dest, obj); rb_gc_copy_finalizer(dest, obj); switch (TYPE(obj)) { case T_OBJECT: if (!(RBASIC(dest)->flags & ROBJECT_EMBED) && ROBJECT_IVPTR(dest)) { xfree(ROBJECT_IVPTR(dest)); ROBJECT(dest)->as.heap.ivptr = 0; ROBJECT(dest)->as.heap.numiv = 0; ROBJECT(dest)->as.heap.iv_index_tbl = 0; } if (RBASIC(obj)->flags & ROBJECT_EMBED) { MEMCPY(ROBJECT(dest)->as.ary, ROBJECT(obj)->as.ary, VALUE, ROBJECT_EMBED_LEN_MAX); RBASIC(dest)->flags |= ROBJECT_EMBED; } else { long len = ROBJECT(obj)->as.heap.numiv; VALUE *ptr = ALLOC_N(VALUE, len); MEMCPY(ptr, ROBJECT(obj)->as.heap.ivptr, VALUE, len); ROBJECT(dest)->as.heap.ivptr = ptr; ROBJECT(dest)->as.heap.numiv = len; ROBJECT(dest)->as.heap.iv_index_tbl = ROBJECT(obj)->as.heap.iv_index_tbl; RBASIC(dest)->flags &= ~ROBJECT_EMBED; } break; case T_CLASS: case T_MODULE: if (RCLASS_IV_TBL(dest)) { st_free_table(RCLASS_IV_TBL(dest)); RCLASS_IV_TBL(dest) = 0; } if (RCLASS_CONST_TBL(dest)) { rb_free_const_table(RCLASS_CONST_TBL(dest)); RCLASS_CONST_TBL(dest) = 0; } if (RCLASS_IV_TBL(obj)) { RCLASS_IV_TBL(dest) = st_copy(RCLASS_IV_TBL(obj)); } break; } } /* * call-seq: * obj.clone -> an_object * * Produces a shallow copy of obj---the instance variables of * obj are copied, but not the objects they reference. Copies * the frozen and tainted state of obj. See also the discussion * under Object#dup. * * class Klass * attr_accessor :str * end * s1 = Klass.new #=> # * s1.str = "Hello" #=> "Hello" * s2 = s1.clone #=> # * s2.str[1,4] = "i" #=> "i" * s1.inspect #=> "#" * s2.inspect #=> "#" * * This method may have class-specific behavior. If so, that * behavior will be documented under the #+initialize_copy+ method of * the class. */ VALUE rb_obj_clone(VALUE obj) { VALUE clone; if (rb_special_const_p(obj)) { rb_raise(rb_eTypeError, "can't clone %s", rb_obj_classname(obj)); } clone = rb_obj_alloc(rb_obj_class(obj)); RBASIC(clone)->klass = rb_singleton_class_clone(obj); RBASIC(clone)->flags = (RBASIC(obj)->flags | FL_TEST(clone, FL_TAINT) | FL_TEST(clone, FL_UNTRUSTED)) & ~(FL_FREEZE|FL_FINALIZE|FL_MARK); init_copy(clone, obj); rb_funcall(clone, id_init_clone, 1, obj); RBASIC(clone)->flags |= RBASIC(obj)->flags & FL_FREEZE; return clone; } /* * call-seq: * obj.dup -> an_object * * Produces a shallow copy of obj---the instance variables of * obj are copied, but not the objects they reference. * dup copies the tainted state of obj. See also * the discussion under Object#clone. In general, * clone and dup may have different semantics * in descendant classes. While clone is used to duplicate * an object, including its internal state, dup typically * uses the class of the descendant object to create the new instance. * * This method may have class-specific behavior. If so, that * behavior will be documented under the #+initialize_copy+ method of * the class. */ VALUE rb_obj_dup(VALUE obj) { VALUE dup; if (rb_special_const_p(obj)) { rb_raise(rb_eTypeError, "can't dup %s", rb_obj_classname(obj)); } dup = rb_obj_alloc(rb_obj_class(obj)); init_copy(dup, obj); rb_funcall(dup, id_init_dup, 1, obj); return dup; } /* :nodoc: */ VALUE rb_obj_init_copy(VALUE obj, VALUE orig) { if (obj == orig) return obj; rb_check_frozen(obj); if (TYPE(obj) != TYPE(orig) || rb_obj_class(obj) != rb_obj_class(orig)) { rb_raise(rb_eTypeError, "initialize_copy should take same class object"); } return obj; } /* :nodoc: */ VALUE rb_obj_init_dup_clone(VALUE obj, VALUE orig) { rb_funcall(obj, id_init_copy, 1, orig); return obj; } /* * call-seq: * obj.to_s -> string * * Returns a string representing obj. The default * to_s prints the object's class and an encoding of the * object id. As a special case, the top-level object that is the * initial execution context of Ruby programs returns ``main.'' */ VALUE rb_any_to_s(VALUE obj) { const char *cname = rb_obj_classname(obj); VALUE str; str = rb_sprintf("#<%s:%p>", cname, (void*)obj); OBJ_INFECT(str, obj); return str; } VALUE rb_inspect(VALUE obj) { return rb_obj_as_string(rb_funcall(obj, id_inspect, 0, 0)); } static int inspect_i(ID id, VALUE value, VALUE str) { VALUE str2; const char *ivname; /* need not to show internal data */ if (CLASS_OF(value) == 0) return ST_CONTINUE; if (!rb_is_instance_id(id)) return ST_CONTINUE; if (RSTRING_PTR(str)[0] == '-') { /* first element */ RSTRING_PTR(str)[0] = '#'; rb_str_cat2(str, " "); } else { rb_str_cat2(str, ", "); } ivname = rb_id2name(id); rb_str_cat2(str, ivname); rb_str_cat2(str, "="); str2 = rb_inspect(value); rb_str_append(str, str2); OBJ_INFECT(str, str2); return ST_CONTINUE; } static VALUE inspect_obj(VALUE obj, VALUE str, int recur) { if (recur) { rb_str_cat2(str, " ..."); } else { rb_ivar_foreach(obj, inspect_i, str); } rb_str_cat2(str, ">"); RSTRING_PTR(str)[0] = '#'; OBJ_INFECT(str, obj); return str; } /* * call-seq: * obj.inspect -> string * * Returns a string containing a human-readable representation of * obj. If not overridden and no instance variables, uses the * to_s method to generate the string. * obj. If not overridden, uses the to_s method to * generate the string. * * [ 1, 2, 3..4, 'five' ].inspect #=> "[1, 2, 3..4, \"five\"]" * Time.new.inspect #=> "2008-03-08 19:43:39 +0900" */ static VALUE rb_obj_inspect(VALUE obj) { if (TYPE(obj) == T_OBJECT && rb_obj_basic_to_s_p(obj)) { int has_ivar = 0; VALUE *ptr = ROBJECT_IVPTR(obj); long len = ROBJECT_NUMIV(obj); long i; for (i = 0; i < len; i++) { if (ptr[i] != Qundef) { has_ivar = 1; break; } } if (has_ivar) { VALUE str; const char *c = rb_obj_classname(obj); str = rb_sprintf("-<%s:%p", c, (void*)obj); return rb_exec_recursive(inspect_obj, obj, str); } return rb_any_to_s(obj); } return rb_funcall(obj, rb_intern("to_s"), 0, 0); } /* * call-seq: * obj.instance_of?(class) -> true or false * * Returns true if obj is an instance of the given * class. See also Object#kind_of?. * * class A; end * class B < A; end * class C < B; end * * b = B.new * b.instance_of? A #=> false * b.instance_of? B #=> true * b.instance_of? C #=> false */ VALUE rb_obj_is_instance_of(VALUE obj, VALUE c) { switch (TYPE(c)) { case T_MODULE: case T_CLASS: case T_ICLASS: break; default: rb_raise(rb_eTypeError, "class or module required"); } if (rb_obj_class(obj) == c) return Qtrue; return Qfalse; } /* * call-seq: * obj.is_a?(class) -> true or false * obj.kind_of?(class) -> true or false * * Returns true if class is the class of * obj, or if class is one of the superclasses of * obj or modules included in obj. * * module M; end * class A * include M * end * class B < A; end * class C < B; end * * b = B.new * b.is_a? A #=> true * b.is_a? B #=> true * b.is_a? C #=> false * b.is_a? M #=> true * * b.kind_of? A #=> true * b.kind_of? B #=> true * b.kind_of? C #=> false * b.kind_of? M #=> true */ VALUE rb_obj_is_kind_of(VALUE obj, VALUE c) { VALUE cl = CLASS_OF(obj); switch (TYPE(c)) { case T_MODULE: case T_CLASS: case T_ICLASS: break; default: rb_raise(rb_eTypeError, "class or module required"); } while (cl) { if (cl == c || RCLASS_M_TBL(cl) == RCLASS_M_TBL(c)) return Qtrue; cl = RCLASS_SUPER(cl); } return Qfalse; } /* * call-seq: * obj.tap{|x|...} -> obj * * Yields x to the block, and then returns x. * The primary purpose of this method is to "tap into" a method chain, * in order to perform operations on intermediate results within the chain. * * (1..10) .tap {|x| puts "original: #{x.inspect}"} * .to_a .tap {|x| puts "array: #{x.inspect}"} * .select {|x| x%2==0} .tap {|x| puts "evens: #{x.inspect}"} * .map { |x| x*x } .tap {|x| puts "squares: #{x.inspect}"} * */ VALUE rb_obj_tap(VALUE obj) { rb_yield(obj); return obj; } /* * Document-method: inherited * * call-seq: * inherited(subclass) * * Callback invoked whenever a subclass of the current class is created. * * Example: * * class Foo * def self.inherited(subclass) * puts "New subclass: #{subclass}" * end * end * * class Bar < Foo * end * * class Baz < Bar * end * * produces: * * New subclass: Bar * New subclass: Baz */ /* Document-method: method_added * * call-seq: * method_added(method_name) * * Invoked as a callback whenever an instance method is added to the * receiver. * * module Chatty * def self.method_added(method_name) * puts "Adding #{method_name.inspect}" * end * def self.some_class_method() end * def some_instance_method() end * end * * produces: * * Adding :some_instance_method * */ /* Document-method: method_removed * * call-seq: * method_removed(method_name) * * Invoked as a callback whenever an instance method is removed from the * receiver. * * module Chatty * def self.method_removed(method_name) * puts "Removing #{method_name.inspect}" * end * def self.some_class_method() end * def some_instance_method() end * class << self * remove_method :some_class_method * end * remove_method :some_instance_method * end * * produces: * * Removing :some_instance_method * */ /* * Document-method: singleton_method_added * * call-seq: * singleton_method_added(symbol) * * Invoked as a callback whenever a singleton method is added to the * receiver. * * module Chatty * def Chatty.singleton_method_added(id) * puts "Adding #{id.id2name}" * end * def self.one() end * def two() end * def Chatty.three() end * end * * produces: * * Adding singleton_method_added * Adding one * Adding three * */ /* * Document-method: singleton_method_removed * * call-seq: * singleton_method_removed(symbol) * * Invoked as a callback whenever a singleton method is removed from * the receiver. * * module Chatty * def Chatty.singleton_method_removed(id) * puts "Removing #{id.id2name}" * end * def self.one() end * def two() end * def Chatty.three() end * class << self * remove_method :three * remove_method :one * end * end * * produces: * * Removing three * Removing one */ /* * Document-method: singleton_method_undefined * * call-seq: * singleton_method_undefined(symbol) * * Invoked as a callback whenever a singleton method is undefined in * the receiver. * * module Chatty * def Chatty.singleton_method_undefined(id) * puts "Undefining #{id.id2name}" * end * def Chatty.one() end * class << self * undef_method(:one) * end * end * * produces: * * Undefining one */ /* * Document-method: included * * call-seq: * included( othermod ) * * Callback invoked whenever the receiver is included in another * module or class. This should be used in preference to * Module.append_features if your code wants to perform some * action when a module is included in another. * * module A * def A.included(mod) * puts "#{self} included in #{mod}" * end * end * module Enumerable * include A * end */ /* * Document-method: initialize * * call-seq: * BasicObject.new * * Returns a new BasicObject. */ /* * Not documented */ static VALUE rb_obj_dummy(void) { return Qnil; } /* * call-seq: * obj.tainted? -> true or false * * Returns true if the object is tainted. */ VALUE rb_obj_tainted(VALUE obj) { if (OBJ_TAINTED(obj)) return Qtrue; return Qfalse; } /* * call-seq: * obj.taint -> obj * * Marks obj as tainted---if the $SAFE level is * set appropriately, many method calls which might alter the running * programs environment will refuse to accept tainted strings. */ VALUE rb_obj_taint(VALUE obj) { rb_secure(4); if (!OBJ_TAINTED(obj)) { rb_check_frozen(obj); OBJ_TAINT(obj); } return obj; } /* * call-seq: * obj.untaint -> obj * * Removes the taint from obj. */ VALUE rb_obj_untaint(VALUE obj) { rb_secure(3); if (OBJ_TAINTED(obj)) { rb_check_frozen(obj); FL_UNSET(obj, FL_TAINT); } return obj; } /* * call-seq: * obj.untrusted? -> true or false * * Returns true if the object is untrusted. */ VALUE rb_obj_untrusted(VALUE obj) { if (OBJ_UNTRUSTED(obj)) return Qtrue; return Qfalse; } /* * call-seq: * obj.untrust -> obj * * Marks obj as untrusted. */ VALUE rb_obj_untrust(VALUE obj) { rb_secure(4); if (!OBJ_UNTRUSTED(obj)) { rb_check_frozen(obj); OBJ_UNTRUST(obj); } return obj; } /* * call-seq: * obj.trust -> obj * * Removes the untrusted mark from obj. */ VALUE rb_obj_trust(VALUE obj) { rb_secure(3); if (OBJ_UNTRUSTED(obj)) { rb_check_frozen(obj); FL_UNSET(obj, FL_UNTRUSTED); } return obj; } void rb_obj_infect(VALUE obj1, VALUE obj2) { OBJ_INFECT(obj1, obj2); } static st_table *immediate_frozen_tbl = 0; /* * call-seq: * obj.freeze -> obj * * Prevents further modifications to obj. A * RuntimeError will be raised if modification is attempted. * There is no way to unfreeze a frozen object. See also * Object#frozen?. * * This method returns self. * * a = [ "a", "b", "c" ] * a.freeze * a << "z" * * produces: * * prog.rb:3:in `<<': can't modify frozen array (RuntimeError) * from prog.rb:3 */ VALUE rb_obj_freeze(VALUE obj) { if (!OBJ_FROZEN(obj)) { if (rb_safe_level() >= 4 && !OBJ_UNTRUSTED(obj)) { rb_raise(rb_eSecurityError, "Insecure: can't freeze object"); } OBJ_FREEZE(obj); if (SPECIAL_CONST_P(obj)) { if (!immediate_frozen_tbl) { immediate_frozen_tbl = st_init_numtable(); } st_insert(immediate_frozen_tbl, obj, (st_data_t)Qtrue); } } return obj; } /* * call-seq: * obj.frozen? -> true or false * * Returns the freeze status of obj. * * a = [ "a", "b", "c" ] * a.freeze #=> ["a", "b", "c"] * a.frozen? #=> true */ VALUE rb_obj_frozen_p(VALUE obj) { if (OBJ_FROZEN(obj)) return Qtrue; if (SPECIAL_CONST_P(obj)) { if (!immediate_frozen_tbl) return Qfalse; if (st_lookup(immediate_frozen_tbl, obj, 0)) return Qtrue; } return Qfalse; } /* * Document-class: NilClass * * The class of the singleton object nil. */ /* * call-seq: * nil.to_i -> 0 * * Always returns zero. * * nil.to_i #=> 0 */ static VALUE nil_to_i(VALUE obj) { return INT2FIX(0); } /* * call-seq: * nil.to_f -> 0.0 * * Always returns zero. * * nil.to_f #=> 0.0 */ static VALUE nil_to_f(VALUE obj) { return DBL2NUM(0.0); } /* * call-seq: * nil.to_s -> "" * * Always returns the empty string. */ static VALUE nil_to_s(VALUE obj) { return rb_usascii_str_new(0, 0); } /* * Document-method: to_a * * call-seq: * nil.to_a -> [] * * Always returns an empty array. * * nil.to_a #=> [] */ static VALUE nil_to_a(VALUE obj) { return rb_ary_new2(0); } /* * call-seq: * nil.inspect -> "nil" * * Always returns the string "nil". */ static VALUE nil_inspect(VALUE obj) { return rb_usascii_str_new2("nil"); } /*********************************************************************** * Document-class: TrueClass * * The global value true is the only instance of class * TrueClass and represents a logically true value in * boolean expressions. The class provides operators allowing * true to be used in logical expressions. */ /* * call-seq: * true.to_s -> "true" * * The string representation of true is "true". */ static VALUE true_to_s(VALUE obj) { return rb_usascii_str_new2("true"); } /* * call-seq: * true & obj -> true or false * * And---Returns false if obj is * nil or false, true otherwise. */ static VALUE true_and(VALUE obj, VALUE obj2) { return RTEST(obj2)?Qtrue:Qfalse; } /* * call-seq: * true | obj -> true * * Or---Returns true. As anObject is an argument to * a method call, it is always evaluated; there is no short-circuit * evaluation in this case. * * true | puts("or") * true || puts("logical or") * * produces: * * or */ static VALUE true_or(VALUE obj, VALUE obj2) { return Qtrue; } /* * call-seq: * true ^ obj -> !obj * * Exclusive Or---Returns true if obj is * nil or false, false * otherwise. */ static VALUE true_xor(VALUE obj, VALUE obj2) { return RTEST(obj2)?Qfalse:Qtrue; } /* * Document-class: FalseClass * * The global value false is the only instance of class * FalseClass and represents a logically false value in * boolean expressions. The class provides operators allowing * false to participate correctly in logical expressions. * */ /* * call-seq: * false.to_s -> "false" * * 'nuf said... */ static VALUE false_to_s(VALUE obj) { return rb_usascii_str_new2("false"); } /* * call-seq: * false & obj -> false * nil & obj -> false * * And---Returns false. obj is always * evaluated as it is the argument to a method call---there is no * short-circuit evaluation in this case. */ static VALUE false_and(VALUE obj, VALUE obj2) { return Qfalse; } /* * call-seq: * false | obj -> true or false * nil | obj -> true or false * * Or---Returns false if obj is * nil or false; true otherwise. */ static VALUE false_or(VALUE obj, VALUE obj2) { return RTEST(obj2)?Qtrue:Qfalse; } /* * call-seq: * false ^ obj -> true or false * nil ^ obj -> true or false * * Exclusive Or---If obj is nil or * false, returns false; otherwise, returns * true. * */ static VALUE false_xor(VALUE obj, VALUE obj2) { return RTEST(obj2)?Qtrue:Qfalse; } /* * call_seq: * nil.nil? -> true * * Only the object nil responds true to nil?. */ static VALUE rb_true(VALUE obj) { return Qtrue; } /* * call_seq: * nil.nil? -> true * .nil? -> false * * Only the object nil responds true to nil?. */ static VALUE rb_false(VALUE obj) { return Qfalse; } /* * call-seq: * obj =~ other -> nil * * Pattern Match---Overridden by descendants (notably * Regexp and String) to provide meaningful * pattern-match semantics. */ static VALUE rb_obj_match(VALUE obj1, VALUE obj2) { return Qnil; } /* * call-seq: * obj !~ other -> true or false * * Returns true if two objects do not match (using the =~ * method), otherwise false. */ static VALUE rb_obj_not_match(VALUE obj1, VALUE obj2) { VALUE result = rb_funcall(obj1, id_match, 1, obj2); return RTEST(result) ? Qfalse : Qtrue; } /* * call-seq: * obj <=> other -> 0 or nil * * Returns 0 if obj === other, otherwise nil. */ static VALUE rb_obj_cmp(VALUE obj1, VALUE obj2) { if (obj1 == obj2 || rb_equal(obj1, obj2)) return INT2FIX(0); return Qnil; } /*********************************************************************** * * Document-class: Module * * A Module is a collection of methods and constants. The * methods in a module may be instance methods or module methods. * Instance methods appear as methods in a class when the module is * included, module methods do not. Conversely, module methods may be * called without creating an encapsulating object, while instance * methods may not. (See Module#module_function) * * In the descriptions that follow, the parameter sym refers * to a symbol, which is either a quoted string or a * Symbol (such as :name). * * module Mod * include Math * CONST = 1 * def meth * # ... * end * end * Mod.class #=> Module * Mod.constants #=> [:CONST, :PI, :E] * Mod.instance_methods #=> [:meth] * */ /* * call-seq: * mod.to_s -> string * * Return a string representing this module or class. For basic * classes and modules, this is the name. For singletons, we * show information on the thing we're attached to as well. */ static VALUE rb_mod_to_s(VALUE klass) { if (FL_TEST(klass, FL_SINGLETON)) { VALUE s = rb_usascii_str_new2("#<"); VALUE v = rb_iv_get(klass, "__attached__"); rb_str_cat2(s, "Class:"); switch (TYPE(v)) { case T_CLASS: case T_MODULE: rb_str_append(s, rb_inspect(v)); break; default: rb_str_append(s, rb_any_to_s(v)); break; } rb_str_cat2(s, ">"); return s; } return rb_str_dup(rb_class_name(klass)); } /* * call-seq: * mod.freeze -> mod * * Prevents further modifications to mod. * * This method returns self. */ static VALUE rb_mod_freeze(VALUE mod) { rb_class_name(mod); return rb_obj_freeze(mod); } /* * call-seq: * mod === obj -> true or false * * Case Equality---Returns true if anObject is an * instance of mod or one of mod's descendants. Of * limited use for modules, but can be used in case * statements to classify objects by class. */ static VALUE rb_mod_eqq(VALUE mod, VALUE arg) { return rb_obj_is_kind_of(arg, mod); } /* * call-seq: * mod <= other -> true, false, or nil * * Returns true if mod is a subclass of other or * is the same as other. Returns * nil if there's no relationship between the two. * (Think of the relationship in terms of the class definition: * "class A arg */ while (arg) { if (RCLASS_M_TBL(arg) == RCLASS_M_TBL(start)) return Qfalse; arg = RCLASS_SUPER(arg); } return Qnil; } /* * call-seq: * mod < other -> true, false, or nil * * Returns true if mod is a subclass of other. Returns * nil if there's no relationship between the two. * (Think of the relationship in terms of the class definition: * "class A= other -> true, false, or nil * * Returns true if mod is an ancestor of other, or the * two modules are the same. Returns * nil if there's no relationship between the two. * (Think of the relationship in terms of the class definition: * "class AA"). * */ static VALUE rb_mod_ge(VALUE mod, VALUE arg) { switch (TYPE(arg)) { case T_MODULE: case T_CLASS: break; default: rb_raise(rb_eTypeError, "compared with non class/module"); } return rb_class_inherited_p(arg, mod); } /* * call-seq: * mod > other -> true, false, or nil * * Returns true if mod is an ancestor of other. Returns * nil if there's no relationship between the two. * (Think of the relationship in terms of the class definition: * "class AA"). * */ static VALUE rb_mod_gt(VALUE mod, VALUE arg) { if (mod == arg) return Qfalse; return rb_mod_ge(mod, arg); } /* * call-seq: * mod <=> other_mod -> -1, 0, +1, or nil * * Comparison---Returns -1 if mod includes other_mod, 0 if * mod is the same as other_mod, and +1 if mod is * included by other_mod. Returns nil if mod * has no relationship with other_mod or if other_mod is * not a module. */ static VALUE rb_mod_cmp(VALUE mod, VALUE arg) { VALUE cmp; if (mod == arg) return INT2FIX(0); switch (TYPE(arg)) { case T_MODULE: case T_CLASS: break; default: return Qnil; } cmp = rb_class_inherited_p(mod, arg); if (NIL_P(cmp)) return Qnil; if (cmp) { return INT2FIX(-1); } return INT2FIX(1); } static VALUE rb_module_s_alloc(VALUE klass) { VALUE mod = rb_module_new(); RBASIC(mod)->klass = klass; return mod; } static VALUE rb_class_s_alloc(VALUE klass) { return rb_class_boot(0); } /* * call-seq: * Module.new -> mod * Module.new {|mod| block } -> mod * * Creates a new anonymous module. If a block is given, it is passed * the module object, and the block is evaluated in the context of this * module using module_eval. * * fred = Module.new do * def meth1 * "hello" * end * def meth2 * "bye" * end * end * a = "my string" * a.extend(fred) #=> "my string" * a.meth1 #=> "hello" * a.meth2 #=> "bye" * * Assign the module to a constant (name starting uppercase) if you * want to treat it like a regular module. */ static VALUE rb_mod_initialize(VALUE module) { if (rb_block_given_p()) { rb_mod_module_exec(1, &module, module); } return Qnil; } /* * call-seq: * Class.new(super_class=Object) -> a_class * Class.new(super_class=Object) { |mod| ... } -> a_class * * Creates a new anonymous (unnamed) class with the given superclass * (or Object if no parameter is given). You can give a * class a name by assigning the class object to a constant. * * If a block is given, it is passed the class object, and the block * is evaluated in the context of this class using * class_eval. * * fred = Class.new do * def meth1 * "hello" * end * def meth2 * "bye" * end * end * * a = fred.new #=> #<#:0x100376b98> * a.meth1 #=> "hello" * a.meth2 #=> "bye" * * Assign the class to a constant (name starting uppercase) if you * want to treat it like a regular class. */ static VALUE rb_class_initialize(int argc, VALUE *argv, VALUE klass) { VALUE super; if (RCLASS_SUPER(klass) != 0 || klass == rb_cBasicObject) { rb_raise(rb_eTypeError, "already initialized class"); } if (argc == 0) { super = rb_cObject; } else { rb_scan_args(argc, argv, "01", &super); rb_check_inheritable(super); } RCLASS_SUPER(klass) = super; rb_make_metaclass(klass, RBASIC(super)->klass); rb_class_inherited(super, klass); rb_mod_initialize(klass); return klass; } /* * call-seq: * class.allocate() -> obj * * Allocates space for a new object of class's class and does not * call initialize on the new instance. The returned object must be an * instance of class. * * klass = Class.new do * def initialize(*args) * @initialized = true * end * * def initialized? * @initialized || false * end * end * * klass.allocate.initialized? #=> false * */ VALUE rb_obj_alloc(VALUE klass) { VALUE obj; if (RCLASS_SUPER(klass) == 0 && klass != rb_cBasicObject) { rb_raise(rb_eTypeError, "can't instantiate uninitialized class"); } if (FL_TEST(klass, FL_SINGLETON)) { rb_raise(rb_eTypeError, "can't create instance of singleton class"); } obj = rb_funcall(klass, ID_ALLOCATOR, 0, 0); if (rb_obj_class(obj) != rb_class_real(klass)) { rb_raise(rb_eTypeError, "wrong instance allocation"); } return obj; } static VALUE rb_class_allocate_instance(VALUE klass) { NEWOBJ(obj, struct RObject); OBJSETUP(obj, klass, T_OBJECT); return (VALUE)obj; } /* * call-seq: * class.new(args, ...) -> obj * * Calls allocate to create a new object of * class's class, then invokes that object's * initialize method, passing it args. * This is the method that ends up getting called whenever * an object is constructed using .new. * */ VALUE rb_class_new_instance(int argc, VALUE *argv, VALUE klass) { VALUE obj; obj = rb_obj_alloc(klass); rb_obj_call_init(obj, argc, argv); return obj; } /* * call-seq: * class.superclass -> a_super_class or nil * * Returns the superclass of class, or nil. * * File.superclass #=> IO * IO.superclass #=> Object * Object.superclass #=> BasicObject * class Foo; end * class Bar < Foo; end * Bar.superclass #=> Foo * * returns nil when the given class hasn't a parent class: * * BasicObject.superclass #=> nil * */ VALUE rb_class_superclass(VALUE klass) { VALUE super = RCLASS_SUPER(klass); if (!super) { if (klass == rb_cBasicObject) return Qnil; rb_raise(rb_eTypeError, "uninitialized class"); } while (TYPE(super) == T_ICLASS) { super = RCLASS_SUPER(super); } if (!super) { return Qnil; } return super; } VALUE rb_class_get_superclass(VALUE klass) { return RCLASS_SUPER(klass); } /* * call-seq: * attr_reader(symbol, ...) -> nil * attr(symbol, ...) -> nil * * Creates instance variables and corresponding methods that return the * value of each instance variable. Equivalent to calling * ``attr:name'' on each name in turn. */ static VALUE rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass) { int i; for (i=0; i nil * * Creates an accessor method to allow assignment to the attribute * aSymbol.id2name. */ static VALUE rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass) { int i; for (i=0; i nil * * Defines a named attribute for this module, where the name is * symbol.id2name, creating an instance variable * (@name) and a corresponding access method to read it. * Also creates a method called name= to set the attribute. * * module Mod * attr_accessor(:one, :two) * end * Mod.instance_methods.sort #=> [:one, :one=, :two, :two=] */ static VALUE rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass) { int i; for (i=0; i obj * * Checks for a constant with the given name in mod * If +inherit+ is set, the lookup will also search * the ancestors (and +Object+ if mod is a +Module+.) * * The value of the constant is returned if a definition is found, * otherwise a +NameError+ is raised. * * Math.const_get(:PI) #=> 3.14159265358979 */ static VALUE rb_mod_const_get(int argc, VALUE *argv, VALUE mod) { VALUE name, recur; ID id; if (argc == 1) { name = argv[0]; recur = Qtrue; } else { rb_scan_args(argc, argv, "11", &name, &recur); } id = rb_to_id(name); if (!rb_is_const_id(id)) { rb_name_error(id, "wrong constant name %s", rb_id2name(id)); } return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id); } /* * call-seq: * mod.const_set(sym, obj) -> obj * * Sets the named constant to the given object, returning that object. * Creates a new constant if no constant with the given name previously * existed. * * Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714 * Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968 */ static VALUE rb_mod_const_set(VALUE mod, VALUE name, VALUE value) { ID id = rb_to_id(name); if (!rb_is_const_id(id)) { rb_name_error(id, "wrong constant name %s", rb_id2name(id)); } rb_const_set(mod, id, value); return value; } /* * call-seq: * mod.const_defined?(sym, inherit=true) -> true or false * * Checks for a constant with the given name in mod * If +inherit+ is set, the lookup will also search * the ancestors (and +Object+ if mod is a +Module+.) * * Returns whether or not a definition is found: * * Math.const_defined? "PI" #=> true * IO.const_defined? :SYNC #=> true * IO.const_defined? :SYNC, false #=> false */ static VALUE rb_mod_const_defined(int argc, VALUE *argv, VALUE mod) { VALUE name, recur; ID id; if (argc == 1) { name = argv[0]; recur = Qtrue; } else { rb_scan_args(argc, argv, "11", &name, &recur); } id = rb_to_id(name); if (!rb_is_const_id(id)) { rb_name_error(id, "wrong constant name %s", rb_id2name(id)); } return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id); } /* * call-seq: * obj.instance_variable_get(symbol) -> obj * * Returns the value of the given instance variable, or nil if the * instance variable is not set. The @ part of the * variable name should be included for regular instance * variables. Throws a NameError exception if the * supplied symbol is not valid as an instance variable name. * * class Fred * def initialize(p1, p2) * @a, @b = p1, p2 * end * end * fred = Fred.new('cat', 99) * fred.instance_variable_get(:@a) #=> "cat" * fred.instance_variable_get("@b") #=> 99 */ static VALUE rb_obj_ivar_get(VALUE obj, VALUE iv) { ID id = rb_to_id(iv); if (!rb_is_instance_id(id)) { rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id)); } return rb_ivar_get(obj, id); } /* * call-seq: * obj.instance_variable_set(symbol, obj) -> obj * * Sets the instance variable names by symbol to * object, thereby frustrating the efforts of the class's * author to attempt to provide proper encapsulation. The variable * did not have to exist prior to this call. * * class Fred * def initialize(p1, p2) * @a, @b = p1, p2 * end * end * fred = Fred.new('cat', 99) * fred.instance_variable_set(:@a, 'dog') #=> "dog" * fred.instance_variable_set(:@c, 'cat') #=> "cat" * fred.inspect #=> "#" */ static VALUE rb_obj_ivar_set(VALUE obj, VALUE iv, VALUE val) { ID id = rb_to_id(iv); if (!rb_is_instance_id(id)) { rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id)); } return rb_ivar_set(obj, id, val); } /* * call-seq: * obj.instance_variable_defined?(symbol) -> true or false * * Returns true if the given instance variable is * defined in obj. * * class Fred * def initialize(p1, p2) * @a, @b = p1, p2 * end * end * fred = Fred.new('cat', 99) * fred.instance_variable_defined?(:@a) #=> true * fred.instance_variable_defined?("@b") #=> true * fred.instance_variable_defined?("@c") #=> false */ static VALUE rb_obj_ivar_defined(VALUE obj, VALUE iv) { ID id = rb_to_id(iv); if (!rb_is_instance_id(id)) { rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id)); } return rb_ivar_defined(obj, id); } /* * call-seq: * mod.class_variable_get(symbol) -> obj * * Returns the value of the given class variable (or throws a * NameError exception). The @@ part of the * variable name should be included for regular class variables * * class Fred * @@foo = 99 * end * Fred.class_variable_get(:@@foo) #=> 99 */ static VALUE rb_mod_cvar_get(VALUE obj, VALUE iv) { ID id = rb_to_id(iv); if (!rb_is_class_id(id)) { rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id)); } return rb_cvar_get(obj, id); } /* * call-seq: * obj.class_variable_set(symbol, obj) -> obj * * Sets the class variable names by symbol to * object. * * class Fred * @@foo = 99 * def foo * @@foo * end * end * Fred.class_variable_set(:@@foo, 101) #=> 101 * Fred.new.foo #=> 101 */ static VALUE rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val) { ID id = rb_to_id(iv); if (!rb_is_class_id(id)) { rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id)); } rb_cvar_set(obj, id, val); return val; } /* * call-seq: * obj.class_variable_defined?(symbol) -> true or false * * Returns true if the given class variable is defined * in obj. * * class Fred * @@foo = 99 * end * Fred.class_variable_defined?(:@@foo) #=> true * Fred.class_variable_defined?(:@@bar) #=> false */ static VALUE rb_mod_cvar_defined(VALUE obj, VALUE iv) { ID id = rb_to_id(iv); if (!rb_is_class_id(id)) { rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id)); } return rb_cvar_defined(obj, id); } static struct conv_method_tbl { const char *method; ID id; } conv_method_names[] = { {"to_int", 0}, {"to_ary", 0}, {"to_str", 0}, {"to_sym", 0}, {"to_hash", 0}, {"to_proc", 0}, {"to_io", 0}, {"to_a", 0}, {"to_s", 0}, {NULL, 0} }; static VALUE convert_type(VALUE val, const char *tname, const char *method, int raise) { ID m = 0; int i; VALUE r; for (i=0; conv_method_names[i].method; i++) { if (conv_method_names[i].method[0] == method[0] && strcmp(conv_method_names[i].method, method) == 0) { m = conv_method_names[i].id; break; } } if (!m) m = rb_intern(method); r = rb_check_funcall(val, m, 0, 0); if (r == Qundef) { if (raise) { rb_raise(rb_eTypeError, "can't convert %s into %s", NIL_P(val) ? "nil" : val == Qtrue ? "true" : val == Qfalse ? "false" : rb_obj_classname(val), tname); } return Qnil; } return r; } VALUE rb_convert_type(VALUE val, int type, const char *tname, const char *method) { VALUE v; if (TYPE(val) == type) return val; v = convert_type(val, tname, method, TRUE); if (TYPE(v) != type) { const char *cname = rb_obj_classname(val); rb_raise(rb_eTypeError, "can't convert %s to %s (%s#%s gives %s)", cname, tname, cname, method, rb_obj_classname(v)); } return v; } VALUE rb_check_convert_type(VALUE val, int type, const char *tname, const char *method) { VALUE v; /* always convert T_DATA */ if (TYPE(val) == type && type != T_DATA) return val; v = convert_type(val, tname, method, FALSE); if (NIL_P(v)) return Qnil; if (TYPE(v) != type) { const char *cname = rb_obj_classname(val); rb_raise(rb_eTypeError, "can't convert %s to %s (%s#%s gives %s)", cname, tname, cname, method, rb_obj_classname(v)); } return v; } static VALUE rb_to_integer(VALUE val, const char *method) { VALUE v; if (FIXNUM_P(val)) return val; if (TYPE(val) == T_BIGNUM) return val; v = convert_type(val, "Integer", method, TRUE); if (!rb_obj_is_kind_of(v, rb_cInteger)) { const char *cname = rb_obj_classname(val); rb_raise(rb_eTypeError, "can't convert %s to Integer (%s#%s gives %s)", cname, cname, method, rb_obj_classname(v)); } return v; } VALUE rb_check_to_integer(VALUE val, const char *method) { VALUE v; if (FIXNUM_P(val)) return val; if (TYPE(val) == T_BIGNUM) return val; v = convert_type(val, "Integer", method, FALSE); if (!rb_obj_is_kind_of(v, rb_cInteger)) { return Qnil; } return v; } VALUE rb_to_int(VALUE val) { return rb_to_integer(val, "to_int"); } static VALUE rb_convert_to_integer(VALUE val, int base) { VALUE tmp; switch (TYPE(val)) { case T_FLOAT: if (base != 0) goto arg_error; if (RFLOAT_VALUE(val) <= (double)FIXNUM_MAX && RFLOAT_VALUE(val) >= (double)FIXNUM_MIN) { break; } return rb_dbl2big(RFLOAT_VALUE(val)); case T_FIXNUM: case T_BIGNUM: if (base != 0) goto arg_error; return val; case T_STRING: string_conv: return rb_str_to_inum(val, base, TRUE); case T_NIL: if (base != 0) goto arg_error; rb_raise(rb_eTypeError, "can't convert nil into Integer"); break; default: break; } if (base != 0) { tmp = rb_check_string_type(val); if (!NIL_P(tmp)) goto string_conv; arg_error: rb_raise(rb_eArgError, "base specified for non string value"); } tmp = convert_type(val, "Integer", "to_int", FALSE); if (NIL_P(tmp)) { return rb_to_integer(val, "to_i"); } return tmp; } VALUE rb_Integer(VALUE val) { return rb_convert_to_integer(val, 0); } /* * call-seq: * Integer(arg,base=0) -> integer * * Converts arg to a Fixnum or Bignum. * Numeric types are converted directly (with floating point numbers * being truncated). base (0, or between 2 and 36) is a base for * integer string representation. If arg is a String, * when base is omitted or equals to zero, radix indicators * (0, 0b, and 0x) are honored. * In any case, strings should be strictly conformed to numeric * representation. This behavior is different from that of * String#to_i. Non string values will be converted using * to_int, and to_i. * * Integer(123.999) #=> 123 * Integer("0x1a") #=> 26 * Integer(Time.new) #=> 1204973019 * Integer("0930", 10) #=> 930 * Integer("111", 2) #=> 7 */ static VALUE rb_f_integer(int argc, VALUE *argv, VALUE obj) { VALUE arg = Qnil; int base = 0; switch (argc) { case 2: base = NUM2INT(argv[1]); case 1: arg = argv[0]; break; default: /* should cause ArgumentError */ rb_scan_args(argc, argv, "11", NULL, NULL); } return rb_convert_to_integer(arg, base); } double rb_cstr_to_dbl(const char *p, int badcheck) { const char *q; char *end; double d; const char *ellipsis = ""; int w; enum {max_width = 20}; #define OutOfRange() ((end - p > max_width) ? \ (w = max_width, ellipsis = "...") : \ (w = (int)(end - p), ellipsis = "")) if (!p) return 0.0; q = p; while (ISSPACE(*p)) p++; if (!badcheck && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { return 0.0; } d = strtod(p, &end); if (errno == ERANGE) { OutOfRange(); rb_warning("Float %.*s%s out of range", w, p, ellipsis); errno = 0; } if (p == end) { if (badcheck) { bad: rb_invalid_str(q, "Float()"); } return d; } if (*end) { char buf[DBL_DIG * 4 + 10]; char *n = buf; char *e = buf + sizeof(buf) - 1; char prev = 0; while (p < end && n < e) prev = *n++ = *p++; while (*p) { if (*p == '_') { /* remove underscores between digits */ if (badcheck) { if (n == buf || !ISDIGIT(prev)) goto bad; ++p; if (!ISDIGIT(*p)) goto bad; } else { while (*++p == '_'); continue; } } prev = *p++; if (n < e) *n++ = prev; } *n = '\0'; p = buf; if (!badcheck && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { return 0.0; } d = strtod(p, &end); if (errno == ERANGE) { OutOfRange(); rb_warning("Float %.*s%s out of range", w, p, ellipsis); errno = 0; } if (badcheck) { if (!end || p == end) goto bad; while (*end && ISSPACE(*end)) end++; if (*end) goto bad; } } if (errno == ERANGE) { errno = 0; OutOfRange(); rb_raise(rb_eArgError, "Float %.*s%s out of range", w, q, ellipsis); } return d; } double rb_str_to_dbl(VALUE str, int badcheck) { char *s; long len; double ret; VALUE v = 0; StringValue(str); s = RSTRING_PTR(str); len = RSTRING_LEN(str); if (s) { if (badcheck && memchr(s, '\0', len)) { rb_raise(rb_eArgError, "string for Float contains null byte"); } if (s[len]) { /* no sentinel somehow */ char *p = ALLOCV(v, len); MEMCPY(p, s, char, len); p[len] = '\0'; s = p; } } ret = rb_cstr_to_dbl(s, badcheck); if (v) ALLOCV_END(v); return ret; } VALUE rb_Float(VALUE val) { switch (TYPE(val)) { case T_FIXNUM: return DBL2NUM((double)FIX2LONG(val)); case T_FLOAT: return val; case T_BIGNUM: return DBL2NUM(rb_big2dbl(val)); case T_STRING: return DBL2NUM(rb_str_to_dbl(val, TRUE)); case T_NIL: rb_raise(rb_eTypeError, "can't convert nil into Float"); break; default: return rb_convert_type(val, T_FLOAT, "Float", "to_f"); } } /* * call-seq: * Float(arg) -> float * * Returns arg converted to a float. Numeric types are converted * directly, the rest are converted using arg.to_f. As of Ruby * 1.8, converting nil generates a TypeError. * * Float(1) #=> 1.0 * Float("123.456") #=> 123.456 */ static VALUE rb_f_float(VALUE obj, VALUE arg) { return rb_Float(arg); } VALUE rb_to_float(VALUE val) { if (TYPE(val) == T_FLOAT) return val; if (!rb_obj_is_kind_of(val, rb_cNumeric)) { rb_raise(rb_eTypeError, "can't convert %s into Float", NIL_P(val) ? "nil" : val == Qtrue ? "true" : val == Qfalse ? "false" : rb_obj_classname(val)); } return rb_convert_type(val, T_FLOAT, "Float", "to_f"); } VALUE rb_check_to_float(VALUE val) { if (TYPE(val) == T_FLOAT) return val; if (!rb_obj_is_kind_of(val, rb_cNumeric)) { return Qnil; } return rb_check_convert_type(val, T_FLOAT, "Float", "to_f"); } double rb_num2dbl(VALUE val) { switch (TYPE(val)) { case T_FLOAT: return RFLOAT_VALUE(val); case T_STRING: rb_raise(rb_eTypeError, "no implicit conversion to float from string"); break; case T_NIL: rb_raise(rb_eTypeError, "no implicit conversion to float from nil"); break; default: break; } return RFLOAT_VALUE(rb_Float(val)); } VALUE rb_String(VALUE val) { VALUE tmp = rb_check_string_type(val); if (NIL_P(tmp)) tmp = rb_convert_type(val, T_STRING, "String", "to_s"); return tmp; } /* * call-seq: * String(arg) -> string * * Converts arg to a String by calling its * to_s method. * * String(self) #=> "main" * String(self.class) #=> "Object" * String(123456) #=> "123456" */ static VALUE rb_f_string(VALUE obj, VALUE arg) { return rb_String(arg); } VALUE rb_Array(VALUE val) { VALUE tmp = rb_check_array_type(val); if (NIL_P(tmp)) { tmp = rb_check_convert_type(val, T_ARRAY, "Array", "to_a"); if (NIL_P(tmp)) { return rb_ary_new3(1, val); } } return tmp; } /* * call-seq: * Array(arg) -> array * * Returns arg as an Array. First tries to call * arg.to_ary, then arg.to_a. * * Array(1..5) #=> [1, 2, 3, 4, 5] */ static VALUE rb_f_array(VALUE obj, VALUE arg) { return rb_Array(arg); } /* * Document-class: Class * * Classes in Ruby are first-class objects---each is an instance of * class Class. * * When a new class is created (typically using class Name ... * end), an object of type Class is created and * assigned to a global constant (Name in this case). When * Name.new is called to create a new object, the * new method in Class is run by default. * This can be demonstrated by overriding new in * Class: * * class Class * alias oldNew new * def new(*args) * print "Creating a new ", self.name, "\n" * oldNew(*args) * end * end * * * class Name * end * * * n = Name.new * * produces: * * Creating a new Name * * Classes, modules, and objects are interrelated. In the diagram * that follows, the vertical arrows represent inheritance, and the * parentheses meta-classes. All metaclasses are instances * of the class `Class'. * +---------+ +-... * | | | * BasicObject-----|-->(BasicObject)-------|-... * ^ | ^ | * | | | | * Object---------|----->(Object)---------|-... * ^ | ^ | * | | | | * +-------+ | +--------+ | * | | | | | | * | Module-|---------|--->(Module)-|-... * | ^ | | ^ | * | | | | | | * | Class-|---------|---->(Class)-|-... * | ^ | | ^ | * | +---+ | +----+ * | | * obj--->OtherClass---------->(OtherClass)-----------... * */ /*! * Initializes the world of objects and classes. * * At first, the function bootstraps the class hierarchy. * It initializes the most fundamental classes and their metaclasses. * - \c BasicObject * - \c Object * - \c Module * - \c Class * After the bootstrap step, the class hierarchy becomes as the following * diagram. * * \image html boottime-classes.png * * Then, the function defines classes, modules and methods as usual. * \ingroup class */ /* Document-class: BasicObject * * BasicObject is the parent class of all classes in Ruby. It's an explicit * blank class. * * BasicObject can be used for creating object hierarchies independent of * Ruby's object hierarchy, proxy objects like the Delegator class, or other * uses where namespace pollution from Ruby's methods and classes must be * avoided. * * To avoid polluting BasicObject for other users an appropriately named * subclass of BasicObject should be created instead of directly modifying * BasicObject: * * class MyObjectSystem < BasicObject * end * * BasicObject does not include Kernel (for methods like +puts+) and * BasicObject is outside of the namespace of the standard library so common * classes will not be found without a using a full class path. * * A variety of strategies can be used to provide useful portions of the * standard library to subclasses of BasicObject. A subclass could * include Kernel to obtain +puts+, +exit+, etc. A custom * Kernel-like module could be created and included or delegation can be used * via #method_missing: * * class MyObjectSystem < BasicObject * DELEGATE = [:puts, :p] * * def method_missing(name, *args, &block) * super unless DELEGATE.include? name * ::Kernel.send(name, *args, &block) * end * * def respond_to_missing?(name, include_private = false) * DELGATE.include?(name) or super * end * end * * Access to classes and modules from the Ruby standard library can be * obtained in a BasicObject subclass by referencing the desired constant * from the root like ::File or ::Enumerator. * Like #method_missing, #const_missing can be used to delegate constant * lookup to +Object+: * * class MyObjectSystem < BasicObject * def self.const_missing(name) * ::Object.const_get(name) * end * end */ /* Document-class: Object * * Object is the root of Ruby's class hierarchy. Its methods are available * to all classes unless explicitly overridden. * * Object mixes in the Kernel module, making the built-in kernel functions * globally accessible. Although the instance methods of Object are defined * by the Kernel module, we have chosen to document them here for clarity. * * In the descriptions of Object's methods, the parameter symbol refers * to a symbol, which is either a quoted string or a Symbol (such as * :name). */ void Init_Object(void) { int i; Init_class_hierarchy(); #if 0 // teach RDoc about these classes rb_cBasicObject = rb_define_class("BasicObject", Qnil); rb_cObject = rb_define_class("Object", rb_cBasicObject); rb_cModule = rb_define_class("Module", rb_cObject); rb_cClass = rb_define_class("Class", rb_cModule); #endif #undef rb_intern #define rb_intern(str) rb_intern_const(str) rb_define_private_method(rb_cBasicObject, "initialize", rb_obj_dummy, 0); rb_define_alloc_func(rb_cBasicObject, rb_class_allocate_instance); rb_define_method(rb_cBasicObject, "==", rb_obj_equal, 1); rb_define_method(rb_cBasicObject, "equal?", rb_obj_equal, 1); rb_define_method(rb_cBasicObject, "!", rb_obj_not, 0); rb_define_method(rb_cBasicObject, "!=", rb_obj_not_equal, 1); rb_define_private_method(rb_cBasicObject, "singleton_method_added", rb_obj_dummy, 1); rb_define_private_method(rb_cBasicObject, "singleton_method_removed", rb_obj_dummy, 1); rb_define_private_method(rb_cBasicObject, "singleton_method_undefined", rb_obj_dummy, 1); rb_mKernel = rb_define_module("Kernel"); rb_include_module(rb_cObject, rb_mKernel); rb_define_private_method(rb_cClass, "inherited", rb_obj_dummy, 1); rb_define_private_method(rb_cModule, "included", rb_obj_dummy, 1); rb_define_private_method(rb_cModule, "extended", rb_obj_dummy, 1); rb_define_private_method(rb_cModule, "method_added", rb_obj_dummy, 1); rb_define_private_method(rb_cModule, "method_removed", rb_obj_dummy, 1); rb_define_private_method(rb_cModule, "method_undefined", rb_obj_dummy, 1); rb_define_method(rb_mKernel, "nil?", rb_false, 0); rb_define_method(rb_mKernel, "===", rb_equal, 1); rb_define_method(rb_mKernel, "=~", rb_obj_match, 1); rb_define_method(rb_mKernel, "!~", rb_obj_not_match, 1); rb_define_method(rb_mKernel, "eql?", rb_obj_equal, 1); rb_define_method(rb_mKernel, "hash", rb_obj_hash, 0); rb_define_method(rb_mKernel, "<=>", rb_obj_cmp, 1); rb_define_method(rb_mKernel, "class", rb_obj_class, 0); rb_define_method(rb_mKernel, "singleton_class", rb_obj_singleton_class, 0); rb_define_method(rb_mKernel, "clone", rb_obj_clone, 0); rb_define_method(rb_mKernel, "dup", rb_obj_dup, 0); rb_define_method(rb_mKernel, "initialize_copy", rb_obj_init_copy, 1); rb_define_method(rb_mKernel, "initialize_dup", rb_obj_init_dup_clone, 1); rb_define_method(rb_mKernel, "initialize_clone", rb_obj_init_dup_clone, 1); rb_define_method(rb_mKernel, "taint", rb_obj_taint, 0); rb_define_method(rb_mKernel, "tainted?", rb_obj_tainted, 0); rb_define_method(rb_mKernel, "untaint", rb_obj_untaint, 0); rb_define_method(rb_mKernel, "untrust", rb_obj_untrust, 0); rb_define_method(rb_mKernel, "untrusted?", rb_obj_untrusted, 0); rb_define_method(rb_mKernel, "trust", rb_obj_trust, 0); rb_define_method(rb_mKernel, "freeze", rb_obj_freeze, 0); rb_define_method(rb_mKernel, "frozen?", rb_obj_frozen_p, 0); rb_define_method(rb_mKernel, "to_s", rb_any_to_s, 0); rb_define_method(rb_mKernel, "inspect", rb_obj_inspect, 0); rb_define_method(rb_mKernel, "methods", rb_obj_methods, -1); rb_define_method(rb_mKernel, "singleton_methods", rb_obj_singleton_methods, -1); /* in class.c */ rb_define_method(rb_mKernel, "protected_methods", rb_obj_protected_methods, -1); rb_define_method(rb_mKernel, "private_methods", rb_obj_private_methods, -1); rb_define_method(rb_mKernel, "public_methods", rb_obj_public_methods, -1); rb_define_method(rb_mKernel, "instance_variables", rb_obj_instance_variables, 0); /* in variable.c */ rb_define_method(rb_mKernel, "instance_variable_get", rb_obj_ivar_get, 1); rb_define_method(rb_mKernel, "instance_variable_set", rb_obj_ivar_set, 2); rb_define_method(rb_mKernel, "instance_variable_defined?", rb_obj_ivar_defined, 1); rb_define_private_method(rb_mKernel, "remove_instance_variable", rb_obj_remove_instance_variable, 1); /* in variable.c */ rb_define_method(rb_mKernel, "instance_of?", rb_obj_is_instance_of, 1); rb_define_method(rb_mKernel, "kind_of?", rb_obj_is_kind_of, 1); rb_define_method(rb_mKernel, "is_a?", rb_obj_is_kind_of, 1); rb_define_method(rb_mKernel, "tap", rb_obj_tap, 0); rb_define_global_function("sprintf", rb_f_sprintf, -1); /* in sprintf.c */ rb_define_global_function("format", rb_f_sprintf, -1); /* in sprintf.c */ rb_define_global_function("Integer", rb_f_integer, -1); rb_define_global_function("Float", rb_f_float, 1); rb_define_global_function("String", rb_f_string, 1); rb_define_global_function("Array", rb_f_array, 1); rb_cNilClass = rb_define_class("NilClass", rb_cObject); rb_define_method(rb_cNilClass, "to_i", nil_to_i, 0); rb_define_method(rb_cNilClass, "to_f", nil_to_f, 0); rb_define_method(rb_cNilClass, "to_s", nil_to_s, 0); rb_define_method(rb_cNilClass, "to_a", nil_to_a, 0); rb_define_method(rb_cNilClass, "inspect", nil_inspect, 0); rb_define_method(rb_cNilClass, "&", false_and, 1); rb_define_method(rb_cNilClass, "|", false_or, 1); rb_define_method(rb_cNilClass, "^", false_xor, 1); rb_define_method(rb_cNilClass, "nil?", rb_true, 0); rb_undef_alloc_func(rb_cNilClass); rb_undef_method(CLASS_OF(rb_cNilClass), "new"); /* * An alias of +nil+ */ rb_define_global_const("NIL", Qnil); rb_define_method(rb_cModule, "freeze", rb_mod_freeze, 0); rb_define_method(rb_cModule, "===", rb_mod_eqq, 1); rb_define_method(rb_cModule, "==", rb_obj_equal, 1); rb_define_method(rb_cModule, "<=>", rb_mod_cmp, 1); rb_define_method(rb_cModule, "<", rb_mod_lt, 1); rb_define_method(rb_cModule, "<=", rb_class_inherited_p, 1); rb_define_method(rb_cModule, ">", rb_mod_gt, 1); rb_define_method(rb_cModule, ">=", rb_mod_ge, 1); rb_define_method(rb_cModule, "initialize_copy", rb_mod_init_copy, 1); /* in class.c */ rb_define_method(rb_cModule, "to_s", rb_mod_to_s, 0); rb_define_method(rb_cModule, "included_modules", rb_mod_included_modules, 0); /* in class.c */ rb_define_method(rb_cModule, "include?", rb_mod_include_p, 1); /* in class.c */ rb_define_method(rb_cModule, "name", rb_mod_name, 0); /* in variable.c */ rb_define_method(rb_cModule, "ancestors", rb_mod_ancestors, 0); /* in class.c */ rb_define_private_method(rb_cModule, "attr", rb_mod_attr, -1); rb_define_private_method(rb_cModule, "attr_reader", rb_mod_attr_reader, -1); rb_define_private_method(rb_cModule, "attr_writer", rb_mod_attr_writer, -1); rb_define_private_method(rb_cModule, "attr_accessor", rb_mod_attr_accessor, -1); rb_define_alloc_func(rb_cModule, rb_module_s_alloc); rb_define_method(rb_cModule, "initialize", rb_mod_initialize, 0); rb_define_method(rb_cModule, "instance_methods", rb_class_instance_methods, -1); /* in class.c */ rb_define_method(rb_cModule, "public_instance_methods", rb_class_public_instance_methods, -1); /* in class.c */ rb_define_method(rb_cModule, "protected_instance_methods", rb_class_protected_instance_methods, -1); /* in class.c */ rb_define_method(rb_cModule, "private_instance_methods", rb_class_private_instance_methods, -1); /* in class.c */ rb_define_method(rb_cModule, "constants", rb_mod_constants, -1); /* in variable.c */ rb_define_method(rb_cModule, "const_get", rb_mod_const_get, -1); rb_define_method(rb_cModule, "const_set", rb_mod_const_set, 2); rb_define_method(rb_cModule, "const_defined?", rb_mod_const_defined, -1); rb_define_private_method(rb_cModule, "remove_const", rb_mod_remove_const, 1); /* in variable.c */ rb_define_method(rb_cModule, "const_missing", rb_mod_const_missing, 1); /* in variable.c */ rb_define_method(rb_cModule, "class_variables", rb_mod_class_variables, 0); /* in variable.c */ rb_define_method(rb_cModule, "remove_class_variable", rb_mod_remove_cvar, 1); /* in variable.c */ rb_define_method(rb_cModule, "class_variable_get", rb_mod_cvar_get, 1); rb_define_method(rb_cModule, "class_variable_set", rb_mod_cvar_set, 2); rb_define_method(rb_cModule, "class_variable_defined?", rb_mod_cvar_defined, 1); rb_define_method(rb_cModule, "public_constant", rb_mod_public_constant, -1); rb_define_method(rb_cModule, "private_constant", rb_mod_private_constant, -1); rb_define_method(rb_cClass, "allocate", rb_obj_alloc, 0); rb_define_method(rb_cClass, "new", rb_class_new_instance, -1); rb_define_method(rb_cClass, "initialize", rb_class_initialize, -1); rb_define_method(rb_cClass, "initialize_copy", rb_class_init_copy, 1); /* in class.c */ rb_define_method(rb_cClass, "superclass", rb_class_superclass, 0); rb_define_alloc_func(rb_cClass, rb_class_s_alloc); rb_undef_method(rb_cClass, "extend_object"); rb_undef_method(rb_cClass, "append_features"); rb_cData = rb_define_class("Data", rb_cObject); rb_undef_alloc_func(rb_cData); rb_cTrueClass = rb_define_class("TrueClass", rb_cObject); rb_define_method(rb_cTrueClass, "to_s", true_to_s, 0); rb_define_method(rb_cTrueClass, "&", true_and, 1); rb_define_method(rb_cTrueClass, "|", true_or, 1); rb_define_method(rb_cTrueClass, "^", true_xor, 1); rb_undef_alloc_func(rb_cTrueClass); rb_undef_method(CLASS_OF(rb_cTrueClass), "new"); /* * An alias of +true+ */ rb_define_global_const("TRUE", Qtrue); rb_cFalseClass = rb_define_class("FalseClass", rb_cObject); rb_define_method(rb_cFalseClass, "to_s", false_to_s, 0); rb_define_method(rb_cFalseClass, "&", false_and, 1); rb_define_method(rb_cFalseClass, "|", false_or, 1); rb_define_method(rb_cFalseClass, "^", false_xor, 1); rb_undef_alloc_func(rb_cFalseClass); rb_undef_method(CLASS_OF(rb_cFalseClass), "new"); /* * An alias of +false+ */ rb_define_global_const("FALSE", Qfalse); id_eq = rb_intern("=="); id_eql = rb_intern("eql?"); id_match = rb_intern("=~"); id_inspect = rb_intern("inspect"); id_init_copy = rb_intern("initialize_copy"); id_init_clone = rb_intern("initialize_clone"); id_init_dup = rb_intern("initialize_dup"); for (i=0; conv_method_names[i].method; i++) { conv_method_names[i].id = rb_intern(conv_method_names[i].method); } }