diff options
author | Anas Nashif <anas.nashif@intel.com> | 2012-11-06 11:57:02 -0800 |
---|---|---|
committer | Anas Nashif <anas.nashif@intel.com> | 2012-11-06 11:57:02 -0800 |
commit | 3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748 (patch) | |
tree | f66334a0ad8cf59590dd682d95d6244e8b454853 /complex.c | |
download | ruby-3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748.tar.gz ruby-3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748.tar.bz2 ruby-3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748.zip |
Imported Upstream version 1.9.3.p194upstream/1.9.3.p194
Diffstat (limited to 'complex.c')
-rw-r--r-- | complex.c | 1994 |
1 files changed, 1994 insertions, 0 deletions
diff --git a/complex.c b/complex.c new file mode 100644 index 0000000..5b1a510 --- /dev/null +++ b/complex.c @@ -0,0 +1,1994 @@ +/* + complex.c: Coded by Tadayoshi Funaba 2008-2011 + + This implementation is based on Keiju Ishitsuka's Complex library + which is written in ruby. +*/ + +#include "ruby.h" +#include "internal.h" +#include <math.h> + +#define NDEBUG +#include <assert.h> + +#define ZERO INT2FIX(0) +#define ONE INT2FIX(1) +#define TWO INT2FIX(2) + +VALUE rb_cComplex; + +static ID id_abs, id_abs2, id_arg, id_cmp, id_conj, id_convert, + id_denominator, id_divmod, id_eqeq_p, id_expt, id_fdiv, id_floor, + id_idiv, id_imag, id_inspect, id_negate, id_numerator, id_quo, + id_real, id_real_p, id_to_f, id_to_i, id_to_r, id_to_s; + +#define f_boolcast(x) ((x) ? Qtrue : Qfalse) + +#define binop(n,op) \ +inline static VALUE \ +f_##n(VALUE x, VALUE y)\ +{\ + return rb_funcall(x, (op), 1, y);\ +} + +#define fun1(n) \ +inline static VALUE \ +f_##n(VALUE x)\ +{\ + return rb_funcall(x, id_##n, 0);\ +} + +#define fun2(n) \ +inline static VALUE \ +f_##n(VALUE x, VALUE y)\ +{\ + return rb_funcall(x, id_##n, 1, y);\ +} + +#define math1(n) \ +inline static VALUE \ +m_##n(VALUE x)\ +{\ + return rb_funcall(rb_mMath, id_##n, 1, x);\ +} + +#define math2(n) \ +inline static VALUE \ +m_##n(VALUE x, VALUE y)\ +{\ + return rb_funcall(rb_mMath, id_##n, 2, x, y);\ +} + +#define PRESERVE_SIGNEDZERO + +inline static VALUE +f_add(VALUE x, VALUE y) +{ +#ifndef PRESERVE_SIGNEDZERO + if (FIXNUM_P(y) && FIX2LONG(y) == 0) + return x; + else if (FIXNUM_P(x) && FIX2LONG(x) == 0) + return y; +#endif + return rb_funcall(x, '+', 1, y); +} + +inline static VALUE +f_cmp(VALUE x, VALUE y) +{ + if (FIXNUM_P(x) && FIXNUM_P(y)) { + long c = FIX2LONG(x) - FIX2LONG(y); + if (c > 0) + c = 1; + else if (c < 0) + c = -1; + return INT2FIX(c); + } + return rb_funcall(x, id_cmp, 1, y); +} + +inline static VALUE +f_div(VALUE x, VALUE y) +{ + if (FIXNUM_P(y) && FIX2LONG(y) == 1) + return x; + return rb_funcall(x, '/', 1, y); +} + +inline static VALUE +f_gt_p(VALUE x, VALUE y) +{ + if (FIXNUM_P(x) && FIXNUM_P(y)) + return f_boolcast(FIX2LONG(x) > FIX2LONG(y)); + return rb_funcall(x, '>', 1, y); +} + +inline static VALUE +f_lt_p(VALUE x, VALUE y) +{ + if (FIXNUM_P(x) && FIXNUM_P(y)) + return f_boolcast(FIX2LONG(x) < FIX2LONG(y)); + return rb_funcall(x, '<', 1, y); +} + +binop(mod, '%') + +inline static VALUE +f_mul(VALUE x, VALUE y) +{ +#ifndef PRESERVE_SIGNEDZERO + if (FIXNUM_P(y)) { + long iy = FIX2LONG(y); + if (iy == 0) { + if (FIXNUM_P(x) || TYPE(x) == T_BIGNUM) + return ZERO; + } + else if (iy == 1) + return x; + } + else if (FIXNUM_P(x)) { + long ix = FIX2LONG(x); + if (ix == 0) { + if (FIXNUM_P(y) || TYPE(y) == T_BIGNUM) + return ZERO; + } + else if (ix == 1) + return y; + } +#endif + return rb_funcall(x, '*', 1, y); +} + +inline static VALUE +f_sub(VALUE x, VALUE y) +{ +#ifndef PRESERVE_SIGNEDZERO + if (FIXNUM_P(y) && FIX2LONG(y) == 0) + return x; +#endif + return rb_funcall(x, '-', 1, y); +} + +fun1(abs) +fun1(abs2) +fun1(arg) +fun1(conj) +fun1(denominator) +fun1(floor) +fun1(imag) +fun1(inspect) +fun1(negate) +fun1(numerator) +fun1(real) +fun1(real_p) + +inline static VALUE +f_to_i(VALUE x) +{ + if (TYPE(x) == T_STRING) + return rb_str_to_inum(x, 10, 0); + return rb_funcall(x, id_to_i, 0); +} +inline static VALUE +f_to_f(VALUE x) +{ + if (TYPE(x) == T_STRING) + return DBL2NUM(rb_str_to_dbl(x, 0)); + return rb_funcall(x, id_to_f, 0); +} + +fun1(to_r) +fun1(to_s) + +fun2(divmod) + +inline static VALUE +f_eqeq_p(VALUE x, VALUE y) +{ + if (FIXNUM_P(x) && FIXNUM_P(y)) + return f_boolcast(FIX2LONG(x) == FIX2LONG(y)); + return rb_funcall(x, id_eqeq_p, 1, y); +} + +fun2(expt) +fun2(fdiv) +fun2(idiv) +fun2(quo) + +inline static VALUE +f_negative_p(VALUE x) +{ + if (FIXNUM_P(x)) + return f_boolcast(FIX2LONG(x) < 0); + return rb_funcall(x, '<', 1, ZERO); +} + +#define f_positive_p(x) (!f_negative_p(x)) + +inline static VALUE +f_zero_p(VALUE x) +{ + switch (TYPE(x)) { + case T_FIXNUM: + return f_boolcast(FIX2LONG(x) == 0); + case T_BIGNUM: + return Qfalse; + case T_RATIONAL: + { + VALUE num = RRATIONAL(x)->num; + + return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 0); + } + } + return rb_funcall(x, id_eqeq_p, 1, ZERO); +} + +#define f_nonzero_p(x) (!f_zero_p(x)) + +inline static VALUE +f_one_p(VALUE x) +{ + switch (TYPE(x)) { + case T_FIXNUM: + return f_boolcast(FIX2LONG(x) == 1); + case T_BIGNUM: + return Qfalse; + case T_RATIONAL: + { + VALUE num = RRATIONAL(x)->num; + VALUE den = RRATIONAL(x)->den; + + return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 1 && + FIXNUM_P(den) && FIX2LONG(den) == 1); + } + } + return rb_funcall(x, id_eqeq_p, 1, ONE); +} + +inline static VALUE +f_kind_of_p(VALUE x, VALUE c) +{ + return rb_obj_is_kind_of(x, c); +} + +inline static VALUE +k_numeric_p(VALUE x) +{ + return f_kind_of_p(x, rb_cNumeric); +} + +inline static VALUE +k_integer_p(VALUE x) +{ + return f_kind_of_p(x, rb_cInteger); +} + +inline static VALUE +k_fixnum_p(VALUE x) +{ + return f_kind_of_p(x, rb_cFixnum); +} + +inline static VALUE +k_bignum_p(VALUE x) +{ + return f_kind_of_p(x, rb_cBignum); +} + +inline static VALUE +k_float_p(VALUE x) +{ + return f_kind_of_p(x, rb_cFloat); +} + +inline static VALUE +k_rational_p(VALUE x) +{ + return f_kind_of_p(x, rb_cRational); +} + +inline static VALUE +k_complex_p(VALUE x) +{ + return f_kind_of_p(x, rb_cComplex); +} + +#define k_exact_p(x) (!k_float_p(x)) +#define k_inexact_p(x) k_float_p(x) + +#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x)) +#define k_exact_one_p(x) (k_exact_p(x) && f_one_p(x)) + +#define get_dat1(x) \ + struct RComplex *dat;\ + dat = ((struct RComplex *)(x)) + +#define get_dat2(x,y) \ + struct RComplex *adat, *bdat;\ + adat = ((struct RComplex *)(x));\ + bdat = ((struct RComplex *)(y)) + +inline static VALUE +nucomp_s_new_internal(VALUE klass, VALUE real, VALUE imag) +{ + NEWOBJ(obj, struct RComplex); + OBJSETUP(obj, klass, T_COMPLEX); + + obj->real = real; + obj->imag = imag; + + return (VALUE)obj; +} + +static VALUE +nucomp_s_alloc(VALUE klass) +{ + return nucomp_s_new_internal(klass, ZERO, ZERO); +} + +#if 0 +static VALUE +nucomp_s_new_bang(int argc, VALUE *argv, VALUE klass) +{ + VALUE real, imag; + + switch (rb_scan_args(argc, argv, "11", &real, &imag)) { + case 1: + if (!k_numeric_p(real)) + real = f_to_i(real); + imag = ZERO; + break; + default: + if (!k_numeric_p(real)) + real = f_to_i(real); + if (!k_numeric_p(imag)) + imag = f_to_i(imag); + break; + } + + return nucomp_s_new_internal(klass, real, imag); +} +#endif + +inline static VALUE +f_complex_new_bang1(VALUE klass, VALUE x) +{ + assert(!k_complex_p(x)); + return nucomp_s_new_internal(klass, x, ZERO); +} + +inline static VALUE +f_complex_new_bang2(VALUE klass, VALUE x, VALUE y) +{ + assert(!k_complex_p(x)); + assert(!k_complex_p(y)); + return nucomp_s_new_internal(klass, x, y); +} + +#ifdef CANONICALIZATION_FOR_MATHN +#define CANON +#endif + +#ifdef CANON +static int canonicalization = 0; + +RUBY_FUNC_EXPORTED void +nucomp_canonicalization(int f) +{ + canonicalization = f; +} +#endif + +inline static void +nucomp_real_check(VALUE num) +{ + switch (TYPE(num)) { + case T_FIXNUM: + case T_BIGNUM: + case T_FLOAT: + case T_RATIONAL: + break; + default: + if (!k_numeric_p(num) || !f_real_p(num)) + rb_raise(rb_eTypeError, "not a real"); + } +} + +inline static VALUE +nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag) +{ +#ifdef CANON +#define CL_CANON +#ifdef CL_CANON + if (k_exact_zero_p(imag) && canonicalization) + return real; +#else + if (f_zero_p(imag) && canonicalization) + return real; +#endif +#endif + if (f_real_p(real) && f_real_p(imag)) + return nucomp_s_new_internal(klass, real, imag); + else if (f_real_p(real)) { + get_dat1(imag); + + return nucomp_s_new_internal(klass, + f_sub(real, dat->imag), + f_add(ZERO, dat->real)); + } + else if (f_real_p(imag)) { + get_dat1(real); + + return nucomp_s_new_internal(klass, + dat->real, + f_add(dat->imag, imag)); + } + else { + get_dat2(real, imag); + + return nucomp_s_new_internal(klass, + f_sub(adat->real, bdat->imag), + f_add(adat->imag, bdat->real)); + } +} + +/* + * call-seq: + * Complex.rect(real[, imag]) -> complex + * Complex.rectangular(real[, imag]) -> complex + * + * Returns a complex object which denotes the given rectangular form. + */ +static VALUE +nucomp_s_new(int argc, VALUE *argv, VALUE klass) +{ + VALUE real, imag; + + switch (rb_scan_args(argc, argv, "11", &real, &imag)) { + case 1: + nucomp_real_check(real); + imag = ZERO; + break; + default: + nucomp_real_check(real); + nucomp_real_check(imag); + break; + } + + return nucomp_s_canonicalize_internal(klass, real, imag); +} + +inline static VALUE +f_complex_new1(VALUE klass, VALUE x) +{ + assert(!k_complex_p(x)); + return nucomp_s_canonicalize_internal(klass, x, ZERO); +} + +inline static VALUE +f_complex_new2(VALUE klass, VALUE x, VALUE y) +{ + assert(!k_complex_p(x)); + return nucomp_s_canonicalize_internal(klass, x, y); +} + +/* + * call-seq: + * Complex(x[, y]) -> numeric + * + * Returns x+i*y; + */ +static VALUE +nucomp_f_complex(int argc, VALUE *argv, VALUE klass) +{ + return rb_funcall2(rb_cComplex, id_convert, argc, argv); +} + +#define imp1(n) \ +inline static VALUE \ +m_##n##_bang(VALUE x)\ +{\ + return rb_math_##n(x);\ +} + +#define imp2(n) \ +inline static VALUE \ +m_##n##_bang(VALUE x, VALUE y)\ +{\ + return rb_math_##n(x, y);\ +} + +imp2(atan2) +imp1(cos) +imp1(cosh) +imp1(exp) +imp2(hypot) + +#define m_hypot(x,y) m_hypot_bang((x),(y)) + +static VALUE +m_log_bang(VALUE x) +{ + return rb_math_log(1, &x); +} + +imp1(sin) +imp1(sinh) +imp1(sqrt) + +static VALUE +m_cos(VALUE x) +{ + if (f_real_p(x)) + return m_cos_bang(x); + { + get_dat1(x); + return f_complex_new2(rb_cComplex, + f_mul(m_cos_bang(dat->real), + m_cosh_bang(dat->imag)), + f_mul(f_negate(m_sin_bang(dat->real)), + m_sinh_bang(dat->imag))); + } +} + +static VALUE +m_sin(VALUE x) +{ + if (f_real_p(x)) + return m_sin_bang(x); + { + get_dat1(x); + return f_complex_new2(rb_cComplex, + f_mul(m_sin_bang(dat->real), + m_cosh_bang(dat->imag)), + f_mul(m_cos_bang(dat->real), + m_sinh_bang(dat->imag))); + } +} + +#if 0 +static VALUE +m_sqrt(VALUE x) +{ + if (f_real_p(x)) { + if (f_positive_p(x)) + return m_sqrt_bang(x); + return f_complex_new2(rb_cComplex, ZERO, m_sqrt_bang(f_negate(x))); + } + else { + get_dat1(x); + + if (f_negative_p(dat->imag)) + return f_conj(m_sqrt(f_conj(x))); + else { + VALUE a = f_abs(x); + return f_complex_new2(rb_cComplex, + m_sqrt_bang(f_div(f_add(a, dat->real), TWO)), + m_sqrt_bang(f_div(f_sub(a, dat->real), TWO))); + } + } +} +#endif + +inline static VALUE +f_complex_polar(VALUE klass, VALUE x, VALUE y) +{ + assert(!k_complex_p(x)); + assert(!k_complex_p(y)); + return nucomp_s_canonicalize_internal(klass, + f_mul(x, m_cos(y)), + f_mul(x, m_sin(y))); +} + +/* + * call-seq: + * Complex.polar(abs[, arg]) -> complex + * + * Returns a complex object which denotes the given polar form. + * + * Complex.polar(3, 0) #=> (3.0+0.0i) + * Complex.polar(3, Math::PI/2) #=> (1.836909530733566e-16+3.0i) + * Complex.polar(3, Math::PI) #=> (-3.0+3.673819061467132e-16i) + * Complex.polar(3, -Math::PI/2) #=> (1.836909530733566e-16-3.0i) + */ +static VALUE +nucomp_s_polar(int argc, VALUE *argv, VALUE klass) +{ + VALUE abs, arg; + + switch (rb_scan_args(argc, argv, "11", &abs, &arg)) { + case 1: + nucomp_real_check(abs); + arg = ZERO; + break; + default: + nucomp_real_check(abs); + nucomp_real_check(arg); + break; + } + return f_complex_polar(klass, abs, arg); +} + +/* + * call-seq: + * cmp.real -> real + * + * Returns the real part. + */ +static VALUE +nucomp_real(VALUE self) +{ + get_dat1(self); + return dat->real; +} + +/* + * call-seq: + * cmp.imag -> real + * cmp.imaginary -> real + * + * Returns the imaginary part. + */ +static VALUE +nucomp_imag(VALUE self) +{ + get_dat1(self); + return dat->imag; +} + +/* + * call-seq: + * -cmp -> complex + * + * Returns negation of the value. + */ +static VALUE +nucomp_negate(VALUE self) +{ + get_dat1(self); + return f_complex_new2(CLASS_OF(self), + f_negate(dat->real), f_negate(dat->imag)); +} + +inline static VALUE +f_addsub(VALUE self, VALUE other, + VALUE (*func)(VALUE, VALUE), ID id) +{ + if (k_complex_p(other)) { + VALUE real, imag; + + get_dat2(self, other); + + real = (*func)(adat->real, bdat->real); + imag = (*func)(adat->imag, bdat->imag); + + return f_complex_new2(CLASS_OF(self), real, imag); + } + if (k_numeric_p(other) && f_real_p(other)) { + get_dat1(self); + + return f_complex_new2(CLASS_OF(self), + (*func)(dat->real, other), dat->imag); + } + return rb_num_coerce_bin(self, other, id); +} + +/* + * call-seq: + * cmp + numeric -> complex + * + * Performs addition. + */ +static VALUE +nucomp_add(VALUE self, VALUE other) +{ + return f_addsub(self, other, f_add, '+'); +} + +/* + * call-seq: + * cmp - numeric -> complex + * + * Performs subtraction. + */ +static VALUE +nucomp_sub(VALUE self, VALUE other) +{ + return f_addsub(self, other, f_sub, '-'); +} + +/* + * call-seq: + * cmp * numeric -> complex + * + * Performs multiplication. + */ +static VALUE +nucomp_mul(VALUE self, VALUE other) +{ + if (k_complex_p(other)) { + VALUE real, imag; + + get_dat2(self, other); + + real = f_sub(f_mul(adat->real, bdat->real), + f_mul(adat->imag, bdat->imag)); + imag = f_add(f_mul(adat->real, bdat->imag), + f_mul(adat->imag, bdat->real)); + + return f_complex_new2(CLASS_OF(self), real, imag); + } + if (k_numeric_p(other) && f_real_p(other)) { + get_dat1(self); + + return f_complex_new2(CLASS_OF(self), + f_mul(dat->real, other), + f_mul(dat->imag, other)); + } + return rb_num_coerce_bin(self, other, '*'); +} + +inline static VALUE +f_divide(VALUE self, VALUE other, + VALUE (*func)(VALUE, VALUE), ID id) +{ + if (k_complex_p(other)) { + int flo; + get_dat2(self, other); + + flo = (k_float_p(adat->real) || k_float_p(adat->imag) || + k_float_p(bdat->real) || k_float_p(bdat->imag)); + + if (f_gt_p(f_abs(bdat->real), f_abs(bdat->imag))) { + VALUE r, n; + + r = (*func)(bdat->imag, bdat->real); + n = f_mul(bdat->real, f_add(ONE, f_mul(r, r))); + if (flo) + return f_complex_new2(CLASS_OF(self), + (*func)(self, n), + (*func)(f_negate(f_mul(self, r)), n)); + return f_complex_new2(CLASS_OF(self), + (*func)(f_add(adat->real, + f_mul(adat->imag, r)), n), + (*func)(f_sub(adat->imag, + f_mul(adat->real, r)), n)); + } + else { + VALUE r, n; + + r = (*func)(bdat->real, bdat->imag); + n = f_mul(bdat->imag, f_add(ONE, f_mul(r, r))); + if (flo) + return f_complex_new2(CLASS_OF(self), + (*func)(f_mul(self, r), n), + (*func)(f_negate(self), n)); + return f_complex_new2(CLASS_OF(self), + (*func)(f_add(f_mul(adat->real, r), + adat->imag), n), + (*func)(f_sub(f_mul(adat->imag, r), + adat->real), n)); + } + } + if (k_numeric_p(other) && f_real_p(other)) { + get_dat1(self); + + return f_complex_new2(CLASS_OF(self), + (*func)(dat->real, other), + (*func)(dat->imag, other)); + } + return rb_num_coerce_bin(self, other, id); +} + +#define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by 0") + +/* + * call-seq: + * cmp / numeric -> complex + * cmp.quo(numeric) -> complex + * + * Performs division. + * + * For example: + * + * Complex(10.0) / 3 #=> (3.3333333333333335+(0/1)*i) + * Complex(10) / 3 #=> ((10/3)+(0/1)*i) # not (3+0i) + */ +static VALUE +nucomp_div(VALUE self, VALUE other) +{ + return f_divide(self, other, f_quo, id_quo); +} + +#define nucomp_quo nucomp_div + +/* + * call-seq: + * cmp.fdiv(numeric) -> complex + * + * Performs division as each part is a float, never returns a float. + * + * For example: + * + * Complex(11,22).fdiv(3) #=> (3.6666666666666665+7.333333333333333i) + */ +static VALUE +nucomp_fdiv(VALUE self, VALUE other) +{ + return f_divide(self, other, f_fdiv, id_fdiv); +} + +inline static VALUE +f_reciprocal(VALUE x) +{ + return f_quo(ONE, x); +} + +/* + * call-seq: + * cmp ** numeric -> complex + * + * Performs exponentiation. + * + * For example: + * + * Complex('i') ** 2 #=> (-1+0i) + * Complex(-8) ** Rational(1,3) #=> (1.0000000000000002+1.7320508075688772i) + */ +static VALUE +nucomp_expt(VALUE self, VALUE other) +{ + if (k_numeric_p(other) && k_exact_zero_p(other)) + return f_complex_new_bang1(CLASS_OF(self), ONE); + + if (k_rational_p(other) && f_one_p(f_denominator(other))) + other = f_numerator(other); /* c14n */ + + if (k_complex_p(other)) { + get_dat1(other); + + if (k_exact_zero_p(dat->imag)) + other = dat->real; /* c14n */ + } + + if (k_complex_p(other)) { + VALUE r, theta, nr, ntheta; + + get_dat1(other); + + r = f_abs(self); + theta = f_arg(self); + + nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)), + f_mul(dat->imag, theta))); + ntheta = f_add(f_mul(theta, dat->real), + f_mul(dat->imag, m_log_bang(r))); + return f_complex_polar(CLASS_OF(self), nr, ntheta); + } + if (k_fixnum_p(other)) { + if (f_gt_p(other, ZERO)) { + VALUE x, z; + long n; + + x = self; + z = x; + n = FIX2LONG(other) - 1; + + while (n) { + long q, r; + + while (1) { + get_dat1(x); + + q = n / 2; + r = n % 2; + + if (r) + break; + + x = f_complex_new2(CLASS_OF(self), + f_sub(f_mul(dat->real, dat->real), + f_mul(dat->imag, dat->imag)), + f_mul(f_mul(TWO, dat->real), dat->imag)); + n = q; + } + z = f_mul(z, x); + n--; + } + return z; + } + return f_expt(f_reciprocal(self), f_negate(other)); + } + if (k_numeric_p(other) && f_real_p(other)) { + VALUE r, theta; + + if (k_bignum_p(other)) + rb_warn("in a**b, b may be too big"); + + r = f_abs(self); + theta = f_arg(self); + + return f_complex_polar(CLASS_OF(self), f_expt(r, other), + f_mul(theta, other)); + } + return rb_num_coerce_bin(self, other, id_expt); +} + +/* + * call-seq: + * cmp == object -> true or false + * + * Returns true if cmp equals object numerically. + */ +static VALUE +nucomp_eqeq_p(VALUE self, VALUE other) +{ + if (k_complex_p(other)) { + get_dat2(self, other); + + return f_boolcast(f_eqeq_p(adat->real, bdat->real) && + f_eqeq_p(adat->imag, bdat->imag)); + } + if (k_numeric_p(other) && f_real_p(other)) { + get_dat1(self); + + return f_boolcast(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag)); + } + return f_eqeq_p(other, self); +} + +/* :nodoc: */ +static VALUE +nucomp_coerce(VALUE self, VALUE other) +{ + if (k_numeric_p(other) && f_real_p(other)) + return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self); + if (TYPE(other) == T_COMPLEX) + return rb_assoc_new(other, self); + + rb_raise(rb_eTypeError, "%s can't be coerced into %s", + rb_obj_classname(other), rb_obj_classname(self)); + return Qnil; +} + +/* + * call-seq: + * cmp.abs -> real + * cmp.magnitude -> real + * + * Returns the absolute part of its polar form. + */ +static VALUE +nucomp_abs(VALUE self) +{ + get_dat1(self); + + if (f_zero_p(dat->real)) { + VALUE a = f_abs(dat->imag); + if (k_float_p(dat->real) && !k_float_p(dat->imag)) + a = f_to_f(a); + return a; + } + if (f_zero_p(dat->imag)) { + VALUE a = f_abs(dat->real); + if (!k_float_p(dat->real) && k_float_p(dat->imag)) + a = f_to_f(a); + return a; + } + return m_hypot(dat->real, dat->imag); +} + +/* + * call-seq: + * cmp.abs2 -> real + * + * Returns square of the absolute value. + */ +static VALUE +nucomp_abs2(VALUE self) +{ + get_dat1(self); + return f_add(f_mul(dat->real, dat->real), + f_mul(dat->imag, dat->imag)); +} + +/* + * call-seq: + * cmp.arg -> float + * cmp.angle -> float + * cmp.phase -> float + * + * Returns the angle part of its polar form. + * + * Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966 + * + */ +static VALUE +nucomp_arg(VALUE self) +{ + get_dat1(self); + return m_atan2_bang(dat->imag, dat->real); +} + +/* + * call-seq: + * cmp.rect -> array + * cmp.rectangular -> array + * + * Returns an array; [cmp.real, cmp.imag]. + */ +static VALUE +nucomp_rect(VALUE self) +{ + get_dat1(self); + return rb_assoc_new(dat->real, dat->imag); +} + +/* + * call-seq: + * cmp.polar -> array + * + * Returns an array; [cmp.abs, cmp.arg]. + */ +static VALUE +nucomp_polar(VALUE self) +{ + return rb_assoc_new(f_abs(self), f_arg(self)); +} + +/* + * call-seq: + * cmp.conj -> complex + * cmp.conjugate -> complex + * + * Returns the complex conjugate. + */ +static VALUE +nucomp_conj(VALUE self) +{ + get_dat1(self); + return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag)); +} + +#if 0 +/* :nodoc: */ +static VALUE +nucomp_true(VALUE self) +{ + return Qtrue; +} +#endif + +/* + * call-seq: + * cmp.real? -> false + * + * Returns false. + */ +static VALUE +nucomp_false(VALUE self) +{ + return Qfalse; +} + +#if 0 +/* :nodoc: */ +static VALUE +nucomp_exact_p(VALUE self) +{ + get_dat1(self); + return f_boolcast(k_exact_p(dat->real) && k_exact_p(dat->imag)); +} + +/* :nodoc: */ +static VALUE +nucomp_inexact_p(VALUE self) +{ + return f_boolcast(!nucomp_exact_p(self)); +} +#endif + +/* + * call-seq: + * cmp.denominator -> integer + * + * Returns the denominator (lcm of both denominator - real and imag). + * + * See numerator. + */ +static VALUE +nucomp_denominator(VALUE self) +{ + get_dat1(self); + return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag)); +} + +/* + * call-seq: + * cmp.numerator -> numeric + * + * Returns the numerator. + * + * For example: + * + * 1 2 3+4i <- numerator + * - + -i -> ---- + * 2 3 6 <- denominator + * + * c = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i) + * n = c.numerator #=> (3+4i) + * d = c.denominator #=> 6 + * n / d #=> ((1/2)+(2/3)*i) + * Complex(Rational(n.real, d), Rational(n.imag, d)) + * #=> ((1/2)+(2/3)*i) + * See denominator. + */ +static VALUE +nucomp_numerator(VALUE self) +{ + VALUE cd; + + get_dat1(self); + + cd = f_denominator(self); + return f_complex_new2(CLASS_OF(self), + f_mul(f_numerator(dat->real), + f_div(cd, f_denominator(dat->real))), + f_mul(f_numerator(dat->imag), + f_div(cd, f_denominator(dat->imag)))); +} + +/* :nodoc: */ +static VALUE +nucomp_hash(VALUE self) +{ + st_index_t v, h[2]; + VALUE n; + + get_dat1(self); + n = rb_hash(dat->real); + h[0] = NUM2LONG(n); + n = rb_hash(dat->imag); + h[1] = NUM2LONG(n); + v = rb_memhash(h, sizeof(h)); + return LONG2FIX(v); +} + +/* :nodoc: */ +static VALUE +nucomp_eql_p(VALUE self, VALUE other) +{ + if (k_complex_p(other)) { + get_dat2(self, other); + + return f_boolcast((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) && + (CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) && + f_eqeq_p(self, other)); + + } + return Qfalse; +} + +inline static VALUE +f_signbit(VALUE x) +{ +#if defined(HAVE_SIGNBIT) && defined(__GNUC__) && defined(__sun__) && \ + !defined(signbit) + extern int signbit(double); +#endif + switch (TYPE(x)) { + case T_FLOAT: { + double f = RFLOAT_VALUE(x); + return f_boolcast(!isnan(f) && signbit(f)); + } + } + return f_negative_p(x); +} + +inline static VALUE +f_tpositive_p(VALUE x) +{ + return f_boolcast(!f_signbit(x)); +} + +static VALUE +f_format(VALUE self, VALUE (*func)(VALUE)) +{ + VALUE s, impos; + + get_dat1(self); + + impos = f_tpositive_p(dat->imag); + + s = (*func)(dat->real); + rb_str_cat2(s, !impos ? "-" : "+"); + + rb_str_concat(s, (*func)(f_abs(dat->imag))); + if (!rb_isdigit(RSTRING_PTR(s)[RSTRING_LEN(s) - 1])) + rb_str_cat2(s, "*"); + rb_str_cat2(s, "i"); + + return s; +} + +/* + * call-seq: + * cmp.to_s -> string + * + * Returns the value as a string. + */ +static VALUE +nucomp_to_s(VALUE self) +{ + return f_format(self, f_to_s); +} + +/* + * call-seq: + * cmp.inspect -> string + * + * Returns the value as a string for inspection. + */ +static VALUE +nucomp_inspect(VALUE self) +{ + VALUE s; + + s = rb_usascii_str_new2("("); + rb_str_concat(s, f_format(self, f_inspect)); + rb_str_cat2(s, ")"); + + return s; +} + +/* :nodoc: */ +static VALUE +nucomp_marshal_dump(VALUE self) +{ + VALUE a; + get_dat1(self); + + a = rb_assoc_new(dat->real, dat->imag); + rb_copy_generic_ivar(a, self); + return a; +} + +/* :nodoc: */ +static VALUE +nucomp_marshal_load(VALUE self, VALUE a) +{ + get_dat1(self); + Check_Type(a, T_ARRAY); + if (RARRAY_LEN(a) != 2) + rb_raise(rb_eArgError, "marshaled complex must have an array whose length is 2 but %ld", RARRAY_LEN(a)); + dat->real = RARRAY_PTR(a)[0]; + dat->imag = RARRAY_PTR(a)[1]; + rb_copy_generic_ivar(self, a); + return self; +} + +/* --- */ + +VALUE +rb_complex_raw(VALUE x, VALUE y) +{ + return nucomp_s_new_internal(rb_cComplex, x, y); +} + +VALUE +rb_complex_new(VALUE x, VALUE y) +{ + return nucomp_s_canonicalize_internal(rb_cComplex, x, y); +} + +VALUE +rb_complex_polar(VALUE x, VALUE y) +{ + return f_complex_polar(rb_cComplex, x, y); +} + +static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass); + +VALUE +rb_Complex(VALUE x, VALUE y) +{ + VALUE a[2]; + a[0] = x; + a[1] = y; + return nucomp_s_convert(2, a, rb_cComplex); +} + +/* + * call-seq: + * cmp.to_i -> integer + * + * Returns the value as an integer if possible. + */ +static VALUE +nucomp_to_i(VALUE self) +{ + get_dat1(self); + + if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) { + VALUE s = f_to_s(self); + rb_raise(rb_eRangeError, "can't convert %s into Integer", + StringValuePtr(s)); + } + return f_to_i(dat->real); +} + +/* + * call-seq: + * cmp.to_f -> float + * + * Returns the value as a float if possible. + */ +static VALUE +nucomp_to_f(VALUE self) +{ + get_dat1(self); + + if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) { + VALUE s = f_to_s(self); + rb_raise(rb_eRangeError, "can't convert %s into Float", + StringValuePtr(s)); + } + return f_to_f(dat->real); +} + +/* + * call-seq: + * cmp.to_r -> rational + * + * If the imaginary part is exactly 0, returns the real part as a Rational, + * otherwise a RangeError is raised. + */ +static VALUE +nucomp_to_r(VALUE self) +{ + get_dat1(self); + + if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) { + VALUE s = f_to_s(self); + rb_raise(rb_eRangeError, "can't convert %s into Rational", + StringValuePtr(s)); + } + return f_to_r(dat->real); +} + +/* + * call-seq: + * cmp.rationalize([eps]) -> rational + * + * If the imaginary part is exactly 0, returns the real part as a Rational, + * otherwise a RangeError is raised. + */ +static VALUE +nucomp_rationalize(int argc, VALUE *argv, VALUE self) +{ + get_dat1(self); + + rb_scan_args(argc, argv, "01", NULL); + + if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) { + VALUE s = f_to_s(self); + rb_raise(rb_eRangeError, "can't convert %s into Rational", + StringValuePtr(s)); + } + return rb_funcall2(dat->real, rb_intern("rationalize"), argc, argv); +} + +/* + * call-seq: + * nil.to_c -> (0+0i) + * + * Returns zero as a complex. + */ +static VALUE +nilclass_to_c(VALUE self) +{ + return rb_complex_new1(INT2FIX(0)); +} + +/* + * call-seq: + * num.to_c -> complex + * + * Returns the value as a complex. + */ +static VALUE +numeric_to_c(VALUE self) +{ + return rb_complex_new1(self); +} + +static VALUE comp_pat0, comp_pat1, comp_pat2, a_slash, a_dot_and_an_e, + null_string, underscores_pat, an_underscore; + +#define WS "\\s*" +#define DIGITS "(?:[0-9](?:_[0-9]|[0-9])*)" +#define NUMERATOR "(?:" DIGITS "?\\.)?" DIGITS "(?:[eE][-+]?" DIGITS ")?" +#define DENOMINATOR DIGITS +#define NUMBER "[-+]?" NUMERATOR "(?:\\/" DENOMINATOR ")?" +#define NUMBERNOS NUMERATOR "(?:\\/" DENOMINATOR ")?" +#define PATTERN0 "\\A" WS "(" NUMBER ")@(" NUMBER ")" WS +#define PATTERN1 "\\A" WS "([-+])?(" NUMBER ")?[iIjJ]" WS +#define PATTERN2 "\\A" WS "(" NUMBER ")(([-+])(" NUMBERNOS ")?[iIjJ])?" WS + +static void +make_patterns(void) +{ + static const char comp_pat0_source[] = PATTERN0; + static const char comp_pat1_source[] = PATTERN1; + static const char comp_pat2_source[] = PATTERN2; + static const char underscores_pat_source[] = "_+"; + + if (comp_pat0) return; + + comp_pat0 = rb_reg_new(comp_pat0_source, sizeof comp_pat0_source - 1, 0); + rb_gc_register_mark_object(comp_pat0); + + comp_pat1 = rb_reg_new(comp_pat1_source, sizeof comp_pat1_source - 1, 0); + rb_gc_register_mark_object(comp_pat1); + + comp_pat2 = rb_reg_new(comp_pat2_source, sizeof comp_pat2_source - 1, 0); + rb_gc_register_mark_object(comp_pat2); + + a_slash = rb_usascii_str_new2("/"); + rb_gc_register_mark_object(a_slash); + + a_dot_and_an_e = rb_usascii_str_new2(".eE"); + rb_gc_register_mark_object(a_dot_and_an_e); + + null_string = rb_usascii_str_new2(""); + rb_gc_register_mark_object(null_string); + + underscores_pat = rb_reg_new(underscores_pat_source, + sizeof underscores_pat_source - 1, 0); + rb_gc_register_mark_object(underscores_pat); + + an_underscore = rb_usascii_str_new2("_"); + rb_gc_register_mark_object(an_underscore); +} + +#define id_match rb_intern("match") +#define f_match(x,y) rb_funcall((x), id_match, 1, (y)) + +#define id_gsub_bang rb_intern("gsub!") +#define f_gsub_bang(x,y,z) rb_funcall((x), id_gsub_bang, 2, (y), (z)) + +static VALUE +string_to_c_internal(VALUE self) +{ + VALUE s; + + s = self; + + if (RSTRING_LEN(s) == 0) + return rb_assoc_new(Qnil, self); + + { + VALUE m, sr, si, re, r, i; + int po; + + m = f_match(comp_pat0, s); + if (!NIL_P(m)) { + sr = rb_reg_nth_match(1, m); + si = rb_reg_nth_match(2, m); + re = rb_reg_match_post(m); + po = 1; + } + if (NIL_P(m)) { + m = f_match(comp_pat1, s); + if (!NIL_P(m)) { + sr = Qnil; + si = rb_reg_nth_match(1, m); + if (NIL_P(si)) + si = rb_usascii_str_new2(""); + { + VALUE t; + + t = rb_reg_nth_match(2, m); + if (NIL_P(t)) + t = rb_usascii_str_new2("1"); + rb_str_concat(si, t); + } + re = rb_reg_match_post(m); + po = 0; + } + } + if (NIL_P(m)) { + m = f_match(comp_pat2, s); + if (NIL_P(m)) + return rb_assoc_new(Qnil, self); + sr = rb_reg_nth_match(1, m); + if (NIL_P(rb_reg_nth_match(2, m))) + si = Qnil; + else { + VALUE t; + + si = rb_reg_nth_match(3, m); + t = rb_reg_nth_match(4, m); + if (NIL_P(t)) + t = rb_usascii_str_new2("1"); + rb_str_concat(si, t); + } + re = rb_reg_match_post(m); + po = 0; + } + r = INT2FIX(0); + i = INT2FIX(0); + if (!NIL_P(sr)) { + if (strchr(RSTRING_PTR(sr), '/')) + r = f_to_r(sr); + else if (strpbrk(RSTRING_PTR(sr), ".eE")) + r = f_to_f(sr); + else + r = f_to_i(sr); + } + if (!NIL_P(si)) { + if (strchr(RSTRING_PTR(si), '/')) + i = f_to_r(si); + else if (strpbrk(RSTRING_PTR(si), ".eE")) + i = f_to_f(si); + else + i = f_to_i(si); + } + if (po) + return rb_assoc_new(rb_complex_polar(r, i), re); + else + return rb_assoc_new(rb_complex_new2(r, i), re); + } +} + +static VALUE +string_to_c_strict(VALUE self) +{ + VALUE a = string_to_c_internal(self); + if (NIL_P(RARRAY_PTR(a)[0]) || RSTRING_LEN(RARRAY_PTR(a)[1]) > 0) { + VALUE s = f_inspect(self); + rb_raise(rb_eArgError, "invalid value for convert(): %s", + StringValuePtr(s)); + } + return RARRAY_PTR(a)[0]; +} + +#define id_gsub rb_intern("gsub") +#define f_gsub(x,y,z) rb_funcall((x), id_gsub, 2, (y), (z)) + +/* + * call-seq: + * str.to_c -> complex + * + * Returns a complex which denotes the string form. The parser + * ignores leading whitespaces and trailing garbage. Any digit + * sequences can be separated by an underscore. Returns zero for null + * or garbage string. + * + * For example: + * + * '9'.to_c #=> (9+0i) + * '2.5'.to_c #=> (2.5+0i) + * '2.5/1'.to_c #=> ((5/2)+0i) + * '-3/2'.to_c #=> ((-3/2)+0i) + * '-i'.to_c #=> (0-1i) + * '45i'.to_c #=> (0+45i) + * '3-4i'.to_c #=> (3-4i) + * '-4e2-4e-2i'.to_c #=> (-400.0-0.04i) + * '-0.0-0.0i'.to_c #=> (-0.0-0.0i) + * '1/2+3/4i'.to_c #=> ((1/2)+(3/4)*i) + * 'ruby'.to_c #=> (0+0i) + */ +static VALUE +string_to_c(VALUE self) +{ + VALUE s, a, backref; + + backref = rb_backref_get(); + rb_match_busy(backref); + + s = f_gsub(self, underscores_pat, an_underscore); + a = string_to_c_internal(s); + + rb_backref_set(backref); + + if (!NIL_P(RARRAY_PTR(a)[0])) + return RARRAY_PTR(a)[0]; + return rb_complex_new1(INT2FIX(0)); +} + +static VALUE +nucomp_s_convert(int argc, VALUE *argv, VALUE klass) +{ + VALUE a1, a2, backref; + + rb_scan_args(argc, argv, "11", &a1, &a2); + + if (NIL_P(a1) || (argc == 2 && NIL_P(a2))) + rb_raise(rb_eTypeError, "can't convert nil into Complex"); + + backref = rb_backref_get(); + rb_match_busy(backref); + + switch (TYPE(a1)) { + case T_FIXNUM: + case T_BIGNUM: + case T_FLOAT: + break; + case T_STRING: + a1 = string_to_c_strict(a1); + break; + } + + switch (TYPE(a2)) { + case T_FIXNUM: + case T_BIGNUM: + case T_FLOAT: + break; + case T_STRING: + a2 = string_to_c_strict(a2); + break; + } + + rb_backref_set(backref); + + switch (TYPE(a1)) { + case T_COMPLEX: + { + get_dat1(a1); + + if (k_exact_zero_p(dat->imag)) + a1 = dat->real; + } + } + + switch (TYPE(a2)) { + case T_COMPLEX: + { + get_dat1(a2); + + if (k_exact_zero_p(dat->imag)) + a2 = dat->real; + } + } + + switch (TYPE(a1)) { + case T_COMPLEX: + if (argc == 1 || (k_exact_zero_p(a2))) + return a1; + } + + if (argc == 1) { + if (k_numeric_p(a1) && !f_real_p(a1)) + return a1; + /* should raise exception for consistency */ + if (!k_numeric_p(a1)) + return rb_convert_type(a1, T_COMPLEX, "Complex", "to_c"); + } + else { + if ((k_numeric_p(a1) && k_numeric_p(a2)) && + (!f_real_p(a1) || !f_real_p(a2))) + return f_add(a1, + f_mul(a2, + f_complex_new_bang2(rb_cComplex, ZERO, ONE))); + } + + { + VALUE argv2[2]; + argv2[0] = a1; + argv2[1] = a2; + return nucomp_s_new(argc, argv2, klass); + } +} + +/* --- */ + +/* + * call-seq: + * num.real -> self + * + * Returns self. + */ +static VALUE +numeric_real(VALUE self) +{ + return self; +} + +/* + * call-seq: + * num.imag -> 0 + * num.imaginary -> 0 + * + * Returns zero. + */ +static VALUE +numeric_imag(VALUE self) +{ + return INT2FIX(0); +} + +/* + * call-seq: + * num.abs2 -> real + * + * Returns square of self. + */ +static VALUE +numeric_abs2(VALUE self) +{ + return f_mul(self, self); +} + +#define id_PI rb_intern("PI") + +/* + * call-seq: + * num.arg -> 0 or float + * num.angle -> 0 or float + * num.phase -> 0 or float + * + * Returns 0 if the value is positive, pi otherwise. + */ +static VALUE +numeric_arg(VALUE self) +{ + if (f_positive_p(self)) + return INT2FIX(0); + return rb_const_get(rb_mMath, id_PI); +} + +/* + * call-seq: + * num.rect -> array + * + * Returns an array; [num, 0]. + */ +static VALUE +numeric_rect(VALUE self) +{ + return rb_assoc_new(self, INT2FIX(0)); +} + +/* + * call-seq: + * num.polar -> array + * + * Returns an array; [num.abs, num.arg]. + */ +static VALUE +numeric_polar(VALUE self) +{ + return rb_assoc_new(f_abs(self), f_arg(self)); +} + +/* + * call-seq: + * num.conj -> self + * num.conjugate -> self + * + * Returns self. + */ +static VALUE +numeric_conj(VALUE self) +{ + return self; +} + +/* + * call-seq: + * flo.arg -> 0 or float + * flo.angle -> 0 or float + * flo.phase -> 0 or float + * + * Returns 0 if the value is positive, pi otherwise. + */ +static VALUE +float_arg(VALUE self) +{ + if (isnan(RFLOAT_VALUE(self))) + return self; + if (f_tpositive_p(self)) + return INT2FIX(0); + return rb_const_get(rb_mMath, id_PI); +} + +/* + * A complex number can be represented as a paired real number with + * imaginary unit; a+bi. Where a is real part, b is imaginary part + * and i is imaginary unit. Real a equals complex a+0i + * mathematically. + * + * In ruby, you can create complex object with Complex, Complex::rect, + * Complex::polar or to_c method. + * + * Complex(1) #=> (1+0i) + * Complex(2, 3) #=> (2+3i) + * Complex.polar(2, 3) #=> (-1.9799849932008908+0.2822400161197344i) + * 3.to_c #=> (3+0i) + * + * You can also create complex object from floating-point numbers or + * strings. + * + * Complex(0.3) #=> (0.3+0i) + * Complex('0.3-0.5i') #=> (0.3-0.5i) + * Complex('2/3+3/4i') #=> ((2/3)+(3/4)*i) + * Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i) + * + * 0.3.to_c #=> (0.3+0i) + * '0.3-0.5i'.to_c #=> (0.3-0.5i) + * '2/3+3/4i'.to_c #=> ((2/3)+(3/4)*i) + * '1@2'.to_c #=> (-0.4161468365471424+0.9092974268256817i) + * + * A complex object is either an exact or an inexact number. + * + * Complex(1, 1) / 2 #=> ((1/2)+(1/2)*i) + * Complex(1, 1) / 2.0 #=> (0.5+0.5i) + */ +void +Init_Complex(void) +{ +#undef rb_intern +#define rb_intern(str) rb_intern_const(str) + + assert(fprintf(stderr, "assert() is now active\n")); + + id_abs = rb_intern("abs"); + id_abs2 = rb_intern("abs2"); + id_arg = rb_intern("arg"); + id_cmp = rb_intern("<=>"); + id_conj = rb_intern("conj"); + id_convert = rb_intern("convert"); + id_denominator = rb_intern("denominator"); + id_divmod = rb_intern("divmod"); + id_eqeq_p = rb_intern("=="); + id_expt = rb_intern("**"); + id_fdiv = rb_intern("fdiv"); + id_floor = rb_intern("floor"); + id_idiv = rb_intern("div"); + id_imag = rb_intern("imag"); + id_inspect = rb_intern("inspect"); + id_negate = rb_intern("-@"); + id_numerator = rb_intern("numerator"); + id_quo = rb_intern("quo"); + id_real = rb_intern("real"); + id_real_p = rb_intern("real?"); + id_to_f = rb_intern("to_f"); + id_to_i = rb_intern("to_i"); + id_to_r = rb_intern("to_r"); + id_to_s = rb_intern("to_s"); + + rb_cComplex = rb_define_class("Complex", rb_cNumeric); + + rb_define_alloc_func(rb_cComplex, nucomp_s_alloc); + rb_undef_method(CLASS_OF(rb_cComplex), "allocate"); + +#if 0 + rb_define_private_method(CLASS_OF(rb_cComplex), "new!", nucomp_s_new_bang, -1); + rb_define_private_method(CLASS_OF(rb_cComplex), "new", nucomp_s_new, -1); +#else + rb_undef_method(CLASS_OF(rb_cComplex), "new"); +#endif + + rb_define_singleton_method(rb_cComplex, "rectangular", nucomp_s_new, -1); + rb_define_singleton_method(rb_cComplex, "rect", nucomp_s_new, -1); + rb_define_singleton_method(rb_cComplex, "polar", nucomp_s_polar, -1); + + rb_define_global_function("Complex", nucomp_f_complex, -1); + + rb_undef_method(rb_cComplex, "%"); + rb_undef_method(rb_cComplex, "<"); + rb_undef_method(rb_cComplex, "<="); + rb_undef_method(rb_cComplex, "<=>"); + rb_undef_method(rb_cComplex, ">"); + rb_undef_method(rb_cComplex, ">="); + rb_undef_method(rb_cComplex, "between?"); + rb_undef_method(rb_cComplex, "div"); + rb_undef_method(rb_cComplex, "divmod"); + rb_undef_method(rb_cComplex, "floor"); + rb_undef_method(rb_cComplex, "ceil"); + rb_undef_method(rb_cComplex, "modulo"); + rb_undef_method(rb_cComplex, "remainder"); + rb_undef_method(rb_cComplex, "round"); + rb_undef_method(rb_cComplex, "step"); + rb_undef_method(rb_cComplex, "truncate"); + rb_undef_method(rb_cComplex, "i"); + +#if 0 /* NUBY */ + rb_undef_method(rb_cComplex, "//"); +#endif + + rb_define_method(rb_cComplex, "real", nucomp_real, 0); + rb_define_method(rb_cComplex, "imaginary", nucomp_imag, 0); + rb_define_method(rb_cComplex, "imag", nucomp_imag, 0); + + rb_define_method(rb_cComplex, "-@", nucomp_negate, 0); + rb_define_method(rb_cComplex, "+", nucomp_add, 1); + rb_define_method(rb_cComplex, "-", nucomp_sub, 1); + rb_define_method(rb_cComplex, "*", nucomp_mul, 1); + rb_define_method(rb_cComplex, "/", nucomp_div, 1); + rb_define_method(rb_cComplex, "quo", nucomp_quo, 1); + rb_define_method(rb_cComplex, "fdiv", nucomp_fdiv, 1); + rb_define_method(rb_cComplex, "**", nucomp_expt, 1); + + rb_define_method(rb_cComplex, "==", nucomp_eqeq_p, 1); + rb_define_method(rb_cComplex, "coerce", nucomp_coerce, 1); + + rb_define_method(rb_cComplex, "abs", nucomp_abs, 0); + rb_define_method(rb_cComplex, "magnitude", nucomp_abs, 0); + rb_define_method(rb_cComplex, "abs2", nucomp_abs2, 0); + rb_define_method(rb_cComplex, "arg", nucomp_arg, 0); + rb_define_method(rb_cComplex, "angle", nucomp_arg, 0); + rb_define_method(rb_cComplex, "phase", nucomp_arg, 0); + rb_define_method(rb_cComplex, "rectangular", nucomp_rect, 0); + rb_define_method(rb_cComplex, "rect", nucomp_rect, 0); + rb_define_method(rb_cComplex, "polar", nucomp_polar, 0); + rb_define_method(rb_cComplex, "conjugate", nucomp_conj, 0); + rb_define_method(rb_cComplex, "conj", nucomp_conj, 0); +#if 0 + rb_define_method(rb_cComplex, "~", nucomp_conj, 0); /* gcc */ +#endif + + rb_define_method(rb_cComplex, "real?", nucomp_false, 0); +#if 0 + rb_define_method(rb_cComplex, "complex?", nucomp_true, 0); + rb_define_method(rb_cComplex, "exact?", nucomp_exact_p, 0); + rb_define_method(rb_cComplex, "inexact?", nucomp_inexact_p, 0); +#endif + + rb_define_method(rb_cComplex, "numerator", nucomp_numerator, 0); + rb_define_method(rb_cComplex, "denominator", nucomp_denominator, 0); + + rb_define_method(rb_cComplex, "hash", nucomp_hash, 0); + rb_define_method(rb_cComplex, "eql?", nucomp_eql_p, 1); + + rb_define_method(rb_cComplex, "to_s", nucomp_to_s, 0); + rb_define_method(rb_cComplex, "inspect", nucomp_inspect, 0); + + rb_define_method(rb_cComplex, "marshal_dump", nucomp_marshal_dump, 0); + rb_define_method(rb_cComplex, "marshal_load", nucomp_marshal_load, 1); + + /* --- */ + + rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0); + rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0); + rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0); + rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1); + rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0); + rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0); + + make_patterns(); + + rb_define_method(rb_cString, "to_c", string_to_c, 0); + + rb_define_private_method(CLASS_OF(rb_cComplex), "convert", nucomp_s_convert, -1); + + /* --- */ + + rb_define_method(rb_cNumeric, "real", numeric_real, 0); + rb_define_method(rb_cNumeric, "imaginary", numeric_imag, 0); + rb_define_method(rb_cNumeric, "imag", numeric_imag, 0); + rb_define_method(rb_cNumeric, "abs2", numeric_abs2, 0); + rb_define_method(rb_cNumeric, "arg", numeric_arg, 0); + rb_define_method(rb_cNumeric, "angle", numeric_arg, 0); + rb_define_method(rb_cNumeric, "phase", numeric_arg, 0); + rb_define_method(rb_cNumeric, "rectangular", numeric_rect, 0); + rb_define_method(rb_cNumeric, "rect", numeric_rect, 0); + rb_define_method(rb_cNumeric, "polar", numeric_polar, 0); + rb_define_method(rb_cNumeric, "conjugate", numeric_conj, 0); + rb_define_method(rb_cNumeric, "conj", numeric_conj, 0); + + rb_define_method(rb_cFloat, "arg", float_arg, 0); + rb_define_method(rb_cFloat, "angle", float_arg, 0); + rb_define_method(rb_cFloat, "phase", float_arg, 0); + + rb_define_const(rb_cComplex, "I", + f_complex_new_bang2(rb_cComplex, ZERO, ONE)); +} + +/* +Local variables: +c-file-style: "ruby" +End: +*/ |