summaryrefslogtreecommitdiff
path: root/complex.c
diff options
context:
space:
mode:
authorAnas Nashif <anas.nashif@intel.com>2012-11-06 11:57:02 -0800
committerAnas Nashif <anas.nashif@intel.com>2012-11-06 11:57:02 -0800
commit3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748 (patch)
treef66334a0ad8cf59590dd682d95d6244e8b454853 /complex.c
downloadruby-3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748.tar.gz
ruby-3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748.tar.bz2
ruby-3b35de2a90e26b99e2a6d4f61dc56d6ce7ded748.zip
Imported Upstream version 1.9.3.p194upstream/1.9.3.p194
Diffstat (limited to 'complex.c')
-rw-r--r--complex.c1994
1 files changed, 1994 insertions, 0 deletions
diff --git a/complex.c b/complex.c
new file mode 100644
index 0000000..5b1a510
--- /dev/null
+++ b/complex.c
@@ -0,0 +1,1994 @@
+/*
+ complex.c: Coded by Tadayoshi Funaba 2008-2011
+
+ This implementation is based on Keiju Ishitsuka's Complex library
+ which is written in ruby.
+*/
+
+#include "ruby.h"
+#include "internal.h"
+#include <math.h>
+
+#define NDEBUG
+#include <assert.h>
+
+#define ZERO INT2FIX(0)
+#define ONE INT2FIX(1)
+#define TWO INT2FIX(2)
+
+VALUE rb_cComplex;
+
+static ID id_abs, id_abs2, id_arg, id_cmp, id_conj, id_convert,
+ id_denominator, id_divmod, id_eqeq_p, id_expt, id_fdiv, id_floor,
+ id_idiv, id_imag, id_inspect, id_negate, id_numerator, id_quo,
+ id_real, id_real_p, id_to_f, id_to_i, id_to_r, id_to_s;
+
+#define f_boolcast(x) ((x) ? Qtrue : Qfalse)
+
+#define binop(n,op) \
+inline static VALUE \
+f_##n(VALUE x, VALUE y)\
+{\
+ return rb_funcall(x, (op), 1, y);\
+}
+
+#define fun1(n) \
+inline static VALUE \
+f_##n(VALUE x)\
+{\
+ return rb_funcall(x, id_##n, 0);\
+}
+
+#define fun2(n) \
+inline static VALUE \
+f_##n(VALUE x, VALUE y)\
+{\
+ return rb_funcall(x, id_##n, 1, y);\
+}
+
+#define math1(n) \
+inline static VALUE \
+m_##n(VALUE x)\
+{\
+ return rb_funcall(rb_mMath, id_##n, 1, x);\
+}
+
+#define math2(n) \
+inline static VALUE \
+m_##n(VALUE x, VALUE y)\
+{\
+ return rb_funcall(rb_mMath, id_##n, 2, x, y);\
+}
+
+#define PRESERVE_SIGNEDZERO
+
+inline static VALUE
+f_add(VALUE x, VALUE y)
+{
+#ifndef PRESERVE_SIGNEDZERO
+ if (FIXNUM_P(y) && FIX2LONG(y) == 0)
+ return x;
+ else if (FIXNUM_P(x) && FIX2LONG(x) == 0)
+ return y;
+#endif
+ return rb_funcall(x, '+', 1, y);
+}
+
+inline static VALUE
+f_cmp(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(x) && FIXNUM_P(y)) {
+ long c = FIX2LONG(x) - FIX2LONG(y);
+ if (c > 0)
+ c = 1;
+ else if (c < 0)
+ c = -1;
+ return INT2FIX(c);
+ }
+ return rb_funcall(x, id_cmp, 1, y);
+}
+
+inline static VALUE
+f_div(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y) && FIX2LONG(y) == 1)
+ return x;
+ return rb_funcall(x, '/', 1, y);
+}
+
+inline static VALUE
+f_gt_p(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(x) && FIXNUM_P(y))
+ return f_boolcast(FIX2LONG(x) > FIX2LONG(y));
+ return rb_funcall(x, '>', 1, y);
+}
+
+inline static VALUE
+f_lt_p(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(x) && FIXNUM_P(y))
+ return f_boolcast(FIX2LONG(x) < FIX2LONG(y));
+ return rb_funcall(x, '<', 1, y);
+}
+
+binop(mod, '%')
+
+inline static VALUE
+f_mul(VALUE x, VALUE y)
+{
+#ifndef PRESERVE_SIGNEDZERO
+ if (FIXNUM_P(y)) {
+ long iy = FIX2LONG(y);
+ if (iy == 0) {
+ if (FIXNUM_P(x) || TYPE(x) == T_BIGNUM)
+ return ZERO;
+ }
+ else if (iy == 1)
+ return x;
+ }
+ else if (FIXNUM_P(x)) {
+ long ix = FIX2LONG(x);
+ if (ix == 0) {
+ if (FIXNUM_P(y) || TYPE(y) == T_BIGNUM)
+ return ZERO;
+ }
+ else if (ix == 1)
+ return y;
+ }
+#endif
+ return rb_funcall(x, '*', 1, y);
+}
+
+inline static VALUE
+f_sub(VALUE x, VALUE y)
+{
+#ifndef PRESERVE_SIGNEDZERO
+ if (FIXNUM_P(y) && FIX2LONG(y) == 0)
+ return x;
+#endif
+ return rb_funcall(x, '-', 1, y);
+}
+
+fun1(abs)
+fun1(abs2)
+fun1(arg)
+fun1(conj)
+fun1(denominator)
+fun1(floor)
+fun1(imag)
+fun1(inspect)
+fun1(negate)
+fun1(numerator)
+fun1(real)
+fun1(real_p)
+
+inline static VALUE
+f_to_i(VALUE x)
+{
+ if (TYPE(x) == T_STRING)
+ return rb_str_to_inum(x, 10, 0);
+ return rb_funcall(x, id_to_i, 0);
+}
+inline static VALUE
+f_to_f(VALUE x)
+{
+ if (TYPE(x) == T_STRING)
+ return DBL2NUM(rb_str_to_dbl(x, 0));
+ return rb_funcall(x, id_to_f, 0);
+}
+
+fun1(to_r)
+fun1(to_s)
+
+fun2(divmod)
+
+inline static VALUE
+f_eqeq_p(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(x) && FIXNUM_P(y))
+ return f_boolcast(FIX2LONG(x) == FIX2LONG(y));
+ return rb_funcall(x, id_eqeq_p, 1, y);
+}
+
+fun2(expt)
+fun2(fdiv)
+fun2(idiv)
+fun2(quo)
+
+inline static VALUE
+f_negative_p(VALUE x)
+{
+ if (FIXNUM_P(x))
+ return f_boolcast(FIX2LONG(x) < 0);
+ return rb_funcall(x, '<', 1, ZERO);
+}
+
+#define f_positive_p(x) (!f_negative_p(x))
+
+inline static VALUE
+f_zero_p(VALUE x)
+{
+ switch (TYPE(x)) {
+ case T_FIXNUM:
+ return f_boolcast(FIX2LONG(x) == 0);
+ case T_BIGNUM:
+ return Qfalse;
+ case T_RATIONAL:
+ {
+ VALUE num = RRATIONAL(x)->num;
+
+ return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 0);
+ }
+ }
+ return rb_funcall(x, id_eqeq_p, 1, ZERO);
+}
+
+#define f_nonzero_p(x) (!f_zero_p(x))
+
+inline static VALUE
+f_one_p(VALUE x)
+{
+ switch (TYPE(x)) {
+ case T_FIXNUM:
+ return f_boolcast(FIX2LONG(x) == 1);
+ case T_BIGNUM:
+ return Qfalse;
+ case T_RATIONAL:
+ {
+ VALUE num = RRATIONAL(x)->num;
+ VALUE den = RRATIONAL(x)->den;
+
+ return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 1 &&
+ FIXNUM_P(den) && FIX2LONG(den) == 1);
+ }
+ }
+ return rb_funcall(x, id_eqeq_p, 1, ONE);
+}
+
+inline static VALUE
+f_kind_of_p(VALUE x, VALUE c)
+{
+ return rb_obj_is_kind_of(x, c);
+}
+
+inline static VALUE
+k_numeric_p(VALUE x)
+{
+ return f_kind_of_p(x, rb_cNumeric);
+}
+
+inline static VALUE
+k_integer_p(VALUE x)
+{
+ return f_kind_of_p(x, rb_cInteger);
+}
+
+inline static VALUE
+k_fixnum_p(VALUE x)
+{
+ return f_kind_of_p(x, rb_cFixnum);
+}
+
+inline static VALUE
+k_bignum_p(VALUE x)
+{
+ return f_kind_of_p(x, rb_cBignum);
+}
+
+inline static VALUE
+k_float_p(VALUE x)
+{
+ return f_kind_of_p(x, rb_cFloat);
+}
+
+inline static VALUE
+k_rational_p(VALUE x)
+{
+ return f_kind_of_p(x, rb_cRational);
+}
+
+inline static VALUE
+k_complex_p(VALUE x)
+{
+ return f_kind_of_p(x, rb_cComplex);
+}
+
+#define k_exact_p(x) (!k_float_p(x))
+#define k_inexact_p(x) k_float_p(x)
+
+#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x))
+#define k_exact_one_p(x) (k_exact_p(x) && f_one_p(x))
+
+#define get_dat1(x) \
+ struct RComplex *dat;\
+ dat = ((struct RComplex *)(x))
+
+#define get_dat2(x,y) \
+ struct RComplex *adat, *bdat;\
+ adat = ((struct RComplex *)(x));\
+ bdat = ((struct RComplex *)(y))
+
+inline static VALUE
+nucomp_s_new_internal(VALUE klass, VALUE real, VALUE imag)
+{
+ NEWOBJ(obj, struct RComplex);
+ OBJSETUP(obj, klass, T_COMPLEX);
+
+ obj->real = real;
+ obj->imag = imag;
+
+ return (VALUE)obj;
+}
+
+static VALUE
+nucomp_s_alloc(VALUE klass)
+{
+ return nucomp_s_new_internal(klass, ZERO, ZERO);
+}
+
+#if 0
+static VALUE
+nucomp_s_new_bang(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE real, imag;
+
+ switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
+ case 1:
+ if (!k_numeric_p(real))
+ real = f_to_i(real);
+ imag = ZERO;
+ break;
+ default:
+ if (!k_numeric_p(real))
+ real = f_to_i(real);
+ if (!k_numeric_p(imag))
+ imag = f_to_i(imag);
+ break;
+ }
+
+ return nucomp_s_new_internal(klass, real, imag);
+}
+#endif
+
+inline static VALUE
+f_complex_new_bang1(VALUE klass, VALUE x)
+{
+ assert(!k_complex_p(x));
+ return nucomp_s_new_internal(klass, x, ZERO);
+}
+
+inline static VALUE
+f_complex_new_bang2(VALUE klass, VALUE x, VALUE y)
+{
+ assert(!k_complex_p(x));
+ assert(!k_complex_p(y));
+ return nucomp_s_new_internal(klass, x, y);
+}
+
+#ifdef CANONICALIZATION_FOR_MATHN
+#define CANON
+#endif
+
+#ifdef CANON
+static int canonicalization = 0;
+
+RUBY_FUNC_EXPORTED void
+nucomp_canonicalization(int f)
+{
+ canonicalization = f;
+}
+#endif
+
+inline static void
+nucomp_real_check(VALUE num)
+{
+ switch (TYPE(num)) {
+ case T_FIXNUM:
+ case T_BIGNUM:
+ case T_FLOAT:
+ case T_RATIONAL:
+ break;
+ default:
+ if (!k_numeric_p(num) || !f_real_p(num))
+ rb_raise(rb_eTypeError, "not a real");
+ }
+}
+
+inline static VALUE
+nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag)
+{
+#ifdef CANON
+#define CL_CANON
+#ifdef CL_CANON
+ if (k_exact_zero_p(imag) && canonicalization)
+ return real;
+#else
+ if (f_zero_p(imag) && canonicalization)
+ return real;
+#endif
+#endif
+ if (f_real_p(real) && f_real_p(imag))
+ return nucomp_s_new_internal(klass, real, imag);
+ else if (f_real_p(real)) {
+ get_dat1(imag);
+
+ return nucomp_s_new_internal(klass,
+ f_sub(real, dat->imag),
+ f_add(ZERO, dat->real));
+ }
+ else if (f_real_p(imag)) {
+ get_dat1(real);
+
+ return nucomp_s_new_internal(klass,
+ dat->real,
+ f_add(dat->imag, imag));
+ }
+ else {
+ get_dat2(real, imag);
+
+ return nucomp_s_new_internal(klass,
+ f_sub(adat->real, bdat->imag),
+ f_add(adat->imag, bdat->real));
+ }
+}
+
+/*
+ * call-seq:
+ * Complex.rect(real[, imag]) -> complex
+ * Complex.rectangular(real[, imag]) -> complex
+ *
+ * Returns a complex object which denotes the given rectangular form.
+ */
+static VALUE
+nucomp_s_new(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE real, imag;
+
+ switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
+ case 1:
+ nucomp_real_check(real);
+ imag = ZERO;
+ break;
+ default:
+ nucomp_real_check(real);
+ nucomp_real_check(imag);
+ break;
+ }
+
+ return nucomp_s_canonicalize_internal(klass, real, imag);
+}
+
+inline static VALUE
+f_complex_new1(VALUE klass, VALUE x)
+{
+ assert(!k_complex_p(x));
+ return nucomp_s_canonicalize_internal(klass, x, ZERO);
+}
+
+inline static VALUE
+f_complex_new2(VALUE klass, VALUE x, VALUE y)
+{
+ assert(!k_complex_p(x));
+ return nucomp_s_canonicalize_internal(klass, x, y);
+}
+
+/*
+ * call-seq:
+ * Complex(x[, y]) -> numeric
+ *
+ * Returns x+i*y;
+ */
+static VALUE
+nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
+{
+ return rb_funcall2(rb_cComplex, id_convert, argc, argv);
+}
+
+#define imp1(n) \
+inline static VALUE \
+m_##n##_bang(VALUE x)\
+{\
+ return rb_math_##n(x);\
+}
+
+#define imp2(n) \
+inline static VALUE \
+m_##n##_bang(VALUE x, VALUE y)\
+{\
+ return rb_math_##n(x, y);\
+}
+
+imp2(atan2)
+imp1(cos)
+imp1(cosh)
+imp1(exp)
+imp2(hypot)
+
+#define m_hypot(x,y) m_hypot_bang((x),(y))
+
+static VALUE
+m_log_bang(VALUE x)
+{
+ return rb_math_log(1, &x);
+}
+
+imp1(sin)
+imp1(sinh)
+imp1(sqrt)
+
+static VALUE
+m_cos(VALUE x)
+{
+ if (f_real_p(x))
+ return m_cos_bang(x);
+ {
+ get_dat1(x);
+ return f_complex_new2(rb_cComplex,
+ f_mul(m_cos_bang(dat->real),
+ m_cosh_bang(dat->imag)),
+ f_mul(f_negate(m_sin_bang(dat->real)),
+ m_sinh_bang(dat->imag)));
+ }
+}
+
+static VALUE
+m_sin(VALUE x)
+{
+ if (f_real_p(x))
+ return m_sin_bang(x);
+ {
+ get_dat1(x);
+ return f_complex_new2(rb_cComplex,
+ f_mul(m_sin_bang(dat->real),
+ m_cosh_bang(dat->imag)),
+ f_mul(m_cos_bang(dat->real),
+ m_sinh_bang(dat->imag)));
+ }
+}
+
+#if 0
+static VALUE
+m_sqrt(VALUE x)
+{
+ if (f_real_p(x)) {
+ if (f_positive_p(x))
+ return m_sqrt_bang(x);
+ return f_complex_new2(rb_cComplex, ZERO, m_sqrt_bang(f_negate(x)));
+ }
+ else {
+ get_dat1(x);
+
+ if (f_negative_p(dat->imag))
+ return f_conj(m_sqrt(f_conj(x)));
+ else {
+ VALUE a = f_abs(x);
+ return f_complex_new2(rb_cComplex,
+ m_sqrt_bang(f_div(f_add(a, dat->real), TWO)),
+ m_sqrt_bang(f_div(f_sub(a, dat->real), TWO)));
+ }
+ }
+}
+#endif
+
+inline static VALUE
+f_complex_polar(VALUE klass, VALUE x, VALUE y)
+{
+ assert(!k_complex_p(x));
+ assert(!k_complex_p(y));
+ return nucomp_s_canonicalize_internal(klass,
+ f_mul(x, m_cos(y)),
+ f_mul(x, m_sin(y)));
+}
+
+/*
+ * call-seq:
+ * Complex.polar(abs[, arg]) -> complex
+ *
+ * Returns a complex object which denotes the given polar form.
+ *
+ * Complex.polar(3, 0) #=> (3.0+0.0i)
+ * Complex.polar(3, Math::PI/2) #=> (1.836909530733566e-16+3.0i)
+ * Complex.polar(3, Math::PI) #=> (-3.0+3.673819061467132e-16i)
+ * Complex.polar(3, -Math::PI/2) #=> (1.836909530733566e-16-3.0i)
+ */
+static VALUE
+nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE abs, arg;
+
+ switch (rb_scan_args(argc, argv, "11", &abs, &arg)) {
+ case 1:
+ nucomp_real_check(abs);
+ arg = ZERO;
+ break;
+ default:
+ nucomp_real_check(abs);
+ nucomp_real_check(arg);
+ break;
+ }
+ return f_complex_polar(klass, abs, arg);
+}
+
+/*
+ * call-seq:
+ * cmp.real -> real
+ *
+ * Returns the real part.
+ */
+static VALUE
+nucomp_real(VALUE self)
+{
+ get_dat1(self);
+ return dat->real;
+}
+
+/*
+ * call-seq:
+ * cmp.imag -> real
+ * cmp.imaginary -> real
+ *
+ * Returns the imaginary part.
+ */
+static VALUE
+nucomp_imag(VALUE self)
+{
+ get_dat1(self);
+ return dat->imag;
+}
+
+/*
+ * call-seq:
+ * -cmp -> complex
+ *
+ * Returns negation of the value.
+ */
+static VALUE
+nucomp_negate(VALUE self)
+{
+ get_dat1(self);
+ return f_complex_new2(CLASS_OF(self),
+ f_negate(dat->real), f_negate(dat->imag));
+}
+
+inline static VALUE
+f_addsub(VALUE self, VALUE other,
+ VALUE (*func)(VALUE, VALUE), ID id)
+{
+ if (k_complex_p(other)) {
+ VALUE real, imag;
+
+ get_dat2(self, other);
+
+ real = (*func)(adat->real, bdat->real);
+ imag = (*func)(adat->imag, bdat->imag);
+
+ return f_complex_new2(CLASS_OF(self), real, imag);
+ }
+ if (k_numeric_p(other) && f_real_p(other)) {
+ get_dat1(self);
+
+ return f_complex_new2(CLASS_OF(self),
+ (*func)(dat->real, other), dat->imag);
+ }
+ return rb_num_coerce_bin(self, other, id);
+}
+
+/*
+ * call-seq:
+ * cmp + numeric -> complex
+ *
+ * Performs addition.
+ */
+static VALUE
+nucomp_add(VALUE self, VALUE other)
+{
+ return f_addsub(self, other, f_add, '+');
+}
+
+/*
+ * call-seq:
+ * cmp - numeric -> complex
+ *
+ * Performs subtraction.
+ */
+static VALUE
+nucomp_sub(VALUE self, VALUE other)
+{
+ return f_addsub(self, other, f_sub, '-');
+}
+
+/*
+ * call-seq:
+ * cmp * numeric -> complex
+ *
+ * Performs multiplication.
+ */
+static VALUE
+nucomp_mul(VALUE self, VALUE other)
+{
+ if (k_complex_p(other)) {
+ VALUE real, imag;
+
+ get_dat2(self, other);
+
+ real = f_sub(f_mul(adat->real, bdat->real),
+ f_mul(adat->imag, bdat->imag));
+ imag = f_add(f_mul(adat->real, bdat->imag),
+ f_mul(adat->imag, bdat->real));
+
+ return f_complex_new2(CLASS_OF(self), real, imag);
+ }
+ if (k_numeric_p(other) && f_real_p(other)) {
+ get_dat1(self);
+
+ return f_complex_new2(CLASS_OF(self),
+ f_mul(dat->real, other),
+ f_mul(dat->imag, other));
+ }
+ return rb_num_coerce_bin(self, other, '*');
+}
+
+inline static VALUE
+f_divide(VALUE self, VALUE other,
+ VALUE (*func)(VALUE, VALUE), ID id)
+{
+ if (k_complex_p(other)) {
+ int flo;
+ get_dat2(self, other);
+
+ flo = (k_float_p(adat->real) || k_float_p(adat->imag) ||
+ k_float_p(bdat->real) || k_float_p(bdat->imag));
+
+ if (f_gt_p(f_abs(bdat->real), f_abs(bdat->imag))) {
+ VALUE r, n;
+
+ r = (*func)(bdat->imag, bdat->real);
+ n = f_mul(bdat->real, f_add(ONE, f_mul(r, r)));
+ if (flo)
+ return f_complex_new2(CLASS_OF(self),
+ (*func)(self, n),
+ (*func)(f_negate(f_mul(self, r)), n));
+ return f_complex_new2(CLASS_OF(self),
+ (*func)(f_add(adat->real,
+ f_mul(adat->imag, r)), n),
+ (*func)(f_sub(adat->imag,
+ f_mul(adat->real, r)), n));
+ }
+ else {
+ VALUE r, n;
+
+ r = (*func)(bdat->real, bdat->imag);
+ n = f_mul(bdat->imag, f_add(ONE, f_mul(r, r)));
+ if (flo)
+ return f_complex_new2(CLASS_OF(self),
+ (*func)(f_mul(self, r), n),
+ (*func)(f_negate(self), n));
+ return f_complex_new2(CLASS_OF(self),
+ (*func)(f_add(f_mul(adat->real, r),
+ adat->imag), n),
+ (*func)(f_sub(f_mul(adat->imag, r),
+ adat->real), n));
+ }
+ }
+ if (k_numeric_p(other) && f_real_p(other)) {
+ get_dat1(self);
+
+ return f_complex_new2(CLASS_OF(self),
+ (*func)(dat->real, other),
+ (*func)(dat->imag, other));
+ }
+ return rb_num_coerce_bin(self, other, id);
+}
+
+#define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by 0")
+
+/*
+ * call-seq:
+ * cmp / numeric -> complex
+ * cmp.quo(numeric) -> complex
+ *
+ * Performs division.
+ *
+ * For example:
+ *
+ * Complex(10.0) / 3 #=> (3.3333333333333335+(0/1)*i)
+ * Complex(10) / 3 #=> ((10/3)+(0/1)*i) # not (3+0i)
+ */
+static VALUE
+nucomp_div(VALUE self, VALUE other)
+{
+ return f_divide(self, other, f_quo, id_quo);
+}
+
+#define nucomp_quo nucomp_div
+
+/*
+ * call-seq:
+ * cmp.fdiv(numeric) -> complex
+ *
+ * Performs division as each part is a float, never returns a float.
+ *
+ * For example:
+ *
+ * Complex(11,22).fdiv(3) #=> (3.6666666666666665+7.333333333333333i)
+ */
+static VALUE
+nucomp_fdiv(VALUE self, VALUE other)
+{
+ return f_divide(self, other, f_fdiv, id_fdiv);
+}
+
+inline static VALUE
+f_reciprocal(VALUE x)
+{
+ return f_quo(ONE, x);
+}
+
+/*
+ * call-seq:
+ * cmp ** numeric -> complex
+ *
+ * Performs exponentiation.
+ *
+ * For example:
+ *
+ * Complex('i') ** 2 #=> (-1+0i)
+ * Complex(-8) ** Rational(1,3) #=> (1.0000000000000002+1.7320508075688772i)
+ */
+static VALUE
+nucomp_expt(VALUE self, VALUE other)
+{
+ if (k_numeric_p(other) && k_exact_zero_p(other))
+ return f_complex_new_bang1(CLASS_OF(self), ONE);
+
+ if (k_rational_p(other) && f_one_p(f_denominator(other)))
+ other = f_numerator(other); /* c14n */
+
+ if (k_complex_p(other)) {
+ get_dat1(other);
+
+ if (k_exact_zero_p(dat->imag))
+ other = dat->real; /* c14n */
+ }
+
+ if (k_complex_p(other)) {
+ VALUE r, theta, nr, ntheta;
+
+ get_dat1(other);
+
+ r = f_abs(self);
+ theta = f_arg(self);
+
+ nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
+ f_mul(dat->imag, theta)));
+ ntheta = f_add(f_mul(theta, dat->real),
+ f_mul(dat->imag, m_log_bang(r)));
+ return f_complex_polar(CLASS_OF(self), nr, ntheta);
+ }
+ if (k_fixnum_p(other)) {
+ if (f_gt_p(other, ZERO)) {
+ VALUE x, z;
+ long n;
+
+ x = self;
+ z = x;
+ n = FIX2LONG(other) - 1;
+
+ while (n) {
+ long q, r;
+
+ while (1) {
+ get_dat1(x);
+
+ q = n / 2;
+ r = n % 2;
+
+ if (r)
+ break;
+
+ x = f_complex_new2(CLASS_OF(self),
+ f_sub(f_mul(dat->real, dat->real),
+ f_mul(dat->imag, dat->imag)),
+ f_mul(f_mul(TWO, dat->real), dat->imag));
+ n = q;
+ }
+ z = f_mul(z, x);
+ n--;
+ }
+ return z;
+ }
+ return f_expt(f_reciprocal(self), f_negate(other));
+ }
+ if (k_numeric_p(other) && f_real_p(other)) {
+ VALUE r, theta;
+
+ if (k_bignum_p(other))
+ rb_warn("in a**b, b may be too big");
+
+ r = f_abs(self);
+ theta = f_arg(self);
+
+ return f_complex_polar(CLASS_OF(self), f_expt(r, other),
+ f_mul(theta, other));
+ }
+ return rb_num_coerce_bin(self, other, id_expt);
+}
+
+/*
+ * call-seq:
+ * cmp == object -> true or false
+ *
+ * Returns true if cmp equals object numerically.
+ */
+static VALUE
+nucomp_eqeq_p(VALUE self, VALUE other)
+{
+ if (k_complex_p(other)) {
+ get_dat2(self, other);
+
+ return f_boolcast(f_eqeq_p(adat->real, bdat->real) &&
+ f_eqeq_p(adat->imag, bdat->imag));
+ }
+ if (k_numeric_p(other) && f_real_p(other)) {
+ get_dat1(self);
+
+ return f_boolcast(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
+ }
+ return f_eqeq_p(other, self);
+}
+
+/* :nodoc: */
+static VALUE
+nucomp_coerce(VALUE self, VALUE other)
+{
+ if (k_numeric_p(other) && f_real_p(other))
+ return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
+ if (TYPE(other) == T_COMPLEX)
+ return rb_assoc_new(other, self);
+
+ rb_raise(rb_eTypeError, "%s can't be coerced into %s",
+ rb_obj_classname(other), rb_obj_classname(self));
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * cmp.abs -> real
+ * cmp.magnitude -> real
+ *
+ * Returns the absolute part of its polar form.
+ */
+static VALUE
+nucomp_abs(VALUE self)
+{
+ get_dat1(self);
+
+ if (f_zero_p(dat->real)) {
+ VALUE a = f_abs(dat->imag);
+ if (k_float_p(dat->real) && !k_float_p(dat->imag))
+ a = f_to_f(a);
+ return a;
+ }
+ if (f_zero_p(dat->imag)) {
+ VALUE a = f_abs(dat->real);
+ if (!k_float_p(dat->real) && k_float_p(dat->imag))
+ a = f_to_f(a);
+ return a;
+ }
+ return m_hypot(dat->real, dat->imag);
+}
+
+/*
+ * call-seq:
+ * cmp.abs2 -> real
+ *
+ * Returns square of the absolute value.
+ */
+static VALUE
+nucomp_abs2(VALUE self)
+{
+ get_dat1(self);
+ return f_add(f_mul(dat->real, dat->real),
+ f_mul(dat->imag, dat->imag));
+}
+
+/*
+ * call-seq:
+ * cmp.arg -> float
+ * cmp.angle -> float
+ * cmp.phase -> float
+ *
+ * Returns the angle part of its polar form.
+ *
+ * Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966
+ *
+ */
+static VALUE
+nucomp_arg(VALUE self)
+{
+ get_dat1(self);
+ return m_atan2_bang(dat->imag, dat->real);
+}
+
+/*
+ * call-seq:
+ * cmp.rect -> array
+ * cmp.rectangular -> array
+ *
+ * Returns an array; [cmp.real, cmp.imag].
+ */
+static VALUE
+nucomp_rect(VALUE self)
+{
+ get_dat1(self);
+ return rb_assoc_new(dat->real, dat->imag);
+}
+
+/*
+ * call-seq:
+ * cmp.polar -> array
+ *
+ * Returns an array; [cmp.abs, cmp.arg].
+ */
+static VALUE
+nucomp_polar(VALUE self)
+{
+ return rb_assoc_new(f_abs(self), f_arg(self));
+}
+
+/*
+ * call-seq:
+ * cmp.conj -> complex
+ * cmp.conjugate -> complex
+ *
+ * Returns the complex conjugate.
+ */
+static VALUE
+nucomp_conj(VALUE self)
+{
+ get_dat1(self);
+ return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
+}
+
+#if 0
+/* :nodoc: */
+static VALUE
+nucomp_true(VALUE self)
+{
+ return Qtrue;
+}
+#endif
+
+/*
+ * call-seq:
+ * cmp.real? -> false
+ *
+ * Returns false.
+ */
+static VALUE
+nucomp_false(VALUE self)
+{
+ return Qfalse;
+}
+
+#if 0
+/* :nodoc: */
+static VALUE
+nucomp_exact_p(VALUE self)
+{
+ get_dat1(self);
+ return f_boolcast(k_exact_p(dat->real) && k_exact_p(dat->imag));
+}
+
+/* :nodoc: */
+static VALUE
+nucomp_inexact_p(VALUE self)
+{
+ return f_boolcast(!nucomp_exact_p(self));
+}
+#endif
+
+/*
+ * call-seq:
+ * cmp.denominator -> integer
+ *
+ * Returns the denominator (lcm of both denominator - real and imag).
+ *
+ * See numerator.
+ */
+static VALUE
+nucomp_denominator(VALUE self)
+{
+ get_dat1(self);
+ return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
+}
+
+/*
+ * call-seq:
+ * cmp.numerator -> numeric
+ *
+ * Returns the numerator.
+ *
+ * For example:
+ *
+ * 1 2 3+4i <- numerator
+ * - + -i -> ----
+ * 2 3 6 <- denominator
+ *
+ * c = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i)
+ * n = c.numerator #=> (3+4i)
+ * d = c.denominator #=> 6
+ * n / d #=> ((1/2)+(2/3)*i)
+ * Complex(Rational(n.real, d), Rational(n.imag, d))
+ * #=> ((1/2)+(2/3)*i)
+ * See denominator.
+ */
+static VALUE
+nucomp_numerator(VALUE self)
+{
+ VALUE cd;
+
+ get_dat1(self);
+
+ cd = f_denominator(self);
+ return f_complex_new2(CLASS_OF(self),
+ f_mul(f_numerator(dat->real),
+ f_div(cd, f_denominator(dat->real))),
+ f_mul(f_numerator(dat->imag),
+ f_div(cd, f_denominator(dat->imag))));
+}
+
+/* :nodoc: */
+static VALUE
+nucomp_hash(VALUE self)
+{
+ st_index_t v, h[2];
+ VALUE n;
+
+ get_dat1(self);
+ n = rb_hash(dat->real);
+ h[0] = NUM2LONG(n);
+ n = rb_hash(dat->imag);
+ h[1] = NUM2LONG(n);
+ v = rb_memhash(h, sizeof(h));
+ return LONG2FIX(v);
+}
+
+/* :nodoc: */
+static VALUE
+nucomp_eql_p(VALUE self, VALUE other)
+{
+ if (k_complex_p(other)) {
+ get_dat2(self, other);
+
+ return f_boolcast((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
+ (CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
+ f_eqeq_p(self, other));
+
+ }
+ return Qfalse;
+}
+
+inline static VALUE
+f_signbit(VALUE x)
+{
+#if defined(HAVE_SIGNBIT) && defined(__GNUC__) && defined(__sun__) && \
+ !defined(signbit)
+ extern int signbit(double);
+#endif
+ switch (TYPE(x)) {
+ case T_FLOAT: {
+ double f = RFLOAT_VALUE(x);
+ return f_boolcast(!isnan(f) && signbit(f));
+ }
+ }
+ return f_negative_p(x);
+}
+
+inline static VALUE
+f_tpositive_p(VALUE x)
+{
+ return f_boolcast(!f_signbit(x));
+}
+
+static VALUE
+f_format(VALUE self, VALUE (*func)(VALUE))
+{
+ VALUE s, impos;
+
+ get_dat1(self);
+
+ impos = f_tpositive_p(dat->imag);
+
+ s = (*func)(dat->real);
+ rb_str_cat2(s, !impos ? "-" : "+");
+
+ rb_str_concat(s, (*func)(f_abs(dat->imag)));
+ if (!rb_isdigit(RSTRING_PTR(s)[RSTRING_LEN(s) - 1]))
+ rb_str_cat2(s, "*");
+ rb_str_cat2(s, "i");
+
+ return s;
+}
+
+/*
+ * call-seq:
+ * cmp.to_s -> string
+ *
+ * Returns the value as a string.
+ */
+static VALUE
+nucomp_to_s(VALUE self)
+{
+ return f_format(self, f_to_s);
+}
+
+/*
+ * call-seq:
+ * cmp.inspect -> string
+ *
+ * Returns the value as a string for inspection.
+ */
+static VALUE
+nucomp_inspect(VALUE self)
+{
+ VALUE s;
+
+ s = rb_usascii_str_new2("(");
+ rb_str_concat(s, f_format(self, f_inspect));
+ rb_str_cat2(s, ")");
+
+ return s;
+}
+
+/* :nodoc: */
+static VALUE
+nucomp_marshal_dump(VALUE self)
+{
+ VALUE a;
+ get_dat1(self);
+
+ a = rb_assoc_new(dat->real, dat->imag);
+ rb_copy_generic_ivar(a, self);
+ return a;
+}
+
+/* :nodoc: */
+static VALUE
+nucomp_marshal_load(VALUE self, VALUE a)
+{
+ get_dat1(self);
+ Check_Type(a, T_ARRAY);
+ if (RARRAY_LEN(a) != 2)
+ rb_raise(rb_eArgError, "marshaled complex must have an array whose length is 2 but %ld", RARRAY_LEN(a));
+ dat->real = RARRAY_PTR(a)[0];
+ dat->imag = RARRAY_PTR(a)[1];
+ rb_copy_generic_ivar(self, a);
+ return self;
+}
+
+/* --- */
+
+VALUE
+rb_complex_raw(VALUE x, VALUE y)
+{
+ return nucomp_s_new_internal(rb_cComplex, x, y);
+}
+
+VALUE
+rb_complex_new(VALUE x, VALUE y)
+{
+ return nucomp_s_canonicalize_internal(rb_cComplex, x, y);
+}
+
+VALUE
+rb_complex_polar(VALUE x, VALUE y)
+{
+ return f_complex_polar(rb_cComplex, x, y);
+}
+
+static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass);
+
+VALUE
+rb_Complex(VALUE x, VALUE y)
+{
+ VALUE a[2];
+ a[0] = x;
+ a[1] = y;
+ return nucomp_s_convert(2, a, rb_cComplex);
+}
+
+/*
+ * call-seq:
+ * cmp.to_i -> integer
+ *
+ * Returns the value as an integer if possible.
+ */
+static VALUE
+nucomp_to_i(VALUE self)
+{
+ get_dat1(self);
+
+ if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
+ VALUE s = f_to_s(self);
+ rb_raise(rb_eRangeError, "can't convert %s into Integer",
+ StringValuePtr(s));
+ }
+ return f_to_i(dat->real);
+}
+
+/*
+ * call-seq:
+ * cmp.to_f -> float
+ *
+ * Returns the value as a float if possible.
+ */
+static VALUE
+nucomp_to_f(VALUE self)
+{
+ get_dat1(self);
+
+ if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
+ VALUE s = f_to_s(self);
+ rb_raise(rb_eRangeError, "can't convert %s into Float",
+ StringValuePtr(s));
+ }
+ return f_to_f(dat->real);
+}
+
+/*
+ * call-seq:
+ * cmp.to_r -> rational
+ *
+ * If the imaginary part is exactly 0, returns the real part as a Rational,
+ * otherwise a RangeError is raised.
+ */
+static VALUE
+nucomp_to_r(VALUE self)
+{
+ get_dat1(self);
+
+ if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
+ VALUE s = f_to_s(self);
+ rb_raise(rb_eRangeError, "can't convert %s into Rational",
+ StringValuePtr(s));
+ }
+ return f_to_r(dat->real);
+}
+
+/*
+ * call-seq:
+ * cmp.rationalize([eps]) -> rational
+ *
+ * If the imaginary part is exactly 0, returns the real part as a Rational,
+ * otherwise a RangeError is raised.
+ */
+static VALUE
+nucomp_rationalize(int argc, VALUE *argv, VALUE self)
+{
+ get_dat1(self);
+
+ rb_scan_args(argc, argv, "01", NULL);
+
+ if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
+ VALUE s = f_to_s(self);
+ rb_raise(rb_eRangeError, "can't convert %s into Rational",
+ StringValuePtr(s));
+ }
+ return rb_funcall2(dat->real, rb_intern("rationalize"), argc, argv);
+}
+
+/*
+ * call-seq:
+ * nil.to_c -> (0+0i)
+ *
+ * Returns zero as a complex.
+ */
+static VALUE
+nilclass_to_c(VALUE self)
+{
+ return rb_complex_new1(INT2FIX(0));
+}
+
+/*
+ * call-seq:
+ * num.to_c -> complex
+ *
+ * Returns the value as a complex.
+ */
+static VALUE
+numeric_to_c(VALUE self)
+{
+ return rb_complex_new1(self);
+}
+
+static VALUE comp_pat0, comp_pat1, comp_pat2, a_slash, a_dot_and_an_e,
+ null_string, underscores_pat, an_underscore;
+
+#define WS "\\s*"
+#define DIGITS "(?:[0-9](?:_[0-9]|[0-9])*)"
+#define NUMERATOR "(?:" DIGITS "?\\.)?" DIGITS "(?:[eE][-+]?" DIGITS ")?"
+#define DENOMINATOR DIGITS
+#define NUMBER "[-+]?" NUMERATOR "(?:\\/" DENOMINATOR ")?"
+#define NUMBERNOS NUMERATOR "(?:\\/" DENOMINATOR ")?"
+#define PATTERN0 "\\A" WS "(" NUMBER ")@(" NUMBER ")" WS
+#define PATTERN1 "\\A" WS "([-+])?(" NUMBER ")?[iIjJ]" WS
+#define PATTERN2 "\\A" WS "(" NUMBER ")(([-+])(" NUMBERNOS ")?[iIjJ])?" WS
+
+static void
+make_patterns(void)
+{
+ static const char comp_pat0_source[] = PATTERN0;
+ static const char comp_pat1_source[] = PATTERN1;
+ static const char comp_pat2_source[] = PATTERN2;
+ static const char underscores_pat_source[] = "_+";
+
+ if (comp_pat0) return;
+
+ comp_pat0 = rb_reg_new(comp_pat0_source, sizeof comp_pat0_source - 1, 0);
+ rb_gc_register_mark_object(comp_pat0);
+
+ comp_pat1 = rb_reg_new(comp_pat1_source, sizeof comp_pat1_source - 1, 0);
+ rb_gc_register_mark_object(comp_pat1);
+
+ comp_pat2 = rb_reg_new(comp_pat2_source, sizeof comp_pat2_source - 1, 0);
+ rb_gc_register_mark_object(comp_pat2);
+
+ a_slash = rb_usascii_str_new2("/");
+ rb_gc_register_mark_object(a_slash);
+
+ a_dot_and_an_e = rb_usascii_str_new2(".eE");
+ rb_gc_register_mark_object(a_dot_and_an_e);
+
+ null_string = rb_usascii_str_new2("");
+ rb_gc_register_mark_object(null_string);
+
+ underscores_pat = rb_reg_new(underscores_pat_source,
+ sizeof underscores_pat_source - 1, 0);
+ rb_gc_register_mark_object(underscores_pat);
+
+ an_underscore = rb_usascii_str_new2("_");
+ rb_gc_register_mark_object(an_underscore);
+}
+
+#define id_match rb_intern("match")
+#define f_match(x,y) rb_funcall((x), id_match, 1, (y))
+
+#define id_gsub_bang rb_intern("gsub!")
+#define f_gsub_bang(x,y,z) rb_funcall((x), id_gsub_bang, 2, (y), (z))
+
+static VALUE
+string_to_c_internal(VALUE self)
+{
+ VALUE s;
+
+ s = self;
+
+ if (RSTRING_LEN(s) == 0)
+ return rb_assoc_new(Qnil, self);
+
+ {
+ VALUE m, sr, si, re, r, i;
+ int po;
+
+ m = f_match(comp_pat0, s);
+ if (!NIL_P(m)) {
+ sr = rb_reg_nth_match(1, m);
+ si = rb_reg_nth_match(2, m);
+ re = rb_reg_match_post(m);
+ po = 1;
+ }
+ if (NIL_P(m)) {
+ m = f_match(comp_pat1, s);
+ if (!NIL_P(m)) {
+ sr = Qnil;
+ si = rb_reg_nth_match(1, m);
+ if (NIL_P(si))
+ si = rb_usascii_str_new2("");
+ {
+ VALUE t;
+
+ t = rb_reg_nth_match(2, m);
+ if (NIL_P(t))
+ t = rb_usascii_str_new2("1");
+ rb_str_concat(si, t);
+ }
+ re = rb_reg_match_post(m);
+ po = 0;
+ }
+ }
+ if (NIL_P(m)) {
+ m = f_match(comp_pat2, s);
+ if (NIL_P(m))
+ return rb_assoc_new(Qnil, self);
+ sr = rb_reg_nth_match(1, m);
+ if (NIL_P(rb_reg_nth_match(2, m)))
+ si = Qnil;
+ else {
+ VALUE t;
+
+ si = rb_reg_nth_match(3, m);
+ t = rb_reg_nth_match(4, m);
+ if (NIL_P(t))
+ t = rb_usascii_str_new2("1");
+ rb_str_concat(si, t);
+ }
+ re = rb_reg_match_post(m);
+ po = 0;
+ }
+ r = INT2FIX(0);
+ i = INT2FIX(0);
+ if (!NIL_P(sr)) {
+ if (strchr(RSTRING_PTR(sr), '/'))
+ r = f_to_r(sr);
+ else if (strpbrk(RSTRING_PTR(sr), ".eE"))
+ r = f_to_f(sr);
+ else
+ r = f_to_i(sr);
+ }
+ if (!NIL_P(si)) {
+ if (strchr(RSTRING_PTR(si), '/'))
+ i = f_to_r(si);
+ else if (strpbrk(RSTRING_PTR(si), ".eE"))
+ i = f_to_f(si);
+ else
+ i = f_to_i(si);
+ }
+ if (po)
+ return rb_assoc_new(rb_complex_polar(r, i), re);
+ else
+ return rb_assoc_new(rb_complex_new2(r, i), re);
+ }
+}
+
+static VALUE
+string_to_c_strict(VALUE self)
+{
+ VALUE a = string_to_c_internal(self);
+ if (NIL_P(RARRAY_PTR(a)[0]) || RSTRING_LEN(RARRAY_PTR(a)[1]) > 0) {
+ VALUE s = f_inspect(self);
+ rb_raise(rb_eArgError, "invalid value for convert(): %s",
+ StringValuePtr(s));
+ }
+ return RARRAY_PTR(a)[0];
+}
+
+#define id_gsub rb_intern("gsub")
+#define f_gsub(x,y,z) rb_funcall((x), id_gsub, 2, (y), (z))
+
+/*
+ * call-seq:
+ * str.to_c -> complex
+ *
+ * Returns a complex which denotes the string form. The parser
+ * ignores leading whitespaces and trailing garbage. Any digit
+ * sequences can be separated by an underscore. Returns zero for null
+ * or garbage string.
+ *
+ * For example:
+ *
+ * '9'.to_c #=> (9+0i)
+ * '2.5'.to_c #=> (2.5+0i)
+ * '2.5/1'.to_c #=> ((5/2)+0i)
+ * '-3/2'.to_c #=> ((-3/2)+0i)
+ * '-i'.to_c #=> (0-1i)
+ * '45i'.to_c #=> (0+45i)
+ * '3-4i'.to_c #=> (3-4i)
+ * '-4e2-4e-2i'.to_c #=> (-400.0-0.04i)
+ * '-0.0-0.0i'.to_c #=> (-0.0-0.0i)
+ * '1/2+3/4i'.to_c #=> ((1/2)+(3/4)*i)
+ * 'ruby'.to_c #=> (0+0i)
+ */
+static VALUE
+string_to_c(VALUE self)
+{
+ VALUE s, a, backref;
+
+ backref = rb_backref_get();
+ rb_match_busy(backref);
+
+ s = f_gsub(self, underscores_pat, an_underscore);
+ a = string_to_c_internal(s);
+
+ rb_backref_set(backref);
+
+ if (!NIL_P(RARRAY_PTR(a)[0]))
+ return RARRAY_PTR(a)[0];
+ return rb_complex_new1(INT2FIX(0));
+}
+
+static VALUE
+nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE a1, a2, backref;
+
+ rb_scan_args(argc, argv, "11", &a1, &a2);
+
+ if (NIL_P(a1) || (argc == 2 && NIL_P(a2)))
+ rb_raise(rb_eTypeError, "can't convert nil into Complex");
+
+ backref = rb_backref_get();
+ rb_match_busy(backref);
+
+ switch (TYPE(a1)) {
+ case T_FIXNUM:
+ case T_BIGNUM:
+ case T_FLOAT:
+ break;
+ case T_STRING:
+ a1 = string_to_c_strict(a1);
+ break;
+ }
+
+ switch (TYPE(a2)) {
+ case T_FIXNUM:
+ case T_BIGNUM:
+ case T_FLOAT:
+ break;
+ case T_STRING:
+ a2 = string_to_c_strict(a2);
+ break;
+ }
+
+ rb_backref_set(backref);
+
+ switch (TYPE(a1)) {
+ case T_COMPLEX:
+ {
+ get_dat1(a1);
+
+ if (k_exact_zero_p(dat->imag))
+ a1 = dat->real;
+ }
+ }
+
+ switch (TYPE(a2)) {
+ case T_COMPLEX:
+ {
+ get_dat1(a2);
+
+ if (k_exact_zero_p(dat->imag))
+ a2 = dat->real;
+ }
+ }
+
+ switch (TYPE(a1)) {
+ case T_COMPLEX:
+ if (argc == 1 || (k_exact_zero_p(a2)))
+ return a1;
+ }
+
+ if (argc == 1) {
+ if (k_numeric_p(a1) && !f_real_p(a1))
+ return a1;
+ /* should raise exception for consistency */
+ if (!k_numeric_p(a1))
+ return rb_convert_type(a1, T_COMPLEX, "Complex", "to_c");
+ }
+ else {
+ if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
+ (!f_real_p(a1) || !f_real_p(a2)))
+ return f_add(a1,
+ f_mul(a2,
+ f_complex_new_bang2(rb_cComplex, ZERO, ONE)));
+ }
+
+ {
+ VALUE argv2[2];
+ argv2[0] = a1;
+ argv2[1] = a2;
+ return nucomp_s_new(argc, argv2, klass);
+ }
+}
+
+/* --- */
+
+/*
+ * call-seq:
+ * num.real -> self
+ *
+ * Returns self.
+ */
+static VALUE
+numeric_real(VALUE self)
+{
+ return self;
+}
+
+/*
+ * call-seq:
+ * num.imag -> 0
+ * num.imaginary -> 0
+ *
+ * Returns zero.
+ */
+static VALUE
+numeric_imag(VALUE self)
+{
+ return INT2FIX(0);
+}
+
+/*
+ * call-seq:
+ * num.abs2 -> real
+ *
+ * Returns square of self.
+ */
+static VALUE
+numeric_abs2(VALUE self)
+{
+ return f_mul(self, self);
+}
+
+#define id_PI rb_intern("PI")
+
+/*
+ * call-seq:
+ * num.arg -> 0 or float
+ * num.angle -> 0 or float
+ * num.phase -> 0 or float
+ *
+ * Returns 0 if the value is positive, pi otherwise.
+ */
+static VALUE
+numeric_arg(VALUE self)
+{
+ if (f_positive_p(self))
+ return INT2FIX(0);
+ return rb_const_get(rb_mMath, id_PI);
+}
+
+/*
+ * call-seq:
+ * num.rect -> array
+ *
+ * Returns an array; [num, 0].
+ */
+static VALUE
+numeric_rect(VALUE self)
+{
+ return rb_assoc_new(self, INT2FIX(0));
+}
+
+/*
+ * call-seq:
+ * num.polar -> array
+ *
+ * Returns an array; [num.abs, num.arg].
+ */
+static VALUE
+numeric_polar(VALUE self)
+{
+ return rb_assoc_new(f_abs(self), f_arg(self));
+}
+
+/*
+ * call-seq:
+ * num.conj -> self
+ * num.conjugate -> self
+ *
+ * Returns self.
+ */
+static VALUE
+numeric_conj(VALUE self)
+{
+ return self;
+}
+
+/*
+ * call-seq:
+ * flo.arg -> 0 or float
+ * flo.angle -> 0 or float
+ * flo.phase -> 0 or float
+ *
+ * Returns 0 if the value is positive, pi otherwise.
+ */
+static VALUE
+float_arg(VALUE self)
+{
+ if (isnan(RFLOAT_VALUE(self)))
+ return self;
+ if (f_tpositive_p(self))
+ return INT2FIX(0);
+ return rb_const_get(rb_mMath, id_PI);
+}
+
+/*
+ * A complex number can be represented as a paired real number with
+ * imaginary unit; a+bi. Where a is real part, b is imaginary part
+ * and i is imaginary unit. Real a equals complex a+0i
+ * mathematically.
+ *
+ * In ruby, you can create complex object with Complex, Complex::rect,
+ * Complex::polar or to_c method.
+ *
+ * Complex(1) #=> (1+0i)
+ * Complex(2, 3) #=> (2+3i)
+ * Complex.polar(2, 3) #=> (-1.9799849932008908+0.2822400161197344i)
+ * 3.to_c #=> (3+0i)
+ *
+ * You can also create complex object from floating-point numbers or
+ * strings.
+ *
+ * Complex(0.3) #=> (0.3+0i)
+ * Complex('0.3-0.5i') #=> (0.3-0.5i)
+ * Complex('2/3+3/4i') #=> ((2/3)+(3/4)*i)
+ * Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i)
+ *
+ * 0.3.to_c #=> (0.3+0i)
+ * '0.3-0.5i'.to_c #=> (0.3-0.5i)
+ * '2/3+3/4i'.to_c #=> ((2/3)+(3/4)*i)
+ * '1@2'.to_c #=> (-0.4161468365471424+0.9092974268256817i)
+ *
+ * A complex object is either an exact or an inexact number.
+ *
+ * Complex(1, 1) / 2 #=> ((1/2)+(1/2)*i)
+ * Complex(1, 1) / 2.0 #=> (0.5+0.5i)
+ */
+void
+Init_Complex(void)
+{
+#undef rb_intern
+#define rb_intern(str) rb_intern_const(str)
+
+ assert(fprintf(stderr, "assert() is now active\n"));
+
+ id_abs = rb_intern("abs");
+ id_abs2 = rb_intern("abs2");
+ id_arg = rb_intern("arg");
+ id_cmp = rb_intern("<=>");
+ id_conj = rb_intern("conj");
+ id_convert = rb_intern("convert");
+ id_denominator = rb_intern("denominator");
+ id_divmod = rb_intern("divmod");
+ id_eqeq_p = rb_intern("==");
+ id_expt = rb_intern("**");
+ id_fdiv = rb_intern("fdiv");
+ id_floor = rb_intern("floor");
+ id_idiv = rb_intern("div");
+ id_imag = rb_intern("imag");
+ id_inspect = rb_intern("inspect");
+ id_negate = rb_intern("-@");
+ id_numerator = rb_intern("numerator");
+ id_quo = rb_intern("quo");
+ id_real = rb_intern("real");
+ id_real_p = rb_intern("real?");
+ id_to_f = rb_intern("to_f");
+ id_to_i = rb_intern("to_i");
+ id_to_r = rb_intern("to_r");
+ id_to_s = rb_intern("to_s");
+
+ rb_cComplex = rb_define_class("Complex", rb_cNumeric);
+
+ rb_define_alloc_func(rb_cComplex, nucomp_s_alloc);
+ rb_undef_method(CLASS_OF(rb_cComplex), "allocate");
+
+#if 0
+ rb_define_private_method(CLASS_OF(rb_cComplex), "new!", nucomp_s_new_bang, -1);
+ rb_define_private_method(CLASS_OF(rb_cComplex), "new", nucomp_s_new, -1);
+#else
+ rb_undef_method(CLASS_OF(rb_cComplex), "new");
+#endif
+
+ rb_define_singleton_method(rb_cComplex, "rectangular", nucomp_s_new, -1);
+ rb_define_singleton_method(rb_cComplex, "rect", nucomp_s_new, -1);
+ rb_define_singleton_method(rb_cComplex, "polar", nucomp_s_polar, -1);
+
+ rb_define_global_function("Complex", nucomp_f_complex, -1);
+
+ rb_undef_method(rb_cComplex, "%");
+ rb_undef_method(rb_cComplex, "<");
+ rb_undef_method(rb_cComplex, "<=");
+ rb_undef_method(rb_cComplex, "<=>");
+ rb_undef_method(rb_cComplex, ">");
+ rb_undef_method(rb_cComplex, ">=");
+ rb_undef_method(rb_cComplex, "between?");
+ rb_undef_method(rb_cComplex, "div");
+ rb_undef_method(rb_cComplex, "divmod");
+ rb_undef_method(rb_cComplex, "floor");
+ rb_undef_method(rb_cComplex, "ceil");
+ rb_undef_method(rb_cComplex, "modulo");
+ rb_undef_method(rb_cComplex, "remainder");
+ rb_undef_method(rb_cComplex, "round");
+ rb_undef_method(rb_cComplex, "step");
+ rb_undef_method(rb_cComplex, "truncate");
+ rb_undef_method(rb_cComplex, "i");
+
+#if 0 /* NUBY */
+ rb_undef_method(rb_cComplex, "//");
+#endif
+
+ rb_define_method(rb_cComplex, "real", nucomp_real, 0);
+ rb_define_method(rb_cComplex, "imaginary", nucomp_imag, 0);
+ rb_define_method(rb_cComplex, "imag", nucomp_imag, 0);
+
+ rb_define_method(rb_cComplex, "-@", nucomp_negate, 0);
+ rb_define_method(rb_cComplex, "+", nucomp_add, 1);
+ rb_define_method(rb_cComplex, "-", nucomp_sub, 1);
+ rb_define_method(rb_cComplex, "*", nucomp_mul, 1);
+ rb_define_method(rb_cComplex, "/", nucomp_div, 1);
+ rb_define_method(rb_cComplex, "quo", nucomp_quo, 1);
+ rb_define_method(rb_cComplex, "fdiv", nucomp_fdiv, 1);
+ rb_define_method(rb_cComplex, "**", nucomp_expt, 1);
+
+ rb_define_method(rb_cComplex, "==", nucomp_eqeq_p, 1);
+ rb_define_method(rb_cComplex, "coerce", nucomp_coerce, 1);
+
+ rb_define_method(rb_cComplex, "abs", nucomp_abs, 0);
+ rb_define_method(rb_cComplex, "magnitude", nucomp_abs, 0);
+ rb_define_method(rb_cComplex, "abs2", nucomp_abs2, 0);
+ rb_define_method(rb_cComplex, "arg", nucomp_arg, 0);
+ rb_define_method(rb_cComplex, "angle", nucomp_arg, 0);
+ rb_define_method(rb_cComplex, "phase", nucomp_arg, 0);
+ rb_define_method(rb_cComplex, "rectangular", nucomp_rect, 0);
+ rb_define_method(rb_cComplex, "rect", nucomp_rect, 0);
+ rb_define_method(rb_cComplex, "polar", nucomp_polar, 0);
+ rb_define_method(rb_cComplex, "conjugate", nucomp_conj, 0);
+ rb_define_method(rb_cComplex, "conj", nucomp_conj, 0);
+#if 0
+ rb_define_method(rb_cComplex, "~", nucomp_conj, 0); /* gcc */
+#endif
+
+ rb_define_method(rb_cComplex, "real?", nucomp_false, 0);
+#if 0
+ rb_define_method(rb_cComplex, "complex?", nucomp_true, 0);
+ rb_define_method(rb_cComplex, "exact?", nucomp_exact_p, 0);
+ rb_define_method(rb_cComplex, "inexact?", nucomp_inexact_p, 0);
+#endif
+
+ rb_define_method(rb_cComplex, "numerator", nucomp_numerator, 0);
+ rb_define_method(rb_cComplex, "denominator", nucomp_denominator, 0);
+
+ rb_define_method(rb_cComplex, "hash", nucomp_hash, 0);
+ rb_define_method(rb_cComplex, "eql?", nucomp_eql_p, 1);
+
+ rb_define_method(rb_cComplex, "to_s", nucomp_to_s, 0);
+ rb_define_method(rb_cComplex, "inspect", nucomp_inspect, 0);
+
+ rb_define_method(rb_cComplex, "marshal_dump", nucomp_marshal_dump, 0);
+ rb_define_method(rb_cComplex, "marshal_load", nucomp_marshal_load, 1);
+
+ /* --- */
+
+ rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0);
+ rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0);
+ rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
+ rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1);
+ rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0);
+ rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0);
+
+ make_patterns();
+
+ rb_define_method(rb_cString, "to_c", string_to_c, 0);
+
+ rb_define_private_method(CLASS_OF(rb_cComplex), "convert", nucomp_s_convert, -1);
+
+ /* --- */
+
+ rb_define_method(rb_cNumeric, "real", numeric_real, 0);
+ rb_define_method(rb_cNumeric, "imaginary", numeric_imag, 0);
+ rb_define_method(rb_cNumeric, "imag", numeric_imag, 0);
+ rb_define_method(rb_cNumeric, "abs2", numeric_abs2, 0);
+ rb_define_method(rb_cNumeric, "arg", numeric_arg, 0);
+ rb_define_method(rb_cNumeric, "angle", numeric_arg, 0);
+ rb_define_method(rb_cNumeric, "phase", numeric_arg, 0);
+ rb_define_method(rb_cNumeric, "rectangular", numeric_rect, 0);
+ rb_define_method(rb_cNumeric, "rect", numeric_rect, 0);
+ rb_define_method(rb_cNumeric, "polar", numeric_polar, 0);
+ rb_define_method(rb_cNumeric, "conjugate", numeric_conj, 0);
+ rb_define_method(rb_cNumeric, "conj", numeric_conj, 0);
+
+ rb_define_method(rb_cFloat, "arg", float_arg, 0);
+ rb_define_method(rb_cFloat, "angle", float_arg, 0);
+ rb_define_method(rb_cFloat, "phase", float_arg, 0);
+
+ rb_define_const(rb_cComplex, "I",
+ f_complex_new_bang2(rb_cComplex, ZERO, ONE));
+}
+
+/*
+Local variables:
+c-file-style: "ruby"
+End:
+*/