1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
/*
Copyright (C) Andrew Tridgell 1996
Copyright (C) Paul Mackerras 1996
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "rsync.h"
#include "zlib/zlib.h"
extern int do_compression;
extern int module_id;
static int compression_level = Z_DEFAULT_COMPRESSION;
/* determine the compression level based on a wildcard filename list */
void set_compression(char *fname)
{
char *dont;
char *tok;
if (!do_compression)
return;
compression_level = Z_DEFAULT_COMPRESSION;
dont = lp_dont_compress(module_id);
if (!dont || !*dont)
return;
if (dont[0] == '*' && !dont[1]) {
/* an optimization to skip the rest of this routine */
compression_level = 0;
return;
}
dont = strdup(dont);
fname = strdup(fname);
if (!dont || !fname)
return;
strlower(dont);
strlower(fname);
for (tok = strtok(dont, " "); tok; tok = strtok(NULL, " ")) {
if (wildmatch(tok, fname)) {
compression_level = 0;
break;
}
}
free(dont);
free(fname);
}
/* non-compressing recv token */
static int32 simple_recv_token(int f, char **data)
{
static int32 residue;
static char *buf;
int32 n;
if (!buf) {
buf = new_array(char, CHUNK_SIZE);
if (!buf)
out_of_memory("simple_recv_token");
}
if (residue == 0) {
int32 i = read_int(f);
if (i <= 0)
return i;
residue = i;
}
*data = buf;
n = MIN(CHUNK_SIZE,residue);
residue -= n;
read_buf(f,buf,n);
return n;
}
/* non-compressing send token */
static void simple_send_token(int f, int32 token, struct map_struct *buf,
OFF_T offset, int32 n)
{
if (n > 0) {
int32 len = 0;
while (len < n) {
int32 n1 = MIN(CHUNK_SIZE, n-len);
write_int(f, n1);
write_buf(f, map_ptr(buf, offset+len, n1), n1);
len += n1;
}
}
/* a -2 token means to send data only and no token */
if (token != -2)
write_int(f, -(token+1));
}
/* Flag bytes in compressed stream are encoded as follows: */
#define END_FLAG 0 /* that's all folks */
#define TOKEN_LONG 0x20 /* followed by 32-bit token number */
#define TOKENRUN_LONG 0x21 /* ditto with 16-bit run count */
#define DEFLATED_DATA 0x40 /* + 6-bit high len, then low len byte */
#define TOKEN_REL 0x80 /* + 6-bit relative token number */
#define TOKENRUN_REL 0xc0 /* ditto with 16-bit run count */
#define MAX_DATA_COUNT 16383 /* fit 14 bit count into 2 bytes with flags */
/* zlib.h says that if we want to be able to compress something in a single
* call, avail_out must be at least 0.1% larger than avail_in plus 12 bytes.
* We'll add in 0.1%+16, just to be safe (and we'll avoid floating point,
* to ensure that this is a compile-time value). */
#define AVAIL_OUT_SIZE(avail_in_size) ((avail_in_size)*1001/1000+16)
/* For coding runs of tokens */
static int32 last_token = -1;
static int32 run_start;
static int32 last_run_end;
/* Deflation state */
static z_stream tx_strm;
/* Output buffer */
static char *obuf;
/* We want obuf to be able to hold both MAX_DATA_COUNT+2 bytes as well as
* AVAIL_OUT_SIZE(CHUNK_SIZE) bytes, so make sure that it's large enough. */
#if MAX_DATA_COUNT+2 > AVAIL_OUT_SIZE(CHUNK_SIZE)
#define OBUF_SIZE (MAX_DATA_COUNT+2)
#else
#define OBUF_SIZE AVAIL_OUT_SIZE(CHUNK_SIZE)
#endif
/* Send a deflated token */
static void
send_deflated_token(int f, int32 token, struct map_struct *buf, OFF_T offset,
int32 nb, int32 toklen)
{
int32 n, r;
static int init_done, flush_pending;
if (last_token == -1) {
/* initialization */
if (!init_done) {
tx_strm.next_in = NULL;
tx_strm.zalloc = NULL;
tx_strm.zfree = NULL;
if (deflateInit2(&tx_strm, compression_level,
Z_DEFLATED, -15, 8,
Z_DEFAULT_STRATEGY) != Z_OK) {
rprintf(FERROR, "compression init failed\n");
exit_cleanup(RERR_STREAMIO);
}
if ((obuf = new_array(char, OBUF_SIZE)) == NULL)
out_of_memory("send_deflated_token");
init_done = 1;
} else
deflateReset(&tx_strm);
last_run_end = 0;
run_start = token;
flush_pending = 0;
} else if (last_token == -2) {
run_start = token;
} else if (nb != 0 || token != last_token + 1
|| token >= run_start + 65536) {
/* output previous run */
r = run_start - last_run_end;
n = last_token - run_start;
if (r >= 0 && r <= 63) {
write_byte(f, (n==0? TOKEN_REL: TOKENRUN_REL) + r);
} else {
write_byte(f, (n==0? TOKEN_LONG: TOKENRUN_LONG));
write_int(f, run_start);
}
if (n != 0) {
write_byte(f, n);
write_byte(f, n >> 8);
}
last_run_end = last_token;
run_start = token;
}
last_token = token;
if (nb != 0 || flush_pending) {
/* deflate the data starting at offset */
int flush = Z_NO_FLUSH;
tx_strm.avail_in = 0;
tx_strm.avail_out = 0;
do {
if (tx_strm.avail_in == 0 && nb != 0) {
/* give it some more input */
n = MIN(nb, CHUNK_SIZE);
tx_strm.next_in = (Bytef *)
map_ptr(buf, offset, n);
tx_strm.avail_in = n;
nb -= n;
offset += n;
}
if (tx_strm.avail_out == 0) {
tx_strm.next_out = (Bytef *)(obuf + 2);
tx_strm.avail_out = MAX_DATA_COUNT;
if (flush != Z_NO_FLUSH) {
/*
* We left the last 4 bytes in the
* buffer, in case they are the
* last 4. Move them to the front.
*/
memcpy(tx_strm.next_out,
obuf+MAX_DATA_COUNT-2, 4);
tx_strm.next_out += 4;
tx_strm.avail_out -= 4;
}
}
if (nb == 0 && token != -2)
flush = Z_SYNC_FLUSH;
r = deflate(&tx_strm, flush);
if (r != Z_OK) {
rprintf(FERROR, "deflate returned %d\n", r);
exit_cleanup(RERR_STREAMIO);
}
if (nb == 0 || tx_strm.avail_out == 0) {
n = MAX_DATA_COUNT - tx_strm.avail_out;
if (flush != Z_NO_FLUSH) {
/*
* We have to trim off the last 4
* bytes of output when flushing
* (they are just 0, 0, ff, ff).
*/
n -= 4;
}
if (n > 0) {
obuf[0] = DEFLATED_DATA + (n >> 8);
obuf[1] = n;
write_buf(f, obuf, n+2);
}
}
} while (nb != 0 || tx_strm.avail_out == 0);
flush_pending = token == -2;
}
if (token == -1) {
/* end of file - clean up */
write_byte(f, END_FLAG);
} else if (token != -2) {
/* Add the data in the current block to the compressor's
* history and hash table. */
do {
/* Break up long sections in the same way that
* see_deflate_token() does. */
int32 n1 = toklen > 0xffff ? 0xffff : toklen;
toklen -= n1;
tx_strm.next_in = (Bytef *)map_ptr(buf, offset, n1);
tx_strm.avail_in = n1;
tx_strm.next_out = (Bytef *) obuf;
tx_strm.avail_out = AVAIL_OUT_SIZE(CHUNK_SIZE);
r = deflate(&tx_strm, Z_INSERT_ONLY);
if (r != Z_OK || tx_strm.avail_in != 0) {
rprintf(FERROR, "deflate on token returned %d (%d bytes left)\n",
r, tx_strm.avail_in);
exit_cleanup(RERR_STREAMIO);
}
} while (toklen > 0);
}
}
/* tells us what the receiver is in the middle of doing */
static enum { r_init, r_idle, r_running, r_inflating, r_inflated } recv_state;
/* for inflating stuff */
static z_stream rx_strm;
static char *cbuf;
static char *dbuf;
/* for decoding runs of tokens */
static int32 rx_token;
static int32 rx_run;
/* Receive a deflated token and inflate it */
static int32 recv_deflated_token(int f, char **data)
{
static int init_done;
static int32 saved_flag;
int32 n, flag;
int r;
for (;;) {
switch (recv_state) {
case r_init:
if (!init_done) {
rx_strm.next_out = NULL;
rx_strm.zalloc = NULL;
rx_strm.zfree = NULL;
if (inflateInit2(&rx_strm, -15) != Z_OK) {
rprintf(FERROR, "inflate init failed\n");
exit_cleanup(RERR_STREAMIO);
}
if (!(cbuf = new_array(char, MAX_DATA_COUNT))
|| !(dbuf = new_array(char, AVAIL_OUT_SIZE(CHUNK_SIZE))))
out_of_memory("recv_deflated_token");
init_done = 1;
} else {
inflateReset(&rx_strm);
}
recv_state = r_idle;
rx_token = 0;
break;
case r_idle:
case r_inflated:
if (saved_flag) {
flag = saved_flag & 0xff;
saved_flag = 0;
} else
flag = read_byte(f);
if ((flag & 0xC0) == DEFLATED_DATA) {
n = ((flag & 0x3f) << 8) + read_byte(f);
read_buf(f, cbuf, n);
rx_strm.next_in = (Bytef *)cbuf;
rx_strm.avail_in = n;
recv_state = r_inflating;
break;
}
if (recv_state == r_inflated) {
/* check previous inflated stuff ended correctly */
rx_strm.avail_in = 0;
rx_strm.next_out = (Bytef *)dbuf;
rx_strm.avail_out = AVAIL_OUT_SIZE(CHUNK_SIZE);
r = inflate(&rx_strm, Z_SYNC_FLUSH);
n = AVAIL_OUT_SIZE(CHUNK_SIZE) - rx_strm.avail_out;
/*
* Z_BUF_ERROR just means no progress was
* made, i.e. the decompressor didn't have
* any pending output for us.
*/
if (r != Z_OK && r != Z_BUF_ERROR) {
rprintf(FERROR, "inflate flush returned %d (%d bytes)\n",
r, n);
exit_cleanup(RERR_STREAMIO);
}
if (n != 0 && r != Z_BUF_ERROR) {
/* have to return some more data and
save the flag for later. */
saved_flag = flag + 0x10000;
*data = dbuf;
return n;
}
/*
* At this point the decompressor should
* be expecting to see the 0, 0, ff, ff bytes.
*/
if (!inflateSyncPoint(&rx_strm)) {
rprintf(FERROR, "decompressor lost sync!\n");
exit_cleanup(RERR_STREAMIO);
}
rx_strm.avail_in = 4;
rx_strm.next_in = (Bytef *)cbuf;
cbuf[0] = cbuf[1] = 0;
cbuf[2] = cbuf[3] = 0xff;
inflate(&rx_strm, Z_SYNC_FLUSH);
recv_state = r_idle;
}
if (flag == END_FLAG) {
/* that's all folks */
recv_state = r_init;
return 0;
}
/* here we have a token of some kind */
if (flag & TOKEN_REL) {
rx_token += flag & 0x3f;
flag >>= 6;
} else
rx_token = read_int(f);
if (flag & 1) {
rx_run = read_byte(f);
rx_run += read_byte(f) << 8;
recv_state = r_running;
}
return -1 - rx_token;
case r_inflating:
rx_strm.next_out = (Bytef *)dbuf;
rx_strm.avail_out = AVAIL_OUT_SIZE(CHUNK_SIZE);
r = inflate(&rx_strm, Z_NO_FLUSH);
n = AVAIL_OUT_SIZE(CHUNK_SIZE) - rx_strm.avail_out;
if (r != Z_OK) {
rprintf(FERROR, "inflate returned %d (%d bytes)\n", r, n);
exit_cleanup(RERR_STREAMIO);
}
if (rx_strm.avail_in == 0)
recv_state = r_inflated;
if (n != 0) {
*data = dbuf;
return n;
}
break;
case r_running:
++rx_token;
if (--rx_run == 0)
recv_state = r_idle;
return -1 - rx_token;
}
}
}
/*
* put the data corresponding to a token that we've just returned
* from recv_deflated_token into the decompressor's history buffer.
*/
static void see_deflate_token(char *buf, int32 len)
{
int r;
int32 blklen;
unsigned char hdr[5];
rx_strm.avail_in = 0;
blklen = 0;
hdr[0] = 0;
do {
if (rx_strm.avail_in == 0 && len != 0) {
if (blklen == 0) {
/* Give it a fake stored-block header. */
rx_strm.next_in = (Bytef *)hdr;
rx_strm.avail_in = 5;
blklen = len;
if (blklen > 0xffff)
blklen = 0xffff;
hdr[1] = blklen;
hdr[2] = blklen >> 8;
hdr[3] = ~hdr[1];
hdr[4] = ~hdr[2];
} else {
rx_strm.next_in = (Bytef *)buf;
rx_strm.avail_in = blklen;
len -= blklen;
blklen = 0;
}
}
rx_strm.next_out = (Bytef *)dbuf;
rx_strm.avail_out = AVAIL_OUT_SIZE(CHUNK_SIZE);
r = inflate(&rx_strm, Z_SYNC_FLUSH);
if (r != Z_OK) {
rprintf(FERROR, "inflate (token) returned %d\n", r);
exit_cleanup(RERR_STREAMIO);
}
} while (len || rx_strm.avail_out == 0);
}
/**
* Transmit a verbatim buffer of length @p n followed by a token.
* If token == -1 then we have reached EOF
* If n == 0 then don't send a buffer
*/
void send_token(int f, int32 token, struct map_struct *buf, OFF_T offset,
int32 n, int32 toklen)
{
if (!do_compression)
simple_send_token(f, token, buf, offset, n);
else
send_deflated_token(f, token, buf, offset, n, toklen);
}
/*
* receive a token or buffer from the other end. If the reurn value is >0 then
* it is a data buffer of that length, and *data will point at the data.
* if the return value is -i then it represents token i-1
* if the return value is 0 then the end has been reached
*/
int32 recv_token(int f, char **data)
{
int tok;
if (!do_compression) {
tok = simple_recv_token(f,data);
} else {
tok = recv_deflated_token(f, data);
}
return tok;
}
/*
* look at the data corresponding to a token, if necessary
*/
void see_token(char *data, int32 toklen)
{
if (do_compression)
see_deflate_token(data, toklen);
}
|