summaryrefslogtreecommitdiff
path: root/math.c
diff options
context:
space:
mode:
authorAnas Nashif <anas.nashif@intel.com>2012-11-06 11:57:02 -0800
committerAnas Nashif <anas.nashif@intel.com>2012-11-06 11:57:02 -0800
commit3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748 (patch)
treef66334a0ad8cf59590dd682d95d6244e8b454853 /math.c
downloadruby-3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748.tar.gz
ruby-3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748.tar.bz2
ruby-3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748.zip
Imported Upstream version 1.9.3.p194upstream/1.9.3.p194
Diffstat (limited to 'math.c')
-rw-r--r--math.c829
1 files changed, 829 insertions, 0 deletions
diff --git a/math.c b/math.c
new file mode 100644
index 0000000..3904f74
--- /dev/null
+++ b/math.c
@@ -0,0 +1,829 @@
+/**********************************************************************
+
+ math.c -
+
+ $Author: ngoto $
+ created at: Tue Jan 25 14:12:56 JST 1994
+
+ Copyright (C) 1993-2007 Yukihiro Matsumoto
+
+**********************************************************************/
+
+#include "ruby/ruby.h"
+#include "internal.h"
+#include <math.h>
+#include <errno.h>
+
+#if defined(HAVE_SIGNBIT) && defined(__GNUC__) && defined(__sun__) && \
+ !defined(signbit)
+ extern int signbit(double);
+#endif
+
+#define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))
+
+VALUE rb_mMath;
+VALUE rb_eMathDomainError;
+
+#define Need_Float(x) do {if (TYPE(x) != T_FLOAT) {(x) = rb_to_float(x);}} while(0)
+#define Need_Float2(x,y) do {\
+ Need_Float(x);\
+ Need_Float(y);\
+} while (0)
+
+#define domain_error(msg) \
+ rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " #msg);
+
+/*
+ * call-seq:
+ * Math.atan2(y, x) -> float
+ *
+ * Computes the arc tangent given <i>y</i> and <i>x</i>. Returns
+ * -PI..PI.
+ *
+ * Math.atan2(-0.0, -1.0) #=> -3.141592653589793
+ * Math.atan2(-1.0, -1.0) #=> -2.356194490192345
+ * Math.atan2(-1.0, 0.0) #=> -1.5707963267948966
+ * Math.atan2(-1.0, 1.0) #=> -0.7853981633974483
+ * Math.atan2(-0.0, 1.0) #=> -0.0
+ * Math.atan2(0.0, 1.0) #=> 0.0
+ * Math.atan2(1.0, 1.0) #=> 0.7853981633974483
+ * Math.atan2(1.0, 0.0) #=> 1.5707963267948966
+ * Math.atan2(1.0, -1.0) #=> 2.356194490192345
+ * Math.atan2(0.0, -1.0) #=> 3.141592653589793
+ *
+ */
+
+static VALUE
+math_atan2(VALUE obj, VALUE y, VALUE x)
+{
+#ifndef M_PI
+# define M_PI 3.14159265358979323846
+#endif
+ double dx, dy;
+ Need_Float2(y, x);
+ dx = RFLOAT_VALUE(x);
+ dy = RFLOAT_VALUE(y);
+ if (dx == 0.0 && dy == 0.0) {
+ if (!signbit(dx))
+ return DBL2NUM(dy);
+ if (!signbit(dy))
+ return DBL2NUM(M_PI);
+ return DBL2NUM(-M_PI);
+ }
+ if (isinf(dx) && isinf(dy)) domain_error("atan2");
+ return DBL2NUM(atan2(dy, dx));
+}
+
+
+/*
+ * call-seq:
+ * Math.cos(x) -> float
+ *
+ * Computes the cosine of <i>x</i> (expressed in radians). Returns
+ * -1..1.
+ */
+
+static VALUE
+math_cos(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DBL2NUM(cos(RFLOAT_VALUE(x)));
+}
+
+/*
+ * call-seq:
+ * Math.sin(x) -> float
+ *
+ * Computes the sine of <i>x</i> (expressed in radians). Returns
+ * -1..1.
+ */
+
+static VALUE
+math_sin(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+
+ return DBL2NUM(sin(RFLOAT_VALUE(x)));
+}
+
+
+/*
+ * call-seq:
+ * Math.tan(x) -> float
+ *
+ * Returns the tangent of <i>x</i> (expressed in radians).
+ */
+
+static VALUE
+math_tan(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+
+ return DBL2NUM(tan(RFLOAT_VALUE(x)));
+}
+
+/*
+ * call-seq:
+ * Math.acos(x) -> float
+ *
+ * Computes the arc cosine of <i>x</i>. Returns 0..PI.
+ */
+
+static VALUE
+math_acos(VALUE obj, VALUE x)
+{
+ double d0, d;
+
+ Need_Float(x);
+ d0 = RFLOAT_VALUE(x);
+ /* check for domain error */
+ if (d0 < -1.0 || 1.0 < d0) domain_error("acos");
+ d = acos(d0);
+ return DBL2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.asin(x) -> float
+ *
+ * Computes the arc sine of <i>x</i>. Returns -{PI/2} .. {PI/2}.
+ */
+
+static VALUE
+math_asin(VALUE obj, VALUE x)
+{
+ double d0, d;
+
+ Need_Float(x);
+ d0 = RFLOAT_VALUE(x);
+ /* check for domain error */
+ if (d0 < -1.0 || 1.0 < d0) domain_error("asin");
+ d = asin(d0);
+ return DBL2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.atan(x) -> float
+ *
+ * Computes the arc tangent of <i>x</i>. Returns -{PI/2} .. {PI/2}.
+ */
+
+static VALUE
+math_atan(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DBL2NUM(atan(RFLOAT_VALUE(x)));
+}
+
+#ifndef HAVE_COSH
+double
+cosh(double x)
+{
+ return (exp(x) + exp(-x)) / 2;
+}
+#endif
+
+/*
+ * call-seq:
+ * Math.cosh(x) -> float
+ *
+ * Computes the hyperbolic cosine of <i>x</i> (expressed in radians).
+ */
+
+static VALUE
+math_cosh(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+
+ return DBL2NUM(cosh(RFLOAT_VALUE(x)));
+}
+
+#ifndef HAVE_SINH
+double
+sinh(double x)
+{
+ return (exp(x) - exp(-x)) / 2;
+}
+#endif
+
+/*
+ * call-seq:
+ * Math.sinh(x) -> float
+ *
+ * Computes the hyperbolic sine of <i>x</i> (expressed in
+ * radians).
+ */
+
+static VALUE
+math_sinh(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DBL2NUM(sinh(RFLOAT_VALUE(x)));
+}
+
+#ifndef HAVE_TANH
+double
+tanh(double x)
+{
+ return sinh(x) / cosh(x);
+}
+#endif
+
+/*
+ * call-seq:
+ * Math.tanh() -> float
+ *
+ * Computes the hyperbolic tangent of <i>x</i> (expressed in
+ * radians).
+ */
+
+static VALUE
+math_tanh(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DBL2NUM(tanh(RFLOAT_VALUE(x)));
+}
+
+/*
+ * call-seq:
+ * Math.acosh(x) -> float
+ *
+ * Computes the inverse hyperbolic cosine of <i>x</i>.
+ */
+
+static VALUE
+math_acosh(VALUE obj, VALUE x)
+{
+ double d0, d;
+
+ Need_Float(x);
+ d0 = RFLOAT_VALUE(x);
+ /* check for domain error */
+ if (d0 < 1.0) domain_error("acosh");
+ d = acosh(d0);
+ return DBL2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.asinh(x) -> float
+ *
+ * Computes the inverse hyperbolic sine of <i>x</i>.
+ */
+
+static VALUE
+math_asinh(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DBL2NUM(asinh(RFLOAT_VALUE(x)));
+}
+
+/*
+ * call-seq:
+ * Math.atanh(x) -> float
+ *
+ * Computes the inverse hyperbolic tangent of <i>x</i>.
+ */
+
+static VALUE
+math_atanh(VALUE obj, VALUE x)
+{
+ double d0, d;
+
+ Need_Float(x);
+ d0 = RFLOAT_VALUE(x);
+ /* check for domain error */
+ if (d0 < -1.0 || +1.0 < d0) domain_error("atanh");
+ /* check for pole error */
+ if (d0 == -1.0) return DBL2NUM(-INFINITY);
+ if (d0 == +1.0) return DBL2NUM(+INFINITY);
+ d = atanh(d0);
+ return DBL2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.exp(x) -> float
+ *
+ * Returns e**x.
+ *
+ * Math.exp(0) #=> 1.0
+ * Math.exp(1) #=> 2.718281828459045
+ * Math.exp(1.5) #=> 4.4816890703380645
+ *
+ */
+
+static VALUE
+math_exp(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DBL2NUM(exp(RFLOAT_VALUE(x)));
+}
+
+#if defined __CYGWIN__
+# include <cygwin/version.h>
+# if CYGWIN_VERSION_DLL_MAJOR < 1005
+# define nan(x) nan()
+# endif
+# define log(x) ((x) < 0.0 ? nan("") : log(x))
+# define log10(x) ((x) < 0.0 ? nan("") : log10(x))
+#endif
+
+/*
+ * call-seq:
+ * Math.log(numeric) -> float
+ * Math.log(num,base) -> float
+ *
+ * Returns the natural logarithm of <i>numeric</i>.
+ * If additional second argument is given, it will be the base
+ * of logarithm.
+ *
+ * Math.log(1) #=> 0.0
+ * Math.log(Math::E) #=> 1.0
+ * Math.log(Math::E**3) #=> 3.0
+ * Math.log(12,3) #=> 2.2618595071429146
+ *
+ */
+
+static VALUE
+math_log(int argc, VALUE *argv)
+{
+ VALUE x, base;
+ double d0, d;
+
+ rb_scan_args(argc, argv, "11", &x, &base);
+ Need_Float(x);
+ d0 = RFLOAT_VALUE(x);
+ /* check for domain error */
+ if (d0 < 0.0) domain_error("log");
+ /* check for pole error */
+ if (d0 == 0.0) return DBL2NUM(-INFINITY);
+ d = log(d0);
+ if (argc == 2) {
+ Need_Float(base);
+ d /= log(RFLOAT_VALUE(base));
+ }
+ return DBL2NUM(d);
+}
+
+#ifndef log2
+#ifndef HAVE_LOG2
+double
+log2(double x)
+{
+ return log10(x)/log10(2.0);
+}
+#else
+extern double log2(double);
+#endif
+#endif
+
+/*
+ * call-seq:
+ * Math.log2(numeric) -> float
+ *
+ * Returns the base 2 logarithm of <i>numeric</i>.
+ *
+ * Math.log2(1) #=> 0.0
+ * Math.log2(2) #=> 1.0
+ * Math.log2(32768) #=> 15.0
+ * Math.log2(65536) #=> 16.0
+ *
+ */
+
+static VALUE
+math_log2(VALUE obj, VALUE x)
+{
+ double d0, d;
+
+ Need_Float(x);
+ d0 = RFLOAT_VALUE(x);
+ /* check for domain error */
+ if (d0 < 0.0) domain_error("log2");
+ /* check for pole error */
+ if (d0 == 0.0) return DBL2NUM(-INFINITY);
+ d = log2(d0);
+ return DBL2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.log10(numeric) -> float
+ *
+ * Returns the base 10 logarithm of <i>numeric</i>.
+ *
+ * Math.log10(1) #=> 0.0
+ * Math.log10(10) #=> 1.0
+ * Math.log10(10**100) #=> 100.0
+ *
+ */
+
+static VALUE
+math_log10(VALUE obj, VALUE x)
+{
+ double d0, d;
+
+ Need_Float(x);
+ d0 = RFLOAT_VALUE(x);
+ /* check for domain error */
+ if (d0 < 0.0) domain_error("log10");
+ /* check for pole error */
+ if (d0 == 0.0) return DBL2NUM(-INFINITY);
+ d = log10(d0);
+ return DBL2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.sqrt(numeric) -> float
+ *
+ * Returns the non-negative square root of <i>numeric</i>.
+ *
+ * 0.upto(10) {|x|
+ * p [x, Math.sqrt(x), Math.sqrt(x)**2]
+ * }
+ * #=>
+ * [0, 0.0, 0.0]
+ * [1, 1.0, 1.0]
+ * [2, 1.4142135623731, 2.0]
+ * [3, 1.73205080756888, 3.0]
+ * [4, 2.0, 4.0]
+ * [5, 2.23606797749979, 5.0]
+ * [6, 2.44948974278318, 6.0]
+ * [7, 2.64575131106459, 7.0]
+ * [8, 2.82842712474619, 8.0]
+ * [9, 3.0, 9.0]
+ * [10, 3.16227766016838, 10.0]
+ *
+ */
+
+static VALUE
+math_sqrt(VALUE obj, VALUE x)
+{
+ double d0, d;
+
+ Need_Float(x);
+ d0 = RFLOAT_VALUE(x);
+ /* check for domain error */
+ if (d0 < 0.0) domain_error("sqrt");
+ if (d0 == 0.0) return DBL2NUM(0.0);
+ d = sqrt(d0);
+ return DBL2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.cbrt(numeric) -> float
+ *
+ * Returns the cube root of <i>numeric</i>.
+ *
+ * -9.upto(9) {|x|
+ * p [x, Math.cbrt(x), Math.cbrt(x)**3]
+ * }
+ * #=>
+ * [-9, -2.0800838230519, -9.0]
+ * [-8, -2.0, -8.0]
+ * [-7, -1.91293118277239, -7.0]
+ * [-6, -1.81712059283214, -6.0]
+ * [-5, -1.7099759466767, -5.0]
+ * [-4, -1.5874010519682, -4.0]
+ * [-3, -1.44224957030741, -3.0]
+ * [-2, -1.25992104989487, -2.0]
+ * [-1, -1.0, -1.0]
+ * [0, 0.0, 0.0]
+ * [1, 1.0, 1.0]
+ * [2, 1.25992104989487, 2.0]
+ * [3, 1.44224957030741, 3.0]
+ * [4, 1.5874010519682, 4.0]
+ * [5, 1.7099759466767, 5.0]
+ * [6, 1.81712059283214, 6.0]
+ * [7, 1.91293118277239, 7.0]
+ * [8, 2.0, 8.0]
+ * [9, 2.0800838230519, 9.0]
+ *
+ */
+
+static VALUE
+math_cbrt(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DBL2NUM(cbrt(RFLOAT_VALUE(x)));
+}
+
+/*
+ * call-seq:
+ * Math.frexp(numeric) -> [ fraction, exponent ]
+ *
+ * Returns a two-element array containing the normalized fraction (a
+ * <code>Float</code>) and exponent (a <code>Fixnum</code>) of
+ * <i>numeric</i>.
+ *
+ * fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11]
+ * fraction * 2**exponent #=> 1234.0
+ */
+
+static VALUE
+math_frexp(VALUE obj, VALUE x)
+{
+ double d;
+ int exp;
+
+ Need_Float(x);
+
+ d = frexp(RFLOAT_VALUE(x), &exp);
+ return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
+}
+
+/*
+ * call-seq:
+ * Math.ldexp(flt, int) -> float
+ *
+ * Returns the value of <i>flt</i>*(2**<i>int</i>).
+ *
+ * fraction, exponent = Math.frexp(1234)
+ * Math.ldexp(fraction, exponent) #=> 1234.0
+ */
+
+static VALUE
+math_ldexp(VALUE obj, VALUE x, VALUE n)
+{
+ Need_Float(x);
+ return DBL2NUM(ldexp(RFLOAT_VALUE(x), NUM2INT(n)));
+}
+
+/*
+ * call-seq:
+ * Math.hypot(x, y) -> float
+ *
+ * Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle
+ * with sides <i>x</i> and <i>y</i>.
+ *
+ * Math.hypot(3, 4) #=> 5.0
+ */
+
+static VALUE
+math_hypot(VALUE obj, VALUE x, VALUE y)
+{
+ Need_Float2(x, y);
+ return DBL2NUM(hypot(RFLOAT_VALUE(x), RFLOAT_VALUE(y)));
+}
+
+/*
+ * call-seq:
+ * Math.erf(x) -> float
+ *
+ * Calculates the error function of x.
+ */
+
+static VALUE
+math_erf(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DBL2NUM(erf(RFLOAT_VALUE(x)));
+}
+
+/*
+ * call-seq:
+ * Math.erfc(x) -> float
+ *
+ * Calculates the complementary error function of x.
+ */
+
+static VALUE
+math_erfc(VALUE obj, VALUE x)
+{
+ Need_Float(x);
+ return DBL2NUM(erfc(RFLOAT_VALUE(x)));
+}
+
+/*
+ * call-seq:
+ * Math.gamma(x) -> float
+ *
+ * Calculates the gamma function of x.
+ *
+ * Note that gamma(n) is same as fact(n-1) for integer n > 0.
+ * However gamma(n) returns float and can be an approximation.
+ *
+ * def fact(n) (1..n).inject(1) {|r,i| r*i } end
+ * 1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] }
+ * #=> [1, 1.0, 1]
+ * # [2, 1.0, 1]
+ * # [3, 2.0, 2]
+ * # [4, 6.0, 6]
+ * # [5, 24.0, 24]
+ * # [6, 120.0, 120]
+ * # [7, 720.0, 720]
+ * # [8, 5040.0, 5040]
+ * # [9, 40320.0, 40320]
+ * # [10, 362880.0, 362880]
+ * # [11, 3628800.0, 3628800]
+ * # [12, 39916800.0, 39916800]
+ * # [13, 479001600.0, 479001600]
+ * # [14, 6227020800.0, 6227020800]
+ * # [15, 87178291200.0, 87178291200]
+ * # [16, 1307674368000.0, 1307674368000]
+ * # [17, 20922789888000.0, 20922789888000]
+ * # [18, 355687428096000.0, 355687428096000]
+ * # [19, 6.402373705728e+15, 6402373705728000]
+ * # [20, 1.21645100408832e+17, 121645100408832000]
+ * # [21, 2.43290200817664e+18, 2432902008176640000]
+ * # [22, 5.109094217170944e+19, 51090942171709440000]
+ * # [23, 1.1240007277776077e+21, 1124000727777607680000]
+ * # [24, 2.5852016738885062e+22, 25852016738884976640000]
+ * # [25, 6.204484017332391e+23, 620448401733239439360000]
+ * # [26, 1.5511210043330954e+25, 15511210043330985984000000]
+ *
+ */
+
+static VALUE
+math_gamma(VALUE obj, VALUE x)
+{
+ static const double fact_table[] = {
+ /* fact(0) */ 1.0,
+ /* fact(1) */ 1.0,
+ /* fact(2) */ 2.0,
+ /* fact(3) */ 6.0,
+ /* fact(4) */ 24.0,
+ /* fact(5) */ 120.0,
+ /* fact(6) */ 720.0,
+ /* fact(7) */ 5040.0,
+ /* fact(8) */ 40320.0,
+ /* fact(9) */ 362880.0,
+ /* fact(10) */ 3628800.0,
+ /* fact(11) */ 39916800.0,
+ /* fact(12) */ 479001600.0,
+ /* fact(13) */ 6227020800.0,
+ /* fact(14) */ 87178291200.0,
+ /* fact(15) */ 1307674368000.0,
+ /* fact(16) */ 20922789888000.0,
+ /* fact(17) */ 355687428096000.0,
+ /* fact(18) */ 6402373705728000.0,
+ /* fact(19) */ 121645100408832000.0,
+ /* fact(20) */ 2432902008176640000.0,
+ /* fact(21) */ 51090942171709440000.0,
+ /* fact(22) */ 1124000727777607680000.0,
+ /* fact(23)=25852016738884976640000 needs 56bit mantissa which is
+ * impossible to represent exactly in IEEE 754 double which have
+ * 53bit mantissa. */
+ };
+ double d0, d;
+ double intpart, fracpart;
+ Need_Float(x);
+ d0 = RFLOAT_VALUE(x);
+ /* check for domain error */
+ if (isinf(d0) && signbit(d0)) domain_error("gamma");
+ fracpart = modf(d0, &intpart);
+ if (fracpart == 0.0) {
+ if (intpart < 0) domain_error("gamma");
+ if (0 < intpart &&
+ intpart - 1 < (double)numberof(fact_table)) {
+ return DBL2NUM(fact_table[(int)intpart - 1]);
+ }
+ }
+ d = tgamma(d0);
+ return DBL2NUM(d);
+}
+
+/*
+ * call-seq:
+ * Math.lgamma(x) -> [float, -1 or 1]
+ *
+ * Calculates the logarithmic gamma of x and
+ * the sign of gamma of x.
+ *
+ * Math.lgamma(x) is same as
+ * [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
+ * but avoid overflow by Math.gamma(x) for large x.
+ */
+
+static VALUE
+math_lgamma(VALUE obj, VALUE x)
+{
+ double d0, d;
+ int sign=1;
+ VALUE v;
+ Need_Float(x);
+ d0 = RFLOAT_VALUE(x);
+ /* check for domain error */
+ if (isinf(d0)) {
+ if (signbit(d0)) domain_error("lgamma");
+ return rb_assoc_new(DBL2NUM(INFINITY), INT2FIX(1));
+ }
+ d = lgamma_r(d0, &sign);
+ v = DBL2NUM(d);
+ return rb_assoc_new(v, INT2FIX(sign));
+}
+
+
+#define exp1(n) \
+VALUE \
+rb_math_##n(VALUE x)\
+{\
+ return math_##n(rb_mMath, x);\
+}
+
+#define exp2(n) \
+VALUE \
+rb_math_##n(VALUE x, VALUE y)\
+{\
+ return math_##n(rb_mMath, x, y);\
+}
+
+exp2(atan2)
+exp1(cos)
+exp1(cosh)
+exp1(exp)
+exp2(hypot)
+
+VALUE
+rb_math_log(int argc, VALUE *argv)
+{
+ return math_log(argc, argv);
+}
+
+exp1(sin)
+exp1(sinh)
+exp1(sqrt)
+
+
+/*
+ * Document-class: Math::DomainError
+ *
+ * Raised when a mathematical function is evaluated outside of its
+ * domain of definition.
+ *
+ * For example, since +cos+ returns values in the range -1..1,
+ * its inverse function +acos+ is only defined on that interval:
+ *
+ * Math.acos(42)
+ *
+ * <em>produces:</em>
+ *
+ * Math::DomainError: Numerical argument is out of domain - "acos"
+ */
+
+/*
+ * Document-class: Math
+ *
+ * The <code>Math</code> module contains module functions for basic
+ * trigonometric and transcendental functions. See class
+ * <code>Float</code> for a list of constants that
+ * define Ruby's floating point accuracy.
+ */
+
+
+void
+Init_Math(void)
+{
+ rb_mMath = rb_define_module("Math");
+ rb_eMathDomainError = rb_define_class_under(rb_mMath, "DomainError", rb_eStandardError);
+
+#ifdef M_PI
+ rb_define_const(rb_mMath, "PI", DBL2NUM(M_PI));
+#else
+ rb_define_const(rb_mMath, "PI", DBL2NUM(atan(1.0)*4.0));
+#endif
+
+#ifdef M_E
+ rb_define_const(rb_mMath, "E", DBL2NUM(M_E));
+#else
+ rb_define_const(rb_mMath, "E", DBL2NUM(exp(1.0)));
+#endif
+
+ rb_define_module_function(rb_mMath, "atan2", math_atan2, 2);
+ rb_define_module_function(rb_mMath, "cos", math_cos, 1);
+ rb_define_module_function(rb_mMath, "sin", math_sin, 1);
+ rb_define_module_function(rb_mMath, "tan", math_tan, 1);
+
+ rb_define_module_function(rb_mMath, "acos", math_acos, 1);
+ rb_define_module_function(rb_mMath, "asin", math_asin, 1);
+ rb_define_module_function(rb_mMath, "atan", math_atan, 1);
+
+ rb_define_module_function(rb_mMath, "cosh", math_cosh, 1);
+ rb_define_module_function(rb_mMath, "sinh", math_sinh, 1);
+ rb_define_module_function(rb_mMath, "tanh", math_tanh, 1);
+
+ rb_define_module_function(rb_mMath, "acosh", math_acosh, 1);
+ rb_define_module_function(rb_mMath, "asinh", math_asinh, 1);
+ rb_define_module_function(rb_mMath, "atanh", math_atanh, 1);
+
+ rb_define_module_function(rb_mMath, "exp", math_exp, 1);
+ rb_define_module_function(rb_mMath, "log", math_log, -1);
+ rb_define_module_function(rb_mMath, "log2", math_log2, 1);
+ rb_define_module_function(rb_mMath, "log10", math_log10, 1);
+ rb_define_module_function(rb_mMath, "sqrt", math_sqrt, 1);
+ rb_define_module_function(rb_mMath, "cbrt", math_cbrt, 1);
+
+ rb_define_module_function(rb_mMath, "frexp", math_frexp, 1);
+ rb_define_module_function(rb_mMath, "ldexp", math_ldexp, 2);
+
+ rb_define_module_function(rb_mMath, "hypot", math_hypot, 2);
+
+ rb_define_module_function(rb_mMath, "erf", math_erf, 1);
+ rb_define_module_function(rb_mMath, "erfc", math_erfc, 1);
+
+ rb_define_module_function(rb_mMath, "gamma", math_gamma, 1);
+ rb_define_module_function(rb_mMath, "lgamma", math_lgamma, 1);
+}