/********************************************************************** numeric.c - $Author: naruse $ created at: Fri Aug 13 18:33:09 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto **********************************************************************/ #include "ruby/ruby.h" #include "ruby/encoding.h" #include "ruby/util.h" #include "internal.h" #include #include #include #if defined(__FreeBSD__) && __FreeBSD__ < 4 #include #endif #ifdef HAVE_FLOAT_H #include #endif #ifdef HAVE_IEEEFP_H #include #endif /* use IEEE 64bit values if not defined */ #ifndef FLT_RADIX #define FLT_RADIX 2 #endif #ifndef FLT_ROUNDS #define FLT_ROUNDS 1 #endif #ifndef DBL_MIN #define DBL_MIN 2.2250738585072014e-308 #endif #ifndef DBL_MAX #define DBL_MAX 1.7976931348623157e+308 #endif #ifndef DBL_MIN_EXP #define DBL_MIN_EXP (-1021) #endif #ifndef DBL_MAX_EXP #define DBL_MAX_EXP 1024 #endif #ifndef DBL_MIN_10_EXP #define DBL_MIN_10_EXP (-307) #endif #ifndef DBL_MAX_10_EXP #define DBL_MAX_10_EXP 308 #endif #ifndef DBL_DIG #define DBL_DIG 15 #endif #ifndef DBL_MANT_DIG #define DBL_MANT_DIG 53 #endif #ifndef DBL_EPSILON #define DBL_EPSILON 2.2204460492503131e-16 #endif #ifdef HAVE_INFINITY #elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */ const unsigned char rb_infinity[] = "\x00\x00\x80\x7f"; #else const unsigned char rb_infinity[] = "\x7f\x80\x00\x00"; #endif #ifdef HAVE_NAN #elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */ const unsigned char rb_nan[] = "\x00\x00\xc0\x7f"; #else const unsigned char rb_nan[] = "\x7f\xc0\x00\x00"; #endif #ifndef HAVE_ROUND double round(double x) { double f; if (x > 0.0) { f = floor(x); x = f + (x - f >= 0.5); } else if (x < 0.0) { f = ceil(x); x = f - (f - x >= 0.5); } return x; } #endif static VALUE fix_uminus(VALUE num); static VALUE fix_mul(VALUE x, VALUE y); static VALUE int_pow(long x, unsigned long y); static ID id_coerce, id_to_i, id_eq; VALUE rb_cNumeric; VALUE rb_cFloat; VALUE rb_cInteger; VALUE rb_cFixnum; VALUE rb_eZeroDivError; VALUE rb_eFloatDomainError; void rb_num_zerodiv(void) { rb_raise(rb_eZeroDivError, "divided by 0"); } /* experimental API */ int rb_num_to_uint(VALUE val, unsigned int *ret) { #define NUMERR_TYPE 1 #define NUMERR_NEGATIVE 2 #define NUMERR_TOOLARGE 3 if (FIXNUM_P(val)) { long v = FIX2LONG(val); #if SIZEOF_INT < SIZEOF_LONG if (v > (long)UINT_MAX) return NUMERR_TOOLARGE; #endif if (v < 0) return NUMERR_NEGATIVE; *ret = (unsigned int)v; return 0; } switch (TYPE(val)) { case T_BIGNUM: if (RBIGNUM_NEGATIVE_P(val)) return NUMERR_NEGATIVE; #if SIZEOF_INT < SIZEOF_LONG /* long is 64bit */ return NUMERR_TOOLARGE; #else /* long is 32bit */ #define DIGSPERLONG (SIZEOF_LONG/SIZEOF_BDIGITS) if (RBIGNUM_LEN(val) > DIGSPERLONG) return NUMERR_TOOLARGE; *ret = (unsigned int)rb_big2ulong((VALUE)val); return 0; #endif } return NUMERR_TYPE; } /* * call-seq: * num.coerce(numeric) -> array * * If aNumeric is the same type as num, returns an array * containing aNumeric and num. Otherwise, returns an * array with both aNumeric and num represented as * Float objects. This coercion mechanism is used by * Ruby to handle mixed-type numeric operations: it is intended to * find a compatible common type between the two operands of the operator. * * 1.coerce(2.5) #=> [2.5, 1.0] * 1.2.coerce(3) #=> [3.0, 1.2] * 1.coerce(2) #=> [2, 1] */ static VALUE num_coerce(VALUE x, VALUE y) { if (CLASS_OF(x) == CLASS_OF(y)) return rb_assoc_new(y, x); x = rb_Float(x); y = rb_Float(y); return rb_assoc_new(y, x); } static VALUE coerce_body(VALUE *x) { return rb_funcall(x[1], id_coerce, 1, x[0]); } static VALUE coerce_rescue(VALUE *x) { volatile VALUE v = rb_inspect(x[1]); rb_raise(rb_eTypeError, "%s can't be coerced into %s", rb_special_const_p(x[1])? RSTRING_PTR(v): rb_obj_classname(x[1]), rb_obj_classname(x[0])); return Qnil; /* dummy */ } static int do_coerce(VALUE *x, VALUE *y, int err) { VALUE ary; VALUE a[2]; a[0] = *x; a[1] = *y; ary = rb_rescue(coerce_body, (VALUE)a, err?coerce_rescue:0, (VALUE)a); if (TYPE(ary) != T_ARRAY || RARRAY_LEN(ary) != 2) { if (err) { rb_raise(rb_eTypeError, "coerce must return [x, y]"); } return FALSE; } *x = RARRAY_PTR(ary)[0]; *y = RARRAY_PTR(ary)[1]; return TRUE; } VALUE rb_num_coerce_bin(VALUE x, VALUE y, ID func) { do_coerce(&x, &y, TRUE); return rb_funcall(x, func, 1, y); } VALUE rb_num_coerce_cmp(VALUE x, VALUE y, ID func) { if (do_coerce(&x, &y, FALSE)) return rb_funcall(x, func, 1, y); return Qnil; } VALUE rb_num_coerce_relop(VALUE x, VALUE y, ID func) { VALUE c, x0 = x, y0 = y; if (!do_coerce(&x, &y, FALSE) || NIL_P(c = rb_funcall(x, func, 1, y))) { rb_cmperr(x0, y0); return Qnil; /* not reached */ } return c; } /* * Trap attempts to add methods to Numeric objects. Always * raises a TypeError */ static VALUE num_sadded(VALUE x, VALUE name) { ID mid = rb_to_id(name); /* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */ /* Numerics should be values; singleton_methods should not be added to them */ rb_remove_method_id(rb_singleton_class(x), mid); rb_raise(rb_eTypeError, "can't define singleton method \"%s\" for %s", rb_id2name(mid), rb_obj_classname(x)); return Qnil; /* not reached */ } /* :nodoc: */ static VALUE num_init_copy(VALUE x, VALUE y) { /* Numerics are immutable values, which should not be copied */ rb_raise(rb_eTypeError, "can't copy %s", rb_obj_classname(x)); return Qnil; /* not reached */ } /* * call-seq: * +num -> num * * Unary Plus---Returns the receiver's value. */ static VALUE num_uplus(VALUE num) { return num; } /* * call-seq: * num.i -> Complex(0,num) * * Returns the corresponding imaginary number. * Not available for complex numbers. */ static VALUE num_imaginary(VALUE num) { return rb_complex_new(INT2FIX(0), num); } /* * call-seq: * -num -> numeric * * Unary Minus---Returns the receiver's value, negated. */ static VALUE num_uminus(VALUE num) { VALUE zero; zero = INT2FIX(0); do_coerce(&zero, &num, TRUE); return rb_funcall(zero, '-', 1, num); } /* * call-seq: * num.quo(numeric) -> real * * Returns most exact division (rational for integers, float for floats). */ static VALUE num_quo(VALUE x, VALUE y) { return rb_funcall(rb_rational_raw1(x), '/', 1, y); } /* * call-seq: * num.fdiv(numeric) -> float * * Returns float division. */ static VALUE num_fdiv(VALUE x, VALUE y) { return rb_funcall(rb_Float(x), '/', 1, y); } /* * call-seq: * num.div(numeric) -> integer * * Uses / to perform division, then converts the result to * an integer. numeric does not define the / * operator; this is left to subclasses. * * Equivalent to * num.divmod(aNumeric)[0]. * * See Numeric#divmod. */ static VALUE num_div(VALUE x, VALUE y) { if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv(); return rb_funcall(rb_funcall(x, '/', 1, y), rb_intern("floor"), 0); } /* * call-seq: * num.modulo(numeric) -> real * * x.modulo(y) means x-y*(x/y).floor * * Equivalent to * num.divmod(aNumeric)[1]. * * See Numeric#divmod. */ static VALUE num_modulo(VALUE x, VALUE y) { return rb_funcall(x, '-', 1, rb_funcall(y, '*', 1, rb_funcall(x, rb_intern("div"), 1, y))); } /* * call-seq: * num.remainder(numeric) -> real * * x.remainder(y) means x-y*(x/y).truncate * * See Numeric#divmod. */ static VALUE num_remainder(VALUE x, VALUE y) { VALUE z = rb_funcall(x, '%', 1, y); if ((!rb_equal(z, INT2FIX(0))) && ((RTEST(rb_funcall(x, '<', 1, INT2FIX(0))) && RTEST(rb_funcall(y, '>', 1, INT2FIX(0)))) || (RTEST(rb_funcall(x, '>', 1, INT2FIX(0))) && RTEST(rb_funcall(y, '<', 1, INT2FIX(0)))))) { return rb_funcall(z, '-', 1, y); } return z; } /* * call-seq: * num.divmod(numeric) -> array * * Returns an array containing the quotient and modulus obtained by * dividing num by numeric. If q, r = * x.divmod(y), then * * q = floor(x/y) * x = q*y+r * * The quotient is rounded toward -infinity, as shown in the following table: * * a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b) * ------+-----+---------------+---------+-------------+--------------- * 13 | 4 | 3, 1 | 3 | 1 | 1 * ------+-----+---------------+---------+-------------+--------------- * 13 | -4 | -4, -3 | -4 | -3 | 1 * ------+-----+---------------+---------+-------------+--------------- * -13 | 4 | -4, 3 | -4 | 3 | -1 * ------+-----+---------------+---------+-------------+--------------- * -13 | -4 | 3, -1 | 3 | -1 | -1 * ------+-----+---------------+---------+-------------+--------------- * 11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5 * ------+-----+---------------+---------+-------------+--------------- * 11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5 * ------+-----+---------------+---------+-------------+--------------- * -11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5 * ------+-----+---------------+---------+-------------+--------------- * -11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5 * * * Examples * * 11.divmod(3) #=> [3, 2] * 11.divmod(-3) #=> [-4, -1] * 11.divmod(3.5) #=> [3, 0.5] * (-11).divmod(3.5) #=> [-4, 3.0] * (11.5).divmod(3.5) #=> [3, 1.0] */ static VALUE num_divmod(VALUE x, VALUE y) { return rb_assoc_new(num_div(x, y), num_modulo(x, y)); } /* * call-seq: * num.real? -> true or false * * Returns true if num is a Real * (i.e. non Complex). */ static VALUE num_real_p(VALUE num) { return Qtrue; } /* * call-seq: * num.integer? -> true or false * * Returns true if num is an Integer * (including Fixnum and Bignum). */ static VALUE num_int_p(VALUE num) { return Qfalse; } /* * call-seq: * num.abs -> numeric * num.magnitude -> numeric * * Returns the absolute value of num. * * 12.abs #=> 12 * (-34.56).abs #=> 34.56 * -34.56.abs #=> 34.56 */ static VALUE num_abs(VALUE num) { if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) { return rb_funcall(num, rb_intern("-@"), 0); } return num; } /* * call-seq: * num.zero? -> true or false * * Returns true if num has a zero value. */ static VALUE num_zero_p(VALUE num) { if (rb_equal(num, INT2FIX(0))) { return Qtrue; } return Qfalse; } /* * call-seq: * num.nonzero? -> self or nil * * Returns +self+ if num is not zero, nil * otherwise. This behavior is useful when chaining comparisons: * * a = %w( z Bb bB bb BB a aA Aa AA A ) * b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b } * b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"] */ static VALUE num_nonzero_p(VALUE num) { if (RTEST(rb_funcall(num, rb_intern("zero?"), 0, 0))) { return Qnil; } return num; } /* * call-seq: * num.to_int -> integer * * Invokes the child class's to_i method to convert * num to an integer. */ static VALUE num_to_int(VALUE num) { return rb_funcall(num, id_to_i, 0, 0); } /******************************************************************** * * Document-class: Float * * Float objects represent inexact real numbers using * the native architecture's double-precision floating point * representation. * * Floating point has a different arithmetic and is a inexact number. * So you should know its esoteric system. see following: * * - http://docs.sun.com/source/806-3568/ncg_goldberg.html * - http://wiki.github.com/rdp/ruby_tutorials_core/ruby-talk-faq#floats_imprecise * - http://en.wikipedia.org/wiki/Floating_point#Accuracy_problems */ VALUE rb_float_new(double d) { NEWOBJ(flt, struct RFloat); OBJSETUP(flt, rb_cFloat, T_FLOAT); flt->float_value = d; return (VALUE)flt; } /* * call-seq: * flt.to_s -> string * * Returns a string containing a representation of self. As well as a * fixed or exponential form of the number, the call may return * ``NaN'', ``Infinity'', and * ``-Infinity''. */ static VALUE flo_to_s(VALUE flt) { char *ruby_dtoa(double d_, int mode, int ndigits, int *decpt, int *sign, char **rve); enum {decimal_mant = DBL_MANT_DIG-DBL_DIG}; enum {float_dig = DBL_DIG+1}; char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10]; double value = RFLOAT_VALUE(flt); VALUE s; char *p, *e; int sign, decpt, digs; if (isinf(value)) return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity"); else if (isnan(value)) return rb_usascii_str_new2("NaN"); p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e); s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0); if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1; memcpy(buf, p, digs); xfree(p); if (decpt > 0) { if (decpt < digs) { memmove(buf + decpt + 1, buf + decpt, digs - decpt); buf[decpt] = '.'; rb_str_cat(s, buf, digs + 1); } else if (decpt - digs < float_dig) { long len; char *ptr; rb_str_cat(s, buf, digs); rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2); ptr = RSTRING_PTR(s) + len; if (decpt > digs) { memset(ptr, '0', decpt - digs); ptr += decpt - digs; } memcpy(ptr, ".0", 2); } else { goto exp; } } else if (decpt > -4) { long len; char *ptr; rb_str_cat(s, "0.", 2); rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs); ptr = RSTRING_PTR(s); memset(ptr += len, '0', -decpt); memcpy(ptr -= decpt, buf, digs); } else { exp: if (digs > 1) { memmove(buf + 2, buf + 1, digs - 1); } else { buf[2] = '0'; digs++; } buf[1] = '.'; rb_str_cat(s, buf, digs + 1); rb_str_catf(s, "e%+03d", decpt - 1); } return s; } /* * call-seq: * flt.coerce(numeric) -> array * * Returns an array with both aNumeric and flt represented * as Float objects. * This is achieved by converting aNumeric to a Float. * * 1.2.coerce(3) #=> [3.0, 1.2] * 2.5.coerce(1.1) #=> [1.1, 2.5] */ static VALUE flo_coerce(VALUE x, VALUE y) { return rb_assoc_new(rb_Float(y), x); } /* * call-seq: * -float -> float * * Returns float, negated. */ static VALUE flo_uminus(VALUE flt) { return DBL2NUM(-RFLOAT_VALUE(flt)); } /* * call-seq: * float + other -> float * * Returns a new float which is the sum of float * and other. */ static VALUE flo_plus(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y)); case T_BIGNUM: return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y)); case T_FLOAT: return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '+'); } } /* * call-seq: * float - other -> float * * Returns a new float which is the difference of float * and other. */ static VALUE flo_minus(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y)); case T_BIGNUM: return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y)); case T_FLOAT: return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '-'); } } /* * call-seq: * float * other -> float * * Returns a new float which is the product of float * and other. */ static VALUE flo_mul(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y)); case T_BIGNUM: return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y)); case T_FLOAT: return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '*'); } } /* * call-seq: * float / other -> float * * Returns a new float which is the result of dividing * float by other. */ static VALUE flo_div(VALUE x, VALUE y) { long f_y; double d; switch (TYPE(y)) { case T_FIXNUM: f_y = FIX2LONG(y); return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y); case T_BIGNUM: d = rb_big2dbl(y); return DBL2NUM(RFLOAT_VALUE(x) / d); case T_FLOAT: return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '/'); } } /* * call-seq: * float.quo(numeric) -> float * * Returns float / numeric. */ static VALUE flo_quo(VALUE x, VALUE y) { return rb_funcall(x, '/', 1, y); } static void flodivmod(double x, double y, double *divp, double *modp) { double div, mod; if (y == 0.0) rb_num_zerodiv(); #ifdef HAVE_FMOD mod = fmod(x, y); #else if((x == 0.0) || (isinf(y) && !isinf(x))) mod = x; else { double z; modf(x/y, &z); mod = x - z * y; } #endif if (isinf(x) && !isinf(y) && !isnan(y)) div = x; else div = (x - mod) / y; if (y*mod < 0) { mod += y; div -= 1.0; } if (modp) *modp = mod; if (divp) *divp = div; } /* * Returns the modulo of division of x by y. * An error will be raised if y == 0. */ double ruby_float_mod(double x, double y) { double mod; flodivmod(x, y, 0, &mod); return mod; } /* * call-seq: * flt % other -> float * flt.modulo(other) -> float * * Return the modulo after division of flt by other. * * 6543.21.modulo(137) #=> 104.21 * 6543.21.modulo(137.24) #=> 92.9299999999996 */ static VALUE flo_mod(VALUE x, VALUE y) { double fy; switch (TYPE(y)) { case T_FIXNUM: fy = (double)FIX2LONG(y); break; case T_BIGNUM: fy = rb_big2dbl(y); break; case T_FLOAT: fy = RFLOAT_VALUE(y); break; default: return rb_num_coerce_bin(x, y, '%'); } return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy)); } static VALUE dbl2ival(double d) { d = round(d); if (FIXABLE(d)) { return LONG2FIX((long)d); } return rb_dbl2big(d); } /* * call-seq: * flt.divmod(numeric) -> array * * See Numeric#divmod. */ static VALUE flo_divmod(VALUE x, VALUE y) { double fy, div, mod; volatile VALUE a, b; switch (TYPE(y)) { case T_FIXNUM: fy = (double)FIX2LONG(y); break; case T_BIGNUM: fy = rb_big2dbl(y); break; case T_FLOAT: fy = RFLOAT_VALUE(y); break; default: return rb_num_coerce_bin(x, y, rb_intern("divmod")); } flodivmod(RFLOAT_VALUE(x), fy, &div, &mod); a = dbl2ival(div); b = DBL2NUM(mod); return rb_assoc_new(a, b); } /* * call-seq: * * flt ** other -> float * * Raises float the other power. * * 2.0**3 #=> 8.0 */ static VALUE flo_pow(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: return DBL2NUM(pow(RFLOAT_VALUE(x), (double)FIX2LONG(y))); case T_BIGNUM: return DBL2NUM(pow(RFLOAT_VALUE(x), rb_big2dbl(y))); case T_FLOAT: { double dx = RFLOAT_VALUE(x); double dy = RFLOAT_VALUE(y); if (dx < 0 && dy != round(dy)) return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y); return DBL2NUM(pow(dx, dy)); } default: return rb_num_coerce_bin(x, y, rb_intern("**")); } } /* * call-seq: * num.eql?(numeric) -> true or false * * Returns true if num and numeric are the * same type and have equal values. * * 1 == 1.0 #=> true * 1.eql?(1.0) #=> false * (1.0).eql?(1.0) #=> true */ static VALUE num_eql(VALUE x, VALUE y) { if (TYPE(x) != TYPE(y)) return Qfalse; return rb_equal(x, y); } /* * call-seq: * num <=> other -> 0 or nil * * Returns zero if num equals other, nil * otherwise. */ static VALUE num_cmp(VALUE x, VALUE y) { if (x == y) return INT2FIX(0); return Qnil; } static VALUE num_equal(VALUE x, VALUE y) { if (x == y) return Qtrue; return rb_funcall(y, id_eq, 1, x); } /* * call-seq: * flt == obj -> true or false * * Returns true only if obj has the same value * as flt. Contrast this with Float#eql?, which * requires obj to be a Float. * * 1.0 == 1 #=> true * */ static VALUE flo_eq(VALUE x, VALUE y) { volatile double a, b; switch (TYPE(y)) { case T_FIXNUM: b = (double)FIX2LONG(y); break; case T_BIGNUM: b = rb_big2dbl(y); break; case T_FLOAT: b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif break; default: return num_equal(x, y); } a = RFLOAT_VALUE(x); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a == b)?Qtrue:Qfalse; } /* * call-seq: * flt.hash -> integer * * Returns a hash code for this float. */ static VALUE flo_hash(VALUE num) { double d; st_index_t hash; d = RFLOAT_VALUE(num); /* normalize -0.0 to 0.0 */ if (d == 0.0) d = 0.0; hash = rb_memhash(&d, sizeof(d)); return LONG2FIX(hash); } VALUE rb_dbl_cmp(double a, double b) { if (isnan(a) || isnan(b)) return Qnil; if (a == b) return INT2FIX(0); if (a > b) return INT2FIX(1); if (a < b) return INT2FIX(-1); return Qnil; } /* * call-seq: * flt <=> real -> -1, 0, +1 or nil * * Returns -1, 0, +1 or nil depending on whether flt is less * than, equal to, or greater than real. This is the basis for * the tests in Comparable. */ static VALUE flo_cmp(VALUE x, VALUE y) { double a, b; VALUE i; a = RFLOAT_VALUE(x); if (isnan(a)) return Qnil; switch (TYPE(y)) { case T_FIXNUM: b = (double)FIX2LONG(y); break; case T_BIGNUM: if (isinf(a)) { if (a > 0.0) return INT2FIX(1); else return INT2FIX(-1); } b = rb_big2dbl(y); break; case T_FLOAT: b = RFLOAT_VALUE(y); break; default: if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) { if (RTEST(i)) { int j = rb_cmpint(i, x, y); j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1); return INT2FIX(j); } if (a > 0.0) return INT2FIX(1); return INT2FIX(-1); } return rb_num_coerce_cmp(x, y, rb_intern("<=>")); } return rb_dbl_cmp(a, b); } /* * call-seq: * flt > real -> true or false * * true if flt is greater than real. */ static VALUE flo_gt(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); switch (TYPE(y)) { case T_FIXNUM: b = (double)FIX2LONG(y); break; case T_BIGNUM: b = rb_big2dbl(y); break; case T_FLOAT: b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif break; default: return rb_num_coerce_relop(x, y, '>'); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a > b)?Qtrue:Qfalse; } /* * call-seq: * flt >= real -> true or false * * true if flt is greater than * or equal to real. */ static VALUE flo_ge(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); switch (TYPE(y)) { case T_FIXNUM: b = (double)FIX2LONG(y); break; case T_BIGNUM: b = rb_big2dbl(y); break; case T_FLOAT: b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif break; default: return rb_num_coerce_relop(x, y, rb_intern(">=")); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a >= b)?Qtrue:Qfalse; } /* * call-seq: * flt < real -> true or false * * true if flt is less than real. */ static VALUE flo_lt(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); switch (TYPE(y)) { case T_FIXNUM: b = (double)FIX2LONG(y); break; case T_BIGNUM: b = rb_big2dbl(y); break; case T_FLOAT: b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif break; default: return rb_num_coerce_relop(x, y, '<'); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a < b)?Qtrue:Qfalse; } /* * call-seq: * flt <= real -> true or false * * true if flt is less than * or equal to real. */ static VALUE flo_le(VALUE x, VALUE y) { double a, b; a = RFLOAT_VALUE(x); switch (TYPE(y)) { case T_FIXNUM: b = (double)FIX2LONG(y); break; case T_BIGNUM: b = rb_big2dbl(y); break; case T_FLOAT: b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif break; default: return rb_num_coerce_relop(x, y, rb_intern("<=")); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a <= b)?Qtrue:Qfalse; } /* * call-seq: * flt.eql?(obj) -> true or false * * Returns true only if obj is a * Float with the same value as flt. Contrast this * with Float#==, which performs type conversions. * * 1.0.eql?(1) #=> false */ static VALUE flo_eql(VALUE x, VALUE y) { if (TYPE(y) == T_FLOAT) { double a = RFLOAT_VALUE(x); double b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a) || isnan(b)) return Qfalse; #endif if (a == b) return Qtrue; } return Qfalse; } /* * call-seq: * flt.to_f -> self * * As flt is already a float, returns +self+. */ static VALUE flo_to_f(VALUE num) { return num; } /* * call-seq: * flt.abs -> float * flt.magnitude -> float * * Returns the absolute value of flt. * * (-34.56).abs #=> 34.56 * -34.56.abs #=> 34.56 * */ static VALUE flo_abs(VALUE flt) { double val = fabs(RFLOAT_VALUE(flt)); return DBL2NUM(val); } /* * call-seq: * flt.zero? -> true or false * * Returns true if flt is 0.0. * */ static VALUE flo_zero_p(VALUE num) { if (RFLOAT_VALUE(num) == 0.0) { return Qtrue; } return Qfalse; } /* * call-seq: * flt.nan? -> true or false * * Returns true if flt is an invalid IEEE floating * point number. * * a = -1.0 #=> -1.0 * a.nan? #=> false * a = 0.0/0.0 #=> NaN * a.nan? #=> true */ static VALUE flo_is_nan_p(VALUE num) { double value = RFLOAT_VALUE(num); return isnan(value) ? Qtrue : Qfalse; } /* * call-seq: * flt.infinite? -> nil, -1, +1 * * Returns nil, -1, or +1 depending on whether flt * is finite, -infinity, or +infinity. * * (0.0).infinite? #=> nil * (-1.0/0.0).infinite? #=> -1 * (+1.0/0.0).infinite? #=> 1 */ static VALUE flo_is_infinite_p(VALUE num) { double value = RFLOAT_VALUE(num); if (isinf(value)) { return INT2FIX( value < 0 ? -1 : 1 ); } return Qnil; } /* * call-seq: * flt.finite? -> true or false * * Returns true if flt is a valid IEEE floating * point number (it is not infinite, and nan? is * false). * */ static VALUE flo_is_finite_p(VALUE num) { double value = RFLOAT_VALUE(num); #if HAVE_FINITE if (!finite(value)) return Qfalse; #else if (isinf(value) || isnan(value)) return Qfalse; #endif return Qtrue; } /* * call-seq: * flt.floor -> integer * * Returns the largest integer less than or equal to flt. * * 1.2.floor #=> 1 * 2.0.floor #=> 2 * (-1.2).floor #=> -2 * (-2.0).floor #=> -2 */ static VALUE flo_floor(VALUE num) { double f = floor(RFLOAT_VALUE(num)); long val; if (!FIXABLE(f)) { return rb_dbl2big(f); } val = (long)f; return LONG2FIX(val); } /* * call-seq: * flt.ceil -> integer * * Returns the smallest Integer greater than or equal to * flt. * * 1.2.ceil #=> 2 * 2.0.ceil #=> 2 * (-1.2).ceil #=> -1 * (-2.0).ceil #=> -2 */ static VALUE flo_ceil(VALUE num) { double f = ceil(RFLOAT_VALUE(num)); long val; if (!FIXABLE(f)) { return rb_dbl2big(f); } val = (long)f; return LONG2FIX(val); } /* * Assumes num is an Integer, ndigits <= 0 */ static VALUE int_round_0(VALUE num, int ndigits) { VALUE n, f, h, r; long bytes; ID op; /* If 10**N / 2 > num, then return 0 */ /* We have log_256(10) > 0.415241 and log_256(1/2) = -0.125, so */ bytes = FIXNUM_P(num) ? sizeof(long) : rb_funcall(num, rb_intern("size"), 0); if (-0.415241 * ndigits - 0.125 > bytes ) { return INT2FIX(0); } f = int_pow(10, -ndigits); if (FIXNUM_P(num) && FIXNUM_P(f)) { SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f); int neg = x < 0; if (neg) x = -x; x = (x + y / 2) / y * y; if (neg) x = -x; return LONG2NUM(x); } if (TYPE(f) == T_FLOAT) { /* then int_pow overflow */ return INT2FIX(0); } h = rb_funcall(f, '/', 1, INT2FIX(2)); r = rb_funcall(num, '%', 1, f); n = rb_funcall(num, '-', 1, r); op = RTEST(rb_funcall(num, '<', 1, INT2FIX(0))) ? rb_intern("<=") : '<'; if (!RTEST(rb_funcall(r, op, 1, h))) { n = rb_funcall(n, '+', 1, f); } return n; } static VALUE flo_truncate(VALUE num); /* * call-seq: * flt.round([ndigits]) -> integer or float * * Rounds flt to a given precision in decimal digits (default 0 digits). * Precision may be negative. Returns a floating point number when ndigits * is more than zero. * * 1.4.round #=> 1 * 1.5.round #=> 2 * 1.6.round #=> 2 * (-1.5).round #=> -2 * * 1.234567.round(2) #=> 1.23 * 1.234567.round(3) #=> 1.235 * 1.234567.round(4) #=> 1.2346 * 1.234567.round(5) #=> 1.23457 * * 34567.89.round(-5) #=> 0 * 34567.89.round(-4) #=> 30000 * 34567.89.round(-3) #=> 35000 * 34567.89.round(-2) #=> 34600 * 34567.89.round(-1) #=> 34570 * 34567.89.round(0) #=> 34568 * 34567.89.round(1) #=> 34567.9 * 34567.89.round(2) #=> 34567.89 * 34567.89.round(3) #=> 34567.89 * */ static VALUE flo_round(int argc, VALUE *argv, VALUE num) { VALUE nd; double number, f; int ndigits = 0; int binexp; enum {float_dig = DBL_DIG+2}; if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) { ndigits = NUM2INT(nd); } if (ndigits < 0) { return int_round_0(flo_truncate(num), ndigits); } number = RFLOAT_VALUE(num); if (ndigits == 0) { return dbl2ival(number); } frexp(number, &binexp); /* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}", i.e. such that 10 ** (exp - 1) <= |number| < 10 ** exp Recall that up to float_dig digits can be needed to represent a double, so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits) will be an integer and thus the result is the original number. If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so if ndigits + exp < 0, the result is 0. We have: 2 ** (binexp-1) <= |number| < 2 ** binexp 10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10)) If binexp >= 0, and since log_2(10) = 3.322259: 10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3) floor(binexp/4) <= exp <= ceil(binexp/3) If binexp <= 0, swap the /4 and the /3 So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0 */ if (isinf(number) || isnan(number) || (ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1))) { return num; } if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) { return DBL2NUM(0); } f = pow(10, ndigits); return DBL2NUM(round(number * f) / f); } /* * call-seq: * flt.to_i -> integer * flt.to_int -> integer * flt.truncate -> integer * * Returns flt truncated to an Integer. */ static VALUE flo_truncate(VALUE num) { double f = RFLOAT_VALUE(num); long val; if (f > 0.0) f = floor(f); if (f < 0.0) f = ceil(f); if (!FIXABLE(f)) { return rb_dbl2big(f); } val = (long)f; return LONG2FIX(val); } /* * call-seq: * num.floor -> integer * * Returns the largest integer less than or equal to num. * Numeric implements this by converting anInteger * to a Float and invoking Float#floor. * * 1.floor #=> 1 * (-1).floor #=> -1 */ static VALUE num_floor(VALUE num) { return flo_floor(rb_Float(num)); } /* * call-seq: * num.ceil -> integer * * Returns the smallest Integer greater than or equal to * num. Class Numeric achieves this by converting * itself to a Float then invoking * Float#ceil. * * 1.ceil #=> 1 * 1.2.ceil #=> 2 * (-1.2).ceil #=> -1 * (-1.0).ceil #=> -1 */ static VALUE num_ceil(VALUE num) { return flo_ceil(rb_Float(num)); } /* * call-seq: * num.round([ndigits]) -> integer or float * * Rounds num to a given precision in decimal digits (default 0 digits). * Precision may be negative. Returns a floating point number when ndigits * is more than zero. Numeric implements this by converting itself * to a Float and invoking Float#round. */ static VALUE num_round(int argc, VALUE* argv, VALUE num) { return flo_round(argc, argv, rb_Float(num)); } /* * call-seq: * num.truncate -> integer * * Returns num truncated to an integer. Numeric * implements this by converting its value to a float and invoking * Float#truncate. */ static VALUE num_truncate(VALUE num) { return flo_truncate(rb_Float(num)); } int ruby_float_step(VALUE from, VALUE to, VALUE step, int excl) { if (TYPE(from) == T_FLOAT || TYPE(to) == T_FLOAT || TYPE(step) == T_FLOAT) { const double epsilon = DBL_EPSILON; double beg = NUM2DBL(from); double end = NUM2DBL(to); double unit = NUM2DBL(step); double n = (end - beg)/unit; double err = (fabs(beg) + fabs(end) + fabs(end-beg)) / fabs(unit) * epsilon; long i; if (isinf(unit)) { if (unit > 0 ? beg <= end : beg >= end) rb_yield(DBL2NUM(beg)); } else { if (err>0.5) err=0.5; n = floor(n + err); if (!excl || ((long)n)*unit+beg < end) n++; for (i=0; i self * num.step(limit[, step]) -> an_enumerator * * Invokes block with the sequence of numbers starting at * num, incremented by step (default 1) on each * call. The loop finishes when the value to be passed to the block * is greater than limit (if step is positive) or less * than limit (if step is negative). If all the * arguments are integers, the loop operates using an integer * counter. If any of the arguments are floating point numbers, all * are converted to floats, and the loop is executed floor(n + * n*epsilon)+ 1 times, where n = (limit - * num)/step. Otherwise, the loop starts at num, uses * either the < or > operator to compare * the counter against limit, and increments itself using the * + operator. * * If no block is given, an enumerator is returned instead. * * 1.step(10, 2) { |i| print i, " " } * Math::E.step(Math::PI, 0.2) { |f| print f, " " } * * produces: * * 1 3 5 7 9 * 2.71828182845905 2.91828182845905 3.11828182845905 */ static VALUE num_step(int argc, VALUE *argv, VALUE from) { VALUE to, step; RETURN_ENUMERATOR(from, argc, argv); if (argc == 1) { to = argv[0]; step = INT2FIX(1); } else { if (argc == 2) { to = argv[0]; step = argv[1]; } else { rb_raise(rb_eArgError, "wrong number of arguments (%d for 1..2)", argc); } if (rb_equal(step, INT2FIX(0))) { rb_raise(rb_eArgError, "step can't be 0"); } } if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) { long i, end, diff; i = FIX2LONG(from); end = FIX2LONG(to); diff = FIX2LONG(step); if (diff > 0) { while (i <= end) { rb_yield(LONG2FIX(i)); i += diff; } } else { while (i >= end) { rb_yield(LONG2FIX(i)); i += diff; } } } else if (!ruby_float_step(from, to, step, FALSE)) { VALUE i = from; ID cmp; if (RTEST(rb_funcall(step, '>', 1, INT2FIX(0)))) { cmp = '>'; } else { cmp = '<'; } for (;;) { if (RTEST(rb_funcall(i, cmp, 1, to))) break; rb_yield(i); i = rb_funcall(i, '+', 1, step); } } return from; } #define LONG_MIN_MINUS_ONE ((double)LONG_MIN-1) #define LONG_MAX_PLUS_ONE (2*(double)(LONG_MAX/2+1)) #define ULONG_MAX_PLUS_ONE (2*(double)(ULONG_MAX/2+1)) SIGNED_VALUE rb_num2long(VALUE val) { again: if (NIL_P(val)) { rb_raise(rb_eTypeError, "no implicit conversion from nil to integer"); } if (FIXNUM_P(val)) return FIX2LONG(val); switch (TYPE(val)) { case T_FLOAT: if (RFLOAT_VALUE(val) < LONG_MAX_PLUS_ONE && RFLOAT_VALUE(val) > LONG_MIN_MINUS_ONE) { return (SIGNED_VALUE)(RFLOAT_VALUE(val)); } else { char buf[24]; char *s; snprintf(buf, sizeof(buf), "%-.10g", RFLOAT_VALUE(val)); if ((s = strchr(buf, ' ')) != 0) *s = '\0'; rb_raise(rb_eRangeError, "float %s out of range of integer", buf); } case T_BIGNUM: return rb_big2long(val); default: val = rb_to_int(val); goto again; } } VALUE rb_num2ulong(VALUE val) { again: if (NIL_P(val)) { rb_raise(rb_eTypeError, "no implicit conversion from nil to integer"); } if (FIXNUM_P(val)) return FIX2LONG(val); /* this is FIX2LONG, inteneded */ switch (TYPE(val)) { case T_FLOAT: if (RFLOAT_VALUE(val) < ULONG_MAX_PLUS_ONE && RFLOAT_VALUE(val) > LONG_MIN_MINUS_ONE) { return (VALUE)RFLOAT_VALUE(val); } else { char buf[24]; char *s; snprintf(buf, sizeof(buf), "%-.10g", RFLOAT_VALUE(val)); if ((s = strchr(buf, ' ')) != 0) *s = '\0'; rb_raise(rb_eRangeError, "float %s out of range of integer", buf); } case T_BIGNUM: return rb_big2ulong(val); default: val = rb_to_int(val); goto again; } } #if SIZEOF_INT < SIZEOF_VALUE void rb_out_of_int(SIGNED_VALUE num) { rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `int'", num, num < 0 ? "small" : "big"); } static void check_int(SIGNED_VALUE num) { if ((SIGNED_VALUE)(int)num != num) { rb_out_of_int(num); } } static void check_uint(VALUE num, VALUE sign) { static const VALUE mask = ~(VALUE)UINT_MAX; if (RTEST(sign)) { /* minus */ if ((num & mask) != mask || (num & ~mask) <= INT_MAX + 1UL) #define VALUE_MSBMASK ((VALUE)1 << ((sizeof(VALUE) * CHAR_BIT) - 1)) rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too small to convert to `unsigned int'", num|VALUE_MSBMASK); } else { /* plus */ if ((num & mask) != 0) rb_raise(rb_eRangeError, "integer %"PRIuVALUE " too big to convert to `unsigned int'", num); } } long rb_num2int(VALUE val) { long num = rb_num2long(val); check_int(num); return num; } long rb_fix2int(VALUE val) { long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val); check_int(num); return num; } unsigned long rb_num2uint(VALUE val) { VALUE num = rb_num2ulong(val); check_uint(num, rb_funcall(val, '<', 1, INT2FIX(0))); return (unsigned long)num; } unsigned long rb_fix2uint(VALUE val) { unsigned long num; if (!FIXNUM_P(val)) { return rb_num2uint(val); } num = FIX2ULONG(val); check_uint(num, rb_funcall(val, '<', 1, INT2FIX(0))); return num; } #else long rb_num2int(VALUE val) { return rb_num2long(val); } long rb_fix2int(VALUE val) { return FIX2INT(val); } #endif VALUE rb_num2fix(VALUE val) { SIGNED_VALUE v; if (FIXNUM_P(val)) return val; v = rb_num2long(val); if (!FIXABLE(v)) rb_raise(rb_eRangeError, "integer %"PRIdVALUE " out of range of fixnum", v); return LONG2FIX(v); } #if HAVE_LONG_LONG #define LLONG_MIN_MINUS_ONE ((double)LLONG_MIN-1) #define LLONG_MAX_PLUS_ONE (2*(double)(LLONG_MAX/2+1)) #define ULLONG_MAX_PLUS_ONE (2*(double)(ULLONG_MAX/2+1)) #ifndef ULLONG_MAX #define ULLONG_MAX ((unsigned LONG_LONG)LLONG_MAX*2+1) #endif LONG_LONG rb_num2ll(VALUE val) { if (NIL_P(val)) { rb_raise(rb_eTypeError, "no implicit conversion from nil"); } if (FIXNUM_P(val)) return (LONG_LONG)FIX2LONG(val); switch (TYPE(val)) { case T_FLOAT: if (RFLOAT_VALUE(val) < LLONG_MAX_PLUS_ONE && RFLOAT_VALUE(val) > LLONG_MIN_MINUS_ONE) { return (LONG_LONG)(RFLOAT_VALUE(val)); } else { char buf[24]; char *s; snprintf(buf, sizeof(buf), "%-.10g", RFLOAT_VALUE(val)); if ((s = strchr(buf, ' ')) != 0) *s = '\0'; rb_raise(rb_eRangeError, "float %s out of range of long long", buf); } case T_BIGNUM: return rb_big2ll(val); case T_STRING: rb_raise(rb_eTypeError, "no implicit conversion from string"); return Qnil; /* not reached */ case T_TRUE: case T_FALSE: rb_raise(rb_eTypeError, "no implicit conversion from boolean"); return Qnil; /* not reached */ default: val = rb_to_int(val); return NUM2LL(val); } } unsigned LONG_LONG rb_num2ull(VALUE val) { switch (TYPE(val)) { case T_NIL: rb_raise(rb_eTypeError, "no implicit conversion from nil"); case T_FIXNUM: return (LONG_LONG)FIX2LONG(val); /* this is FIX2LONG, inteneded */ case T_FLOAT: if (RFLOAT_VALUE(val) < ULLONG_MAX_PLUS_ONE && RFLOAT_VALUE(val) > 0) { return (unsigned LONG_LONG)(RFLOAT_VALUE(val)); } else { char buf[24]; char *s; snprintf(buf, sizeof(buf), "%-.10g", RFLOAT_VALUE(val)); if ((s = strchr(buf, ' ')) != 0) *s = '\0'; rb_raise(rb_eRangeError, "float %s out of range of unsgined long long", buf); } case T_BIGNUM: return rb_big2ull(val); case T_STRING: rb_raise(rb_eTypeError, "no implicit conversion from string"); return Qnil; /* not reached */ case T_TRUE: case T_FALSE: rb_raise(rb_eTypeError, "no implicit conversion from boolean"); return Qnil; /* not reached */ default: val = rb_to_int(val); return NUM2ULL(val); } } #endif /* HAVE_LONG_LONG */ /* * Document-class: Integer * * Integer is the basis for the two concrete classes that * hold whole numbers, Bignum and Fixnum. * */ /* * call-seq: * int.to_i -> integer * int.to_int -> integer * int.floor -> integer * int.ceil -> integer * int.truncate -> integer * * As int is already an Integer, all these * methods simply return the receiver. */ static VALUE int_to_i(VALUE num) { return num; } /* * call-seq: * int.integer? -> true * * Always returns true. */ static VALUE int_int_p(VALUE num) { return Qtrue; } /* * call-seq: * int.odd? -> true or false * * Returns true if int is an odd number. */ static VALUE int_odd_p(VALUE num) { if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) { return Qtrue; } return Qfalse; } /* * call-seq: * int.even? -> true or false * * Returns true if int is an even number. */ static VALUE int_even_p(VALUE num) { if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) { return Qtrue; } return Qfalse; } /* * call-seq: * fixnum.next -> integer * fixnum.succ -> integer * * Returns the Integer equal to int + 1. * * 1.next #=> 2 * (-1).next #=> 0 */ static VALUE fix_succ(VALUE num) { long i = FIX2LONG(num) + 1; return LONG2NUM(i); } /* * call-seq: * int.next -> integer * int.succ -> integer * * Returns the Integer equal to int + 1. * * 1.next #=> 2 * (-1).next #=> 0 */ static VALUE int_succ(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) + 1; return LONG2NUM(i); } return rb_funcall(num, '+', 1, INT2FIX(1)); } /* * call-seq: * int.pred -> integer * * Returns the Integer equal to int - 1. * * 1.pred #=> 0 * (-1).pred #=> -2 */ static VALUE int_pred(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) - 1; return LONG2NUM(i); } return rb_funcall(num, '-', 1, INT2FIX(1)); } VALUE rb_enc_uint_chr(unsigned int code, rb_encoding *enc) { int n; VALUE str; switch (n = rb_enc_codelen(code, enc)) { case ONIGERR_INVALID_CODE_POINT_VALUE: rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc)); break; case ONIGERR_TOO_BIG_WIDE_CHAR_VALUE: case 0: rb_raise(rb_eRangeError, "%u out of char range", code); break; } str = rb_enc_str_new(0, n, enc); rb_enc_mbcput(code, RSTRING_PTR(str), enc); if (rb_enc_precise_mbclen(RSTRING_PTR(str), RSTRING_END(str), enc) != n) { rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc)); } return str; } /* * call-seq: * int.chr([encoding]) -> string * * Returns a string containing the character represented by the * receiver's value according to +encoding+. * * 65.chr #=> "A" * 230.chr #=> "\346" * 255.chr(Encoding::UTF_8) #=> "\303\277" */ static VALUE int_chr(int argc, VALUE *argv, VALUE num) { char c; unsigned int i; rb_encoding *enc; if (rb_num_to_uint(num, &i) == 0) { } else if (FIXNUM_P(num)) { rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num)); } else { rb_raise(rb_eRangeError, "bignum out of char range"); } switch (argc) { case 0: if (0xff < i) { enc = rb_default_internal_encoding(); if (!enc) { rb_raise(rb_eRangeError, "%d out of char range", i); } goto decode; } c = (char)i; if (i < 0x80) { return rb_usascii_str_new(&c, 1); } else { return rb_str_new(&c, 1); } case 1: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0..1)", argc); break; } enc = rb_to_encoding(argv[0]); if (!enc) enc = rb_ascii8bit_encoding(); decode: return rb_enc_uint_chr(i, enc); } /* * call-seq: * int.ord -> self * * Returns the int itself. * * ?a.ord #=> 97 * * This method is intended for compatibility to * character constant in Ruby 1.9. * For example, ?a.ord returns 97 both in 1.8 and 1.9. */ static VALUE int_ord(VALUE num) { return num; } /******************************************************************** * * Document-class: Fixnum * * A Fixnum holds Integer values that can be * represented in a native machine word (minus 1 bit). If any operation * on a Fixnum exceeds this range, the value is * automatically converted to a Bignum. * * Fixnum objects have immediate value. This means that * when they are assigned or passed as parameters, the actual object is * passed, rather than a reference to that object. Assignment does not * alias Fixnum objects. There is effectively only one * Fixnum object instance for any given integer value, so, * for example, you cannot add a singleton method to a * Fixnum. */ /* * call-seq: * -fix -> integer * * Negates fix (which might return a Bignum). */ static VALUE fix_uminus(VALUE num) { return LONG2NUM(-FIX2LONG(num)); } VALUE rb_fix2str(VALUE x, int base) { extern const char ruby_digitmap[]; char buf[SIZEOF_VALUE*CHAR_BIT + 2], *b = buf + sizeof buf; long val = FIX2LONG(x); int neg = 0; if (base < 2 || 36 < base) { rb_raise(rb_eArgError, "invalid radix %d", base); } if (val == 0) { return rb_usascii_str_new2("0"); } if (val < 0) { val = -val; neg = 1; } *--b = '\0'; do { *--b = ruby_digitmap[(int)(val % base)]; } while (val /= base); if (neg) { *--b = '-'; } return rb_usascii_str_new2(b); } /* * call-seq: * fix.to_s(base=10) -> string * * Returns a string containing the representation of fix radix * base (between 2 and 36). * * 12345.to_s #=> "12345" * 12345.to_s(2) #=> "11000000111001" * 12345.to_s(8) #=> "30071" * 12345.to_s(10) #=> "12345" * 12345.to_s(16) #=> "3039" * 12345.to_s(36) #=> "9ix" * */ static VALUE fix_to_s(int argc, VALUE *argv, VALUE x) { int base; if (argc == 0) base = 10; else { VALUE b; rb_scan_args(argc, argv, "01", &b); base = NUM2INT(b); } return rb_fix2str(x, base); } /* * call-seq: * fix + numeric -> numeric_result * * Performs addition: the class of the resulting object depends on * the class of numeric and on the magnitude of the * result. */ static VALUE fix_plus(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long a, b, c; VALUE r; a = FIX2LONG(x); b = FIX2LONG(y); c = a + b; r = LONG2NUM(c); return r; } switch (TYPE(y)) { case T_BIGNUM: return rb_big_plus(y, x); case T_FLOAT: return DBL2NUM((double)FIX2LONG(x) + RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '+'); } } /* * call-seq: * fix - numeric -> numeric_result * * Performs subtraction: the class of the resulting object depends on * the class of numeric and on the magnitude of the * result. */ static VALUE fix_minus(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long a, b, c; VALUE r; a = FIX2LONG(x); b = FIX2LONG(y); c = a - b; r = LONG2NUM(c); return r; } switch (TYPE(y)) { case T_BIGNUM: x = rb_int2big(FIX2LONG(x)); return rb_big_minus(x, y); case T_FLOAT: return DBL2NUM((double)FIX2LONG(x) - RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '-'); } } #define SQRT_LONG_MAX ((SIGNED_VALUE)1<<((SIZEOF_LONG*CHAR_BIT-1)/2)) /*tests if N*N would overflow*/ #define FIT_SQRT_LONG(n) (((n)=-SQRT_LONG_MAX)) /* * call-seq: * fix * numeric -> numeric_result * * Performs multiplication: the class of the resulting object depends on * the class of numeric and on the magnitude of the * result. */ static VALUE fix_mul(VALUE x, VALUE y) { if (FIXNUM_P(y)) { #ifdef __HP_cc /* avoids an optimization bug of HP aC++/ANSI C B3910B A.06.05 [Jul 25 2005] */ volatile #endif long a, b; #if SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG LONG_LONG d; #else volatile long c; VALUE r; #endif a = FIX2LONG(x); b = FIX2LONG(y); #if SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG d = (LONG_LONG)a * b; if (FIXABLE(d)) return LONG2FIX(d); return rb_ll2inum(d); #else if (FIT_SQRT_LONG(a) && FIT_SQRT_LONG(b)) return LONG2FIX(a*b); c = a * b; r = LONG2FIX(c); if (a == 0) return x; if (FIX2LONG(r) != c || c/a != b) { r = rb_big_mul(rb_int2big(a), rb_int2big(b)); } return r; #endif } switch (TYPE(y)) { case T_BIGNUM: return rb_big_mul(y, x); case T_FLOAT: return DBL2NUM((double)FIX2LONG(x) * RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, '*'); } } static void fixdivmod(long x, long y, long *divp, long *modp) { long div, mod; if (y == 0) rb_num_zerodiv(); if (y < 0) { if (x < 0) div = -x / -y; else div = - (x / -y); } else { if (x < 0) div = - (-x / y); else div = x / y; } mod = x - div*y; if ((mod < 0 && y > 0) || (mod > 0 && y < 0)) { mod += y; div -= 1; } if (divp) *divp = div; if (modp) *modp = mod; } /* * call-seq: * fix.fdiv(numeric) -> float * * Returns the floating point result of dividing fix by * numeric. * * 654321.fdiv(13731) #=> 47.6528293642124 * 654321.fdiv(13731.24) #=> 47.6519964693647 * */ static VALUE fix_fdiv(VALUE x, VALUE y) { if (FIXNUM_P(y)) { return DBL2NUM((double)FIX2LONG(x) / (double)FIX2LONG(y)); } switch (TYPE(y)) { case T_BIGNUM: return rb_big_fdiv(rb_int2big(FIX2LONG(x)), y); case T_FLOAT: return DBL2NUM((double)FIX2LONG(x) / RFLOAT_VALUE(y)); default: return rb_num_coerce_bin(x, y, rb_intern("fdiv")); } } static VALUE fix_divide(VALUE x, VALUE y, ID op) { if (FIXNUM_P(y)) { long div; fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, 0); return LONG2NUM(div); } switch (TYPE(y)) { case T_BIGNUM: x = rb_int2big(FIX2LONG(x)); return rb_big_div(x, y); case T_FLOAT: { double div; if (op == '/') { div = (double)FIX2LONG(x) / RFLOAT_VALUE(y); return DBL2NUM(div); } else { if (RFLOAT_VALUE(y) == 0) rb_num_zerodiv(); div = (double)FIX2LONG(x) / RFLOAT_VALUE(y); return rb_dbl2big(floor(div)); } } case T_RATIONAL: if (op == '/' && FIX2LONG(x) == 1) return rb_rational_reciprocal(y); /* fall through */ default: return rb_num_coerce_bin(x, y, op); } } /* * call-seq: * fix / numeric -> numeric_result * * Performs division: the class of the resulting object depends on * the class of numeric and on the magnitude of the * result. */ static VALUE fix_div(VALUE x, VALUE y) { return fix_divide(x, y, '/'); } /* * call-seq: * fix.div(numeric) -> integer * * Performs integer division: returns integer value. */ static VALUE fix_idiv(VALUE x, VALUE y) { return fix_divide(x, y, rb_intern("div")); } /* * call-seq: * fix % other -> real * fix.modulo(other) -> real * * Returns fix modulo other. * See numeric.divmod for more information. */ static VALUE fix_mod(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long mod; fixdivmod(FIX2LONG(x), FIX2LONG(y), 0, &mod); return LONG2NUM(mod); } switch (TYPE(y)) { case T_BIGNUM: x = rb_int2big(FIX2LONG(x)); return rb_big_modulo(x, y); case T_FLOAT: return DBL2NUM(ruby_float_mod((double)FIX2LONG(x), RFLOAT_VALUE(y))); default: return rb_num_coerce_bin(x, y, '%'); } } /* * call-seq: * fix.divmod(numeric) -> array * * See Numeric#divmod. */ static VALUE fix_divmod(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long div, mod; fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, &mod); return rb_assoc_new(LONG2NUM(div), LONG2NUM(mod)); } switch (TYPE(y)) { case T_BIGNUM: x = rb_int2big(FIX2LONG(x)); return rb_big_divmod(x, y); case T_FLOAT: { double div, mod; volatile VALUE a, b; flodivmod((double)FIX2LONG(x), RFLOAT_VALUE(y), &div, &mod); a = dbl2ival(div); b = DBL2NUM(mod); return rb_assoc_new(a, b); } default: return rb_num_coerce_bin(x, y, rb_intern("divmod")); } } static VALUE int_pow(long x, unsigned long y) { int neg = x < 0; long z = 1; if (neg) x = -x; if (y & 1) z = x; else neg = 0; y &= ~1; do { while (y % 2 == 0) { if (!FIT_SQRT_LONG(x)) { VALUE v; bignum: v = rb_big_pow(rb_int2big(x), LONG2NUM(y)); if (z != 1) v = rb_big_mul(rb_int2big(neg ? -z : z), v); return v; } x = x * x; y >>= 1; } { volatile long xz = x * z; if (!POSFIXABLE(xz) || xz / x != z) { goto bignum; } z = xz; } } while (--y); if (neg) z = -z; return LONG2NUM(z); } /* * call-seq: * fix ** numeric -> numeric_result * * Raises fix to the numeric power, which may * be negative or fractional. * * 2 ** 3 #=> 8 * 2 ** -1 #=> 0.5 * 2 ** 0.5 #=> 1.4142135623731 */ static VALUE fix_pow(VALUE x, VALUE y) { long a = FIX2LONG(x); if (FIXNUM_P(y)) { long b = FIX2LONG(y); if (b < 0) return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y); if (b == 0) return INT2FIX(1); if (b == 1) return x; if (a == 0) { if (b > 0) return INT2FIX(0); return DBL2NUM(INFINITY); } if (a == 1) return INT2FIX(1); if (a == -1) { if (b % 2 == 0) return INT2FIX(1); else return INT2FIX(-1); } return int_pow(a, b); } switch (TYPE(y)) { case T_BIGNUM: if (rb_funcall(y, '<', 1, INT2FIX(0))) return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y); if (a == 0) return INT2FIX(0); if (a == 1) return INT2FIX(1); if (a == -1) { if (int_even_p(y)) return INT2FIX(1); else return INT2FIX(-1); } x = rb_int2big(FIX2LONG(x)); return rb_big_pow(x, y); case T_FLOAT: if (RFLOAT_VALUE(y) == 0.0) return DBL2NUM(1.0); if (a == 0) { return DBL2NUM(RFLOAT_VALUE(y) < 0 ? INFINITY : 0.0); } if (a == 1) return DBL2NUM(1.0); { double dy = RFLOAT_VALUE(y); if (a < 0 && dy != round(dy)) return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y); return DBL2NUM(pow((double)a, dy)); } default: return rb_num_coerce_bin(x, y, rb_intern("**")); } } /* * call-seq: * fix == other -> true or false * * Return true if fix equals other * numerically. * * 1 == 2 #=> false * 1 == 1.0 #=> true */ static VALUE fix_equal(VALUE x, VALUE y) { if (x == y) return Qtrue; if (FIXNUM_P(y)) return Qfalse; switch (TYPE(y)) { case T_BIGNUM: return rb_big_eq(y, x); case T_FLOAT: return (double)FIX2LONG(x) == RFLOAT_VALUE(y) ? Qtrue : Qfalse; default: return num_equal(x, y); } } /* * call-seq: * fix <=> numeric -> -1, 0, +1 or nil * * Comparison---Returns -1, 0, +1 or nil depending on whether * fix is less than, equal to, or greater than * numeric. This is the basis for the tests in * Comparable. */ static VALUE fix_cmp(VALUE x, VALUE y) { if (x == y) return INT2FIX(0); if (FIXNUM_P(y)) { if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1); return INT2FIX(-1); } switch (TYPE(y)) { case T_BIGNUM: return rb_big_cmp(rb_int2big(FIX2LONG(x)), y); case T_FLOAT: return rb_dbl_cmp((double)FIX2LONG(x), RFLOAT_VALUE(y)); default: return rb_num_coerce_cmp(x, y, rb_intern("<=>")); } } /* * call-seq: * fix > real -> true or false * * Returns true if the value of fix is * greater than that of real. */ static VALUE fix_gt(VALUE x, VALUE y) { if (FIXNUM_P(y)) { if (FIX2LONG(x) > FIX2LONG(y)) return Qtrue; return Qfalse; } switch (TYPE(y)) { case T_BIGNUM: return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) > 0 ? Qtrue : Qfalse; case T_FLOAT: return (double)FIX2LONG(x) > RFLOAT_VALUE(y) ? Qtrue : Qfalse; default: return rb_num_coerce_relop(x, y, '>'); } } /* * call-seq: * fix >= real -> true or false * * Returns true if the value of fix is * greater than or equal to that of real. */ static VALUE fix_ge(VALUE x, VALUE y) { if (FIXNUM_P(y)) { if (FIX2LONG(x) >= FIX2LONG(y)) return Qtrue; return Qfalse; } switch (TYPE(y)) { case T_BIGNUM: return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) >= 0 ? Qtrue : Qfalse; case T_FLOAT: return (double)FIX2LONG(x) >= RFLOAT_VALUE(y) ? Qtrue : Qfalse; default: return rb_num_coerce_relop(x, y, rb_intern(">=")); } } /* * call-seq: * fix < real -> true or false * * Returns true if the value of fix is * less than that of real. */ static VALUE fix_lt(VALUE x, VALUE y) { if (FIXNUM_P(y)) { if (FIX2LONG(x) < FIX2LONG(y)) return Qtrue; return Qfalse; } switch (TYPE(y)) { case T_BIGNUM: return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) < 0 ? Qtrue : Qfalse; case T_FLOAT: return (double)FIX2LONG(x) < RFLOAT_VALUE(y) ? Qtrue : Qfalse; default: return rb_num_coerce_relop(x, y, '<'); } } /* * call-seq: * fix <= real -> true or false * * Returns true if the value of fix is * less than or equal to that of real. */ static VALUE fix_le(VALUE x, VALUE y) { if (FIXNUM_P(y)) { if (FIX2LONG(x) <= FIX2LONG(y)) return Qtrue; return Qfalse; } switch (TYPE(y)) { case T_BIGNUM: return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) <= 0 ? Qtrue : Qfalse; case T_FLOAT: return (double)FIX2LONG(x) <= RFLOAT_VALUE(y) ? Qtrue : Qfalse; default: return rb_num_coerce_relop(x, y, rb_intern("<=")); } } /* * call-seq: * ~fix -> integer * * One's complement: returns a number where each bit is flipped. */ static VALUE fix_rev(VALUE num) { return ~num | FIXNUM_FLAG; } static VALUE bit_coerce(VALUE x) { while (!FIXNUM_P(x) && TYPE(x) != T_BIGNUM) { if (TYPE(x) == T_FLOAT) { rb_raise(rb_eTypeError, "can't convert Float into Integer"); } x = rb_to_int(x); } return x; } /* * call-seq: * fix & integer -> integer_result * * Bitwise AND. */ static VALUE fix_and(VALUE x, VALUE y) { long val; if (!FIXNUM_P(y = bit_coerce(y))) { return rb_big_and(y, x); } val = FIX2LONG(x) & FIX2LONG(y); return LONG2NUM(val); } /* * call-seq: * fix | integer -> integer_result * * Bitwise OR. */ static VALUE fix_or(VALUE x, VALUE y) { long val; if (!FIXNUM_P(y = bit_coerce(y))) { return rb_big_or(y, x); } val = FIX2LONG(x) | FIX2LONG(y); return LONG2NUM(val); } /* * call-seq: * fix ^ integer -> integer_result * * Bitwise EXCLUSIVE OR. */ static VALUE fix_xor(VALUE x, VALUE y) { long val; if (!FIXNUM_P(y = bit_coerce(y))) { return rb_big_xor(y, x); } val = FIX2LONG(x) ^ FIX2LONG(y); return LONG2NUM(val); } static VALUE fix_lshift(long, unsigned long); static VALUE fix_rshift(long, unsigned long); /* * call-seq: * fix << count -> integer * * Shifts _fix_ left _count_ positions (right if _count_ is negative). */ static VALUE rb_fix_lshift(VALUE x, VALUE y) { long val, width; val = NUM2LONG(x); if (!FIXNUM_P(y)) return rb_big_lshift(rb_int2big(val), y); width = FIX2LONG(y); if (width < 0) return fix_rshift(val, (unsigned long)-width); return fix_lshift(val, width); } static VALUE fix_lshift(long val, unsigned long width) { if (width > (SIZEOF_LONG*CHAR_BIT-1) || ((unsigned long)val)>>(SIZEOF_LONG*CHAR_BIT-1-width) > 0) { return rb_big_lshift(rb_int2big(val), ULONG2NUM(width)); } val = val << width; return LONG2NUM(val); } /* * call-seq: * fix >> count -> integer * * Shifts _fix_ right _count_ positions (left if _count_ is negative). */ static VALUE rb_fix_rshift(VALUE x, VALUE y) { long i, val; val = FIX2LONG(x); if (!FIXNUM_P(y)) return rb_big_rshift(rb_int2big(val), y); i = FIX2LONG(y); if (i == 0) return x; if (i < 0) return fix_lshift(val, (unsigned long)-i); return fix_rshift(val, i); } static VALUE fix_rshift(long val, unsigned long i) { if (i >= sizeof(long)*CHAR_BIT-1) { if (val < 0) return INT2FIX(-1); return INT2FIX(0); } val = RSHIFT(val, i); return LONG2FIX(val); } /* * call-seq: * fix[n] -> 0, 1 * * Bit Reference---Returns the nth bit in the binary * representation of fix, where fix[0] is the least * significant bit. * * a = 0b11001100101010 * 30.downto(0) do |n| print a[n] end * * produces: * * 0000000000000000011001100101010 */ static VALUE fix_aref(VALUE fix, VALUE idx) { long val = FIX2LONG(fix); long i; idx = rb_to_int(idx); if (!FIXNUM_P(idx)) { idx = rb_big_norm(idx); if (!FIXNUM_P(idx)) { if (!RBIGNUM_SIGN(idx) || val >= 0) return INT2FIX(0); return INT2FIX(1); } } i = FIX2LONG(idx); if (i < 0) return INT2FIX(0); if (SIZEOF_LONG*CHAR_BIT-1 < i) { if (val < 0) return INT2FIX(1); return INT2FIX(0); } if (val & (1L< float * * Converts fix to a Float. * */ static VALUE fix_to_f(VALUE num) { double val; val = (double)FIX2LONG(num); return DBL2NUM(val); } /* * call-seq: * fix.abs -> integer * fix.magnitude -> integer * * Returns the absolute value of fix. * * -12345.abs #=> 12345 * 12345.abs #=> 12345 * */ static VALUE fix_abs(VALUE fix) { long i = FIX2LONG(fix); if (i < 0) i = -i; return LONG2NUM(i); } /* * call-seq: * fix.size -> fixnum * * Returns the number of bytes in the machine representation * of a Fixnum. * * 1.size #=> 4 * -1.size #=> 4 * 2147483647.size #=> 4 */ static VALUE fix_size(VALUE fix) { return INT2FIX(sizeof(long)); } /* * call-seq: * int.upto(limit) {|i| block } -> self * int.upto(limit) -> an_enumerator * * Iterates block, passing in integer values from int * up to and including limit. * * If no block is given, an enumerator is returned instead. * * 5.upto(10) { |i| print i, " " } * * produces: * * 5 6 7 8 9 10 */ static VALUE int_upto(VALUE from, VALUE to) { RETURN_ENUMERATOR(from, 1, &to); if (FIXNUM_P(from) && FIXNUM_P(to)) { long i, end; end = FIX2LONG(to); for (i = FIX2LONG(from); i <= end; i++) { rb_yield(LONG2FIX(i)); } } else { VALUE i = from, c; while (!(c = rb_funcall(i, '>', 1, to))) { rb_yield(i); i = rb_funcall(i, '+', 1, INT2FIX(1)); } if (NIL_P(c)) rb_cmperr(i, to); } return from; } /* * call-seq: * int.downto(limit) {|i| block } -> self * int.downto(limit) -> an_enumerator * * Iterates block, passing decreasing values from int * down to and including limit. * * If no block is given, an enumerator is returned instead. * * 5.downto(1) { |n| print n, ".. " } * print " Liftoff!\n" * * produces: * * 5.. 4.. 3.. 2.. 1.. Liftoff! */ static VALUE int_downto(VALUE from, VALUE to) { RETURN_ENUMERATOR(from, 1, &to); if (FIXNUM_P(from) && FIXNUM_P(to)) { long i, end; end = FIX2LONG(to); for (i=FIX2LONG(from); i >= end; i--) { rb_yield(LONG2FIX(i)); } } else { VALUE i = from, c; while (!(c = rb_funcall(i, '<', 1, to))) { rb_yield(i); i = rb_funcall(i, '-', 1, INT2FIX(1)); } if (NIL_P(c)) rb_cmperr(i, to); } return from; } /* * call-seq: * int.times {|i| block } -> self * int.times -> an_enumerator * * Iterates block int times, passing in values from zero to * int - 1. * * If no block is given, an enumerator is returned instead. * * 5.times do |i| * print i, " " * end * * produces: * * 0 1 2 3 4 */ static VALUE int_dotimes(VALUE num) { RETURN_ENUMERATOR(num, 0, 0); if (FIXNUM_P(num)) { long i, end; end = FIX2LONG(num); for (i=0; i integer or float * * Rounds flt to a given precision in decimal digits (default 0 digits). * Precision may be negative. Returns a floating point number when +ndigits+ * is positive, +self+ for zero, and round down for negative. * * 1.round #=> 1 * 1.round(2) #=> 1.0 * 15.round(-1) #=> 20 */ static VALUE int_round(int argc, VALUE* argv, VALUE num) { VALUE n; int ndigits; if (argc == 0) return num; rb_scan_args(argc, argv, "1", &n); ndigits = NUM2INT(n); if (ndigits > 0) { return rb_Float(num); } if (ndigits == 0) { return num; } return int_round_0(num, ndigits); } /* * call-seq: * fix.zero? -> true or false * * Returns true if fix is zero. * */ static VALUE fix_zero_p(VALUE num) { if (FIX2LONG(num) == 0) { return Qtrue; } return Qfalse; } /* * call-seq: * fix.odd? -> true or false * * Returns true if fix is an odd number. */ static VALUE fix_odd_p(VALUE num) { if (num & 2) { return Qtrue; } return Qfalse; } /* * call-seq: * fix.even? -> true or false * * Returns true if fix is an even number. */ static VALUE fix_even_p(VALUE num) { if (num & 2) { return Qfalse; } return Qtrue; } /* * Document-class: ZeroDivisionError * * Raised when attempting to divide an integer by 0. * * 42 / 0 * * raises the exception: * * ZeroDivisionError: divided by 0 * * Note that only division by an exact 0 will raise that exception: * * 42 / 0.0 #=> Float::INFINITY * 42 / -0.0 #=> -Float::INFINITY * 0 / 0.0 #=> NaN */ /* * Document-class: FloatDomainError * * Raised when attempting to convert special float values * (in particular infinite or NaN) * to numerical classes which don't support them. * * Float::INFINITY.to_r * * raises the exception: * * FloatDomainError: Infinity */ void Init_Numeric(void) { #undef rb_intern #define rb_intern(str) rb_intern_const(str) #if defined(__FreeBSD__) && __FreeBSD__ < 4 /* allow divide by zero -- Inf */ fpsetmask(fpgetmask() & ~(FP_X_DZ|FP_X_INV|FP_X_OFL)); #elif defined(_UNICOSMP) /* Turn off floating point exceptions for divide by zero, etc. */ _set_Creg(0, 0); #elif defined(__BORLANDC__) /* Turn off floating point exceptions for overflow, etc. */ _control87(MCW_EM, MCW_EM); _control87(_control87(0,0),0x1FFF); #endif id_coerce = rb_intern("coerce"); id_to_i = rb_intern("to_i"); id_eq = rb_intern("=="); rb_eZeroDivError = rb_define_class("ZeroDivisionError", rb_eStandardError); rb_eFloatDomainError = rb_define_class("FloatDomainError", rb_eRangeError); rb_cNumeric = rb_define_class("Numeric", rb_cObject); rb_define_method(rb_cNumeric, "singleton_method_added", num_sadded, 1); rb_include_module(rb_cNumeric, rb_mComparable); rb_define_method(rb_cNumeric, "initialize_copy", num_init_copy, 1); rb_define_method(rb_cNumeric, "coerce", num_coerce, 1); rb_define_method(rb_cNumeric, "i", num_imaginary, 0); rb_define_method(rb_cNumeric, "+@", num_uplus, 0); rb_define_method(rb_cNumeric, "-@", num_uminus, 0); rb_define_method(rb_cNumeric, "<=>", num_cmp, 1); rb_define_method(rb_cNumeric, "eql?", num_eql, 1); rb_define_method(rb_cNumeric, "quo", num_quo, 1); rb_define_method(rb_cNumeric, "fdiv", num_fdiv, 1); rb_define_method(rb_cNumeric, "div", num_div, 1); rb_define_method(rb_cNumeric, "divmod", num_divmod, 1); rb_define_method(rb_cNumeric, "%", num_modulo, 1); rb_define_method(rb_cNumeric, "modulo", num_modulo, 1); rb_define_method(rb_cNumeric, "remainder", num_remainder, 1); rb_define_method(rb_cNumeric, "abs", num_abs, 0); rb_define_method(rb_cNumeric, "magnitude", num_abs, 0); rb_define_method(rb_cNumeric, "to_int", num_to_int, 0); rb_define_method(rb_cNumeric, "real?", num_real_p, 0); rb_define_method(rb_cNumeric, "integer?", num_int_p, 0); rb_define_method(rb_cNumeric, "zero?", num_zero_p, 0); rb_define_method(rb_cNumeric, "nonzero?", num_nonzero_p, 0); rb_define_method(rb_cNumeric, "floor", num_floor, 0); rb_define_method(rb_cNumeric, "ceil", num_ceil, 0); rb_define_method(rb_cNumeric, "round", num_round, -1); rb_define_method(rb_cNumeric, "truncate", num_truncate, 0); rb_define_method(rb_cNumeric, "step", num_step, -1); rb_cInteger = rb_define_class("Integer", rb_cNumeric); rb_undef_alloc_func(rb_cInteger); rb_undef_method(CLASS_OF(rb_cInteger), "new"); rb_define_method(rb_cInteger, "integer?", int_int_p, 0); rb_define_method(rb_cInteger, "odd?", int_odd_p, 0); rb_define_method(rb_cInteger, "even?", int_even_p, 0); rb_define_method(rb_cInteger, "upto", int_upto, 1); rb_define_method(rb_cInteger, "downto", int_downto, 1); rb_define_method(rb_cInteger, "times", int_dotimes, 0); rb_define_method(rb_cInteger, "succ", int_succ, 0); rb_define_method(rb_cInteger, "next", int_succ, 0); rb_define_method(rb_cInteger, "pred", int_pred, 0); rb_define_method(rb_cInteger, "chr", int_chr, -1); rb_define_method(rb_cInteger, "ord", int_ord, 0); rb_define_method(rb_cInteger, "to_i", int_to_i, 0); rb_define_method(rb_cInteger, "to_int", int_to_i, 0); rb_define_method(rb_cInteger, "floor", int_to_i, 0); rb_define_method(rb_cInteger, "ceil", int_to_i, 0); rb_define_method(rb_cInteger, "truncate", int_to_i, 0); rb_define_method(rb_cInteger, "round", int_round, -1); rb_cFixnum = rb_define_class("Fixnum", rb_cInteger); rb_define_method(rb_cFixnum, "to_s", fix_to_s, -1); rb_define_method(rb_cFixnum, "-@", fix_uminus, 0); rb_define_method(rb_cFixnum, "+", fix_plus, 1); rb_define_method(rb_cFixnum, "-", fix_minus, 1); rb_define_method(rb_cFixnum, "*", fix_mul, 1); rb_define_method(rb_cFixnum, "/", fix_div, 1); rb_define_method(rb_cFixnum, "div", fix_idiv, 1); rb_define_method(rb_cFixnum, "%", fix_mod, 1); rb_define_method(rb_cFixnum, "modulo", fix_mod, 1); rb_define_method(rb_cFixnum, "divmod", fix_divmod, 1); rb_define_method(rb_cFixnum, "fdiv", fix_fdiv, 1); rb_define_method(rb_cFixnum, "**", fix_pow, 1); rb_define_method(rb_cFixnum, "abs", fix_abs, 0); rb_define_method(rb_cFixnum, "magnitude", fix_abs, 0); rb_define_method(rb_cFixnum, "==", fix_equal, 1); rb_define_method(rb_cFixnum, "===", fix_equal, 1); rb_define_method(rb_cFixnum, "<=>", fix_cmp, 1); rb_define_method(rb_cFixnum, ">", fix_gt, 1); rb_define_method(rb_cFixnum, ">=", fix_ge, 1); rb_define_method(rb_cFixnum, "<", fix_lt, 1); rb_define_method(rb_cFixnum, "<=", fix_le, 1); rb_define_method(rb_cFixnum, "~", fix_rev, 0); rb_define_method(rb_cFixnum, "&", fix_and, 1); rb_define_method(rb_cFixnum, "|", fix_or, 1); rb_define_method(rb_cFixnum, "^", fix_xor, 1); rb_define_method(rb_cFixnum, "[]", fix_aref, 1); rb_define_method(rb_cFixnum, "<<", rb_fix_lshift, 1); rb_define_method(rb_cFixnum, ">>", rb_fix_rshift, 1); rb_define_method(rb_cFixnum, "to_f", fix_to_f, 0); rb_define_method(rb_cFixnum, "size", fix_size, 0); rb_define_method(rb_cFixnum, "zero?", fix_zero_p, 0); rb_define_method(rb_cFixnum, "odd?", fix_odd_p, 0); rb_define_method(rb_cFixnum, "even?", fix_even_p, 0); rb_define_method(rb_cFixnum, "succ", fix_succ, 0); rb_cFloat = rb_define_class("Float", rb_cNumeric); rb_undef_alloc_func(rb_cFloat); rb_undef_method(CLASS_OF(rb_cFloat), "new"); rb_define_const(rb_cFloat, "ROUNDS", INT2FIX(FLT_ROUNDS)); rb_define_const(rb_cFloat, "RADIX", INT2FIX(FLT_RADIX)); rb_define_const(rb_cFloat, "MANT_DIG", INT2FIX(DBL_MANT_DIG)); rb_define_const(rb_cFloat, "DIG", INT2FIX(DBL_DIG)); rb_define_const(rb_cFloat, "MIN_EXP", INT2FIX(DBL_MIN_EXP)); rb_define_const(rb_cFloat, "MAX_EXP", INT2FIX(DBL_MAX_EXP)); rb_define_const(rb_cFloat, "MIN_10_EXP", INT2FIX(DBL_MIN_10_EXP)); rb_define_const(rb_cFloat, "MAX_10_EXP", INT2FIX(DBL_MAX_10_EXP)); rb_define_const(rb_cFloat, "MIN", DBL2NUM(DBL_MIN)); rb_define_const(rb_cFloat, "MAX", DBL2NUM(DBL_MAX)); rb_define_const(rb_cFloat, "EPSILON", DBL2NUM(DBL_EPSILON)); rb_define_const(rb_cFloat, "INFINITY", DBL2NUM(INFINITY)); rb_define_const(rb_cFloat, "NAN", DBL2NUM(NAN)); rb_define_method(rb_cFloat, "to_s", flo_to_s, 0); rb_define_method(rb_cFloat, "coerce", flo_coerce, 1); rb_define_method(rb_cFloat, "-@", flo_uminus, 0); rb_define_method(rb_cFloat, "+", flo_plus, 1); rb_define_method(rb_cFloat, "-", flo_minus, 1); rb_define_method(rb_cFloat, "*", flo_mul, 1); rb_define_method(rb_cFloat, "/", flo_div, 1); rb_define_method(rb_cFloat, "quo", flo_quo, 1); rb_define_method(rb_cFloat, "fdiv", flo_quo, 1); rb_define_method(rb_cFloat, "%", flo_mod, 1); rb_define_method(rb_cFloat, "modulo", flo_mod, 1); rb_define_method(rb_cFloat, "divmod", flo_divmod, 1); rb_define_method(rb_cFloat, "**", flo_pow, 1); rb_define_method(rb_cFloat, "==", flo_eq, 1); rb_define_method(rb_cFloat, "===", flo_eq, 1); rb_define_method(rb_cFloat, "<=>", flo_cmp, 1); rb_define_method(rb_cFloat, ">", flo_gt, 1); rb_define_method(rb_cFloat, ">=", flo_ge, 1); rb_define_method(rb_cFloat, "<", flo_lt, 1); rb_define_method(rb_cFloat, "<=", flo_le, 1); rb_define_method(rb_cFloat, "eql?", flo_eql, 1); rb_define_method(rb_cFloat, "hash", flo_hash, 0); rb_define_method(rb_cFloat, "to_f", flo_to_f, 0); rb_define_method(rb_cFloat, "abs", flo_abs, 0); rb_define_method(rb_cFloat, "magnitude", flo_abs, 0); rb_define_method(rb_cFloat, "zero?", flo_zero_p, 0); rb_define_method(rb_cFloat, "to_i", flo_truncate, 0); rb_define_method(rb_cFloat, "to_int", flo_truncate, 0); rb_define_method(rb_cFloat, "floor", flo_floor, 0); rb_define_method(rb_cFloat, "ceil", flo_ceil, 0); rb_define_method(rb_cFloat, "round", flo_round, -1); rb_define_method(rb_cFloat, "truncate", flo_truncate, 0); rb_define_method(rb_cFloat, "nan?", flo_is_nan_p, 0); rb_define_method(rb_cFloat, "infinite?", flo_is_infinite_p, 0); rb_define_method(rb_cFloat, "finite?", flo_is_finite_p, 0); }