diff options
author | Anas Nashif <anas.nashif@intel.com> | 2012-11-06 11:57:02 -0800 |
---|---|---|
committer | Anas Nashif <anas.nashif@intel.com> | 2012-11-06 11:57:02 -0800 |
commit | 3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748 (patch) | |
tree | f66334a0ad8cf59590dd682d95d6244e8b454853 /math.c | |
download | ruby-3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748.tar.gz ruby-3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748.tar.bz2 ruby-3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748.zip |
Imported Upstream version 1.9.3.p194upstream/1.9.3.p194
Diffstat (limited to 'math.c')
-rw-r--r-- | math.c | 829 |
1 files changed, 829 insertions, 0 deletions
@@ -0,0 +1,829 @@ +/********************************************************************** + + math.c - + + $Author: ngoto $ + created at: Tue Jan 25 14:12:56 JST 1994 + + Copyright (C) 1993-2007 Yukihiro Matsumoto + +**********************************************************************/ + +#include "ruby/ruby.h" +#include "internal.h" +#include <math.h> +#include <errno.h> + +#if defined(HAVE_SIGNBIT) && defined(__GNUC__) && defined(__sun__) && \ + !defined(signbit) + extern int signbit(double); +#endif + +#define numberof(array) (int)(sizeof(array) / sizeof((array)[0])) + +VALUE rb_mMath; +VALUE rb_eMathDomainError; + +#define Need_Float(x) do {if (TYPE(x) != T_FLOAT) {(x) = rb_to_float(x);}} while(0) +#define Need_Float2(x,y) do {\ + Need_Float(x);\ + Need_Float(y);\ +} while (0) + +#define domain_error(msg) \ + rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " #msg); + +/* + * call-seq: + * Math.atan2(y, x) -> float + * + * Computes the arc tangent given <i>y</i> and <i>x</i>. Returns + * -PI..PI. + * + * Math.atan2(-0.0, -1.0) #=> -3.141592653589793 + * Math.atan2(-1.0, -1.0) #=> -2.356194490192345 + * Math.atan2(-1.0, 0.0) #=> -1.5707963267948966 + * Math.atan2(-1.0, 1.0) #=> -0.7853981633974483 + * Math.atan2(-0.0, 1.0) #=> -0.0 + * Math.atan2(0.0, 1.0) #=> 0.0 + * Math.atan2(1.0, 1.0) #=> 0.7853981633974483 + * Math.atan2(1.0, 0.0) #=> 1.5707963267948966 + * Math.atan2(1.0, -1.0) #=> 2.356194490192345 + * Math.atan2(0.0, -1.0) #=> 3.141592653589793 + * + */ + +static VALUE +math_atan2(VALUE obj, VALUE y, VALUE x) +{ +#ifndef M_PI +# define M_PI 3.14159265358979323846 +#endif + double dx, dy; + Need_Float2(y, x); + dx = RFLOAT_VALUE(x); + dy = RFLOAT_VALUE(y); + if (dx == 0.0 && dy == 0.0) { + if (!signbit(dx)) + return DBL2NUM(dy); + if (!signbit(dy)) + return DBL2NUM(M_PI); + return DBL2NUM(-M_PI); + } + if (isinf(dx) && isinf(dy)) domain_error("atan2"); + return DBL2NUM(atan2(dy, dx)); +} + + +/* + * call-seq: + * Math.cos(x) -> float + * + * Computes the cosine of <i>x</i> (expressed in radians). Returns + * -1..1. + */ + +static VALUE +math_cos(VALUE obj, VALUE x) +{ + Need_Float(x); + return DBL2NUM(cos(RFLOAT_VALUE(x))); +} + +/* + * call-seq: + * Math.sin(x) -> float + * + * Computes the sine of <i>x</i> (expressed in radians). Returns + * -1..1. + */ + +static VALUE +math_sin(VALUE obj, VALUE x) +{ + Need_Float(x); + + return DBL2NUM(sin(RFLOAT_VALUE(x))); +} + + +/* + * call-seq: + * Math.tan(x) -> float + * + * Returns the tangent of <i>x</i> (expressed in radians). + */ + +static VALUE +math_tan(VALUE obj, VALUE x) +{ + Need_Float(x); + + return DBL2NUM(tan(RFLOAT_VALUE(x))); +} + +/* + * call-seq: + * Math.acos(x) -> float + * + * Computes the arc cosine of <i>x</i>. Returns 0..PI. + */ + +static VALUE +math_acos(VALUE obj, VALUE x) +{ + double d0, d; + + Need_Float(x); + d0 = RFLOAT_VALUE(x); + /* check for domain error */ + if (d0 < -1.0 || 1.0 < d0) domain_error("acos"); + d = acos(d0); + return DBL2NUM(d); +} + +/* + * call-seq: + * Math.asin(x) -> float + * + * Computes the arc sine of <i>x</i>. Returns -{PI/2} .. {PI/2}. + */ + +static VALUE +math_asin(VALUE obj, VALUE x) +{ + double d0, d; + + Need_Float(x); + d0 = RFLOAT_VALUE(x); + /* check for domain error */ + if (d0 < -1.0 || 1.0 < d0) domain_error("asin"); + d = asin(d0); + return DBL2NUM(d); +} + +/* + * call-seq: + * Math.atan(x) -> float + * + * Computes the arc tangent of <i>x</i>. Returns -{PI/2} .. {PI/2}. + */ + +static VALUE +math_atan(VALUE obj, VALUE x) +{ + Need_Float(x); + return DBL2NUM(atan(RFLOAT_VALUE(x))); +} + +#ifndef HAVE_COSH +double +cosh(double x) +{ + return (exp(x) + exp(-x)) / 2; +} +#endif + +/* + * call-seq: + * Math.cosh(x) -> float + * + * Computes the hyperbolic cosine of <i>x</i> (expressed in radians). + */ + +static VALUE +math_cosh(VALUE obj, VALUE x) +{ + Need_Float(x); + + return DBL2NUM(cosh(RFLOAT_VALUE(x))); +} + +#ifndef HAVE_SINH +double +sinh(double x) +{ + return (exp(x) - exp(-x)) / 2; +} +#endif + +/* + * call-seq: + * Math.sinh(x) -> float + * + * Computes the hyperbolic sine of <i>x</i> (expressed in + * radians). + */ + +static VALUE +math_sinh(VALUE obj, VALUE x) +{ + Need_Float(x); + return DBL2NUM(sinh(RFLOAT_VALUE(x))); +} + +#ifndef HAVE_TANH +double +tanh(double x) +{ + return sinh(x) / cosh(x); +} +#endif + +/* + * call-seq: + * Math.tanh() -> float + * + * Computes the hyperbolic tangent of <i>x</i> (expressed in + * radians). + */ + +static VALUE +math_tanh(VALUE obj, VALUE x) +{ + Need_Float(x); + return DBL2NUM(tanh(RFLOAT_VALUE(x))); +} + +/* + * call-seq: + * Math.acosh(x) -> float + * + * Computes the inverse hyperbolic cosine of <i>x</i>. + */ + +static VALUE +math_acosh(VALUE obj, VALUE x) +{ + double d0, d; + + Need_Float(x); + d0 = RFLOAT_VALUE(x); + /* check for domain error */ + if (d0 < 1.0) domain_error("acosh"); + d = acosh(d0); + return DBL2NUM(d); +} + +/* + * call-seq: + * Math.asinh(x) -> float + * + * Computes the inverse hyperbolic sine of <i>x</i>. + */ + +static VALUE +math_asinh(VALUE obj, VALUE x) +{ + Need_Float(x); + return DBL2NUM(asinh(RFLOAT_VALUE(x))); +} + +/* + * call-seq: + * Math.atanh(x) -> float + * + * Computes the inverse hyperbolic tangent of <i>x</i>. + */ + +static VALUE +math_atanh(VALUE obj, VALUE x) +{ + double d0, d; + + Need_Float(x); + d0 = RFLOAT_VALUE(x); + /* check for domain error */ + if (d0 < -1.0 || +1.0 < d0) domain_error("atanh"); + /* check for pole error */ + if (d0 == -1.0) return DBL2NUM(-INFINITY); + if (d0 == +1.0) return DBL2NUM(+INFINITY); + d = atanh(d0); + return DBL2NUM(d); +} + +/* + * call-seq: + * Math.exp(x) -> float + * + * Returns e**x. + * + * Math.exp(0) #=> 1.0 + * Math.exp(1) #=> 2.718281828459045 + * Math.exp(1.5) #=> 4.4816890703380645 + * + */ + +static VALUE +math_exp(VALUE obj, VALUE x) +{ + Need_Float(x); + return DBL2NUM(exp(RFLOAT_VALUE(x))); +} + +#if defined __CYGWIN__ +# include <cygwin/version.h> +# if CYGWIN_VERSION_DLL_MAJOR < 1005 +# define nan(x) nan() +# endif +# define log(x) ((x) < 0.0 ? nan("") : log(x)) +# define log10(x) ((x) < 0.0 ? nan("") : log10(x)) +#endif + +/* + * call-seq: + * Math.log(numeric) -> float + * Math.log(num,base) -> float + * + * Returns the natural logarithm of <i>numeric</i>. + * If additional second argument is given, it will be the base + * of logarithm. + * + * Math.log(1) #=> 0.0 + * Math.log(Math::E) #=> 1.0 + * Math.log(Math::E**3) #=> 3.0 + * Math.log(12,3) #=> 2.2618595071429146 + * + */ + +static VALUE +math_log(int argc, VALUE *argv) +{ + VALUE x, base; + double d0, d; + + rb_scan_args(argc, argv, "11", &x, &base); + Need_Float(x); + d0 = RFLOAT_VALUE(x); + /* check for domain error */ + if (d0 < 0.0) domain_error("log"); + /* check for pole error */ + if (d0 == 0.0) return DBL2NUM(-INFINITY); + d = log(d0); + if (argc == 2) { + Need_Float(base); + d /= log(RFLOAT_VALUE(base)); + } + return DBL2NUM(d); +} + +#ifndef log2 +#ifndef HAVE_LOG2 +double +log2(double x) +{ + return log10(x)/log10(2.0); +} +#else +extern double log2(double); +#endif +#endif + +/* + * call-seq: + * Math.log2(numeric) -> float + * + * Returns the base 2 logarithm of <i>numeric</i>. + * + * Math.log2(1) #=> 0.0 + * Math.log2(2) #=> 1.0 + * Math.log2(32768) #=> 15.0 + * Math.log2(65536) #=> 16.0 + * + */ + +static VALUE +math_log2(VALUE obj, VALUE x) +{ + double d0, d; + + Need_Float(x); + d0 = RFLOAT_VALUE(x); + /* check for domain error */ + if (d0 < 0.0) domain_error("log2"); + /* check for pole error */ + if (d0 == 0.0) return DBL2NUM(-INFINITY); + d = log2(d0); + return DBL2NUM(d); +} + +/* + * call-seq: + * Math.log10(numeric) -> float + * + * Returns the base 10 logarithm of <i>numeric</i>. + * + * Math.log10(1) #=> 0.0 + * Math.log10(10) #=> 1.0 + * Math.log10(10**100) #=> 100.0 + * + */ + +static VALUE +math_log10(VALUE obj, VALUE x) +{ + double d0, d; + + Need_Float(x); + d0 = RFLOAT_VALUE(x); + /* check for domain error */ + if (d0 < 0.0) domain_error("log10"); + /* check for pole error */ + if (d0 == 0.0) return DBL2NUM(-INFINITY); + d = log10(d0); + return DBL2NUM(d); +} + +/* + * call-seq: + * Math.sqrt(numeric) -> float + * + * Returns the non-negative square root of <i>numeric</i>. + * + * 0.upto(10) {|x| + * p [x, Math.sqrt(x), Math.sqrt(x)**2] + * } + * #=> + * [0, 0.0, 0.0] + * [1, 1.0, 1.0] + * [2, 1.4142135623731, 2.0] + * [3, 1.73205080756888, 3.0] + * [4, 2.0, 4.0] + * [5, 2.23606797749979, 5.0] + * [6, 2.44948974278318, 6.0] + * [7, 2.64575131106459, 7.0] + * [8, 2.82842712474619, 8.0] + * [9, 3.0, 9.0] + * [10, 3.16227766016838, 10.0] + * + */ + +static VALUE +math_sqrt(VALUE obj, VALUE x) +{ + double d0, d; + + Need_Float(x); + d0 = RFLOAT_VALUE(x); + /* check for domain error */ + if (d0 < 0.0) domain_error("sqrt"); + if (d0 == 0.0) return DBL2NUM(0.0); + d = sqrt(d0); + return DBL2NUM(d); +} + +/* + * call-seq: + * Math.cbrt(numeric) -> float + * + * Returns the cube root of <i>numeric</i>. + * + * -9.upto(9) {|x| + * p [x, Math.cbrt(x), Math.cbrt(x)**3] + * } + * #=> + * [-9, -2.0800838230519, -9.0] + * [-8, -2.0, -8.0] + * [-7, -1.91293118277239, -7.0] + * [-6, -1.81712059283214, -6.0] + * [-5, -1.7099759466767, -5.0] + * [-4, -1.5874010519682, -4.0] + * [-3, -1.44224957030741, -3.0] + * [-2, -1.25992104989487, -2.0] + * [-1, -1.0, -1.0] + * [0, 0.0, 0.0] + * [1, 1.0, 1.0] + * [2, 1.25992104989487, 2.0] + * [3, 1.44224957030741, 3.0] + * [4, 1.5874010519682, 4.0] + * [5, 1.7099759466767, 5.0] + * [6, 1.81712059283214, 6.0] + * [7, 1.91293118277239, 7.0] + * [8, 2.0, 8.0] + * [9, 2.0800838230519, 9.0] + * + */ + +static VALUE +math_cbrt(VALUE obj, VALUE x) +{ + Need_Float(x); + return DBL2NUM(cbrt(RFLOAT_VALUE(x))); +} + +/* + * call-seq: + * Math.frexp(numeric) -> [ fraction, exponent ] + * + * Returns a two-element array containing the normalized fraction (a + * <code>Float</code>) and exponent (a <code>Fixnum</code>) of + * <i>numeric</i>. + * + * fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11] + * fraction * 2**exponent #=> 1234.0 + */ + +static VALUE +math_frexp(VALUE obj, VALUE x) +{ + double d; + int exp; + + Need_Float(x); + + d = frexp(RFLOAT_VALUE(x), &exp); + return rb_assoc_new(DBL2NUM(d), INT2NUM(exp)); +} + +/* + * call-seq: + * Math.ldexp(flt, int) -> float + * + * Returns the value of <i>flt</i>*(2**<i>int</i>). + * + * fraction, exponent = Math.frexp(1234) + * Math.ldexp(fraction, exponent) #=> 1234.0 + */ + +static VALUE +math_ldexp(VALUE obj, VALUE x, VALUE n) +{ + Need_Float(x); + return DBL2NUM(ldexp(RFLOAT_VALUE(x), NUM2INT(n))); +} + +/* + * call-seq: + * Math.hypot(x, y) -> float + * + * Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle + * with sides <i>x</i> and <i>y</i>. + * + * Math.hypot(3, 4) #=> 5.0 + */ + +static VALUE +math_hypot(VALUE obj, VALUE x, VALUE y) +{ + Need_Float2(x, y); + return DBL2NUM(hypot(RFLOAT_VALUE(x), RFLOAT_VALUE(y))); +} + +/* + * call-seq: + * Math.erf(x) -> float + * + * Calculates the error function of x. + */ + +static VALUE +math_erf(VALUE obj, VALUE x) +{ + Need_Float(x); + return DBL2NUM(erf(RFLOAT_VALUE(x))); +} + +/* + * call-seq: + * Math.erfc(x) -> float + * + * Calculates the complementary error function of x. + */ + +static VALUE +math_erfc(VALUE obj, VALUE x) +{ + Need_Float(x); + return DBL2NUM(erfc(RFLOAT_VALUE(x))); +} + +/* + * call-seq: + * Math.gamma(x) -> float + * + * Calculates the gamma function of x. + * + * Note that gamma(n) is same as fact(n-1) for integer n > 0. + * However gamma(n) returns float and can be an approximation. + * + * def fact(n) (1..n).inject(1) {|r,i| r*i } end + * 1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] } + * #=> [1, 1.0, 1] + * # [2, 1.0, 1] + * # [3, 2.0, 2] + * # [4, 6.0, 6] + * # [5, 24.0, 24] + * # [6, 120.0, 120] + * # [7, 720.0, 720] + * # [8, 5040.0, 5040] + * # [9, 40320.0, 40320] + * # [10, 362880.0, 362880] + * # [11, 3628800.0, 3628800] + * # [12, 39916800.0, 39916800] + * # [13, 479001600.0, 479001600] + * # [14, 6227020800.0, 6227020800] + * # [15, 87178291200.0, 87178291200] + * # [16, 1307674368000.0, 1307674368000] + * # [17, 20922789888000.0, 20922789888000] + * # [18, 355687428096000.0, 355687428096000] + * # [19, 6.402373705728e+15, 6402373705728000] + * # [20, 1.21645100408832e+17, 121645100408832000] + * # [21, 2.43290200817664e+18, 2432902008176640000] + * # [22, 5.109094217170944e+19, 51090942171709440000] + * # [23, 1.1240007277776077e+21, 1124000727777607680000] + * # [24, 2.5852016738885062e+22, 25852016738884976640000] + * # [25, 6.204484017332391e+23, 620448401733239439360000] + * # [26, 1.5511210043330954e+25, 15511210043330985984000000] + * + */ + +static VALUE +math_gamma(VALUE obj, VALUE x) +{ + static const double fact_table[] = { + /* fact(0) */ 1.0, + /* fact(1) */ 1.0, + /* fact(2) */ 2.0, + /* fact(3) */ 6.0, + /* fact(4) */ 24.0, + /* fact(5) */ 120.0, + /* fact(6) */ 720.0, + /* fact(7) */ 5040.0, + /* fact(8) */ 40320.0, + /* fact(9) */ 362880.0, + /* fact(10) */ 3628800.0, + /* fact(11) */ 39916800.0, + /* fact(12) */ 479001600.0, + /* fact(13) */ 6227020800.0, + /* fact(14) */ 87178291200.0, + /* fact(15) */ 1307674368000.0, + /* fact(16) */ 20922789888000.0, + /* fact(17) */ 355687428096000.0, + /* fact(18) */ 6402373705728000.0, + /* fact(19) */ 121645100408832000.0, + /* fact(20) */ 2432902008176640000.0, + /* fact(21) */ 51090942171709440000.0, + /* fact(22) */ 1124000727777607680000.0, + /* fact(23)=25852016738884976640000 needs 56bit mantissa which is + * impossible to represent exactly in IEEE 754 double which have + * 53bit mantissa. */ + }; + double d0, d; + double intpart, fracpart; + Need_Float(x); + d0 = RFLOAT_VALUE(x); + /* check for domain error */ + if (isinf(d0) && signbit(d0)) domain_error("gamma"); + fracpart = modf(d0, &intpart); + if (fracpart == 0.0) { + if (intpart < 0) domain_error("gamma"); + if (0 < intpart && + intpart - 1 < (double)numberof(fact_table)) { + return DBL2NUM(fact_table[(int)intpart - 1]); + } + } + d = tgamma(d0); + return DBL2NUM(d); +} + +/* + * call-seq: + * Math.lgamma(x) -> [float, -1 or 1] + * + * Calculates the logarithmic gamma of x and + * the sign of gamma of x. + * + * Math.lgamma(x) is same as + * [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1] + * but avoid overflow by Math.gamma(x) for large x. + */ + +static VALUE +math_lgamma(VALUE obj, VALUE x) +{ + double d0, d; + int sign=1; + VALUE v; + Need_Float(x); + d0 = RFLOAT_VALUE(x); + /* check for domain error */ + if (isinf(d0)) { + if (signbit(d0)) domain_error("lgamma"); + return rb_assoc_new(DBL2NUM(INFINITY), INT2FIX(1)); + } + d = lgamma_r(d0, &sign); + v = DBL2NUM(d); + return rb_assoc_new(v, INT2FIX(sign)); +} + + +#define exp1(n) \ +VALUE \ +rb_math_##n(VALUE x)\ +{\ + return math_##n(rb_mMath, x);\ +} + +#define exp2(n) \ +VALUE \ +rb_math_##n(VALUE x, VALUE y)\ +{\ + return math_##n(rb_mMath, x, y);\ +} + +exp2(atan2) +exp1(cos) +exp1(cosh) +exp1(exp) +exp2(hypot) + +VALUE +rb_math_log(int argc, VALUE *argv) +{ + return math_log(argc, argv); +} + +exp1(sin) +exp1(sinh) +exp1(sqrt) + + +/* + * Document-class: Math::DomainError + * + * Raised when a mathematical function is evaluated outside of its + * domain of definition. + * + * For example, since +cos+ returns values in the range -1..1, + * its inverse function +acos+ is only defined on that interval: + * + * Math.acos(42) + * + * <em>produces:</em> + * + * Math::DomainError: Numerical argument is out of domain - "acos" + */ + +/* + * Document-class: Math + * + * The <code>Math</code> module contains module functions for basic + * trigonometric and transcendental functions. See class + * <code>Float</code> for a list of constants that + * define Ruby's floating point accuracy. + */ + + +void +Init_Math(void) +{ + rb_mMath = rb_define_module("Math"); + rb_eMathDomainError = rb_define_class_under(rb_mMath, "DomainError", rb_eStandardError); + +#ifdef M_PI + rb_define_const(rb_mMath, "PI", DBL2NUM(M_PI)); +#else + rb_define_const(rb_mMath, "PI", DBL2NUM(atan(1.0)*4.0)); +#endif + +#ifdef M_E + rb_define_const(rb_mMath, "E", DBL2NUM(M_E)); +#else + rb_define_const(rb_mMath, "E", DBL2NUM(exp(1.0))); +#endif + + rb_define_module_function(rb_mMath, "atan2", math_atan2, 2); + rb_define_module_function(rb_mMath, "cos", math_cos, 1); + rb_define_module_function(rb_mMath, "sin", math_sin, 1); + rb_define_module_function(rb_mMath, "tan", math_tan, 1); + + rb_define_module_function(rb_mMath, "acos", math_acos, 1); + rb_define_module_function(rb_mMath, "asin", math_asin, 1); + rb_define_module_function(rb_mMath, "atan", math_atan, 1); + + rb_define_module_function(rb_mMath, "cosh", math_cosh, 1); + rb_define_module_function(rb_mMath, "sinh", math_sinh, 1); + rb_define_module_function(rb_mMath, "tanh", math_tanh, 1); + + rb_define_module_function(rb_mMath, "acosh", math_acosh, 1); + rb_define_module_function(rb_mMath, "asinh", math_asinh, 1); + rb_define_module_function(rb_mMath, "atanh", math_atanh, 1); + + rb_define_module_function(rb_mMath, "exp", math_exp, 1); + rb_define_module_function(rb_mMath, "log", math_log, -1); + rb_define_module_function(rb_mMath, "log2", math_log2, 1); + rb_define_module_function(rb_mMath, "log10", math_log10, 1); + rb_define_module_function(rb_mMath, "sqrt", math_sqrt, 1); + rb_define_module_function(rb_mMath, "cbrt", math_cbrt, 1); + + rb_define_module_function(rb_mMath, "frexp", math_frexp, 1); + rb_define_module_function(rb_mMath, "ldexp", math_ldexp, 2); + + rb_define_module_function(rb_mMath, "hypot", math_hypot, 2); + + rb_define_module_function(rb_mMath, "erf", math_erf, 1); + rb_define_module_function(rb_mMath, "erfc", math_erfc, 1); + + rb_define_module_function(rb_mMath, "gamma", math_gamma, 1); + rb_define_module_function(rb_mMath, "lgamma", math_lgamma, 1); +} |