/* * Block matching used by the file-transfer code. * * Copyright (C) 1996 Andrew Tridgell * Copyright (C) 1996 Paul Mackerras * Copyright (C) 2003-2020 Wayne Davison * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, visit the http://fsf.org website. */ #include "rsync.h" #include "inums.h" extern int checksum_seed; extern int append_mode; extern int xfersum_type; int updating_basis_file; char sender_file_sum[MAX_DIGEST_LEN]; static int false_alarms; static int hash_hits; static int matches; static int64 data_transfer; static int total_false_alarms; static int total_hash_hits; static int total_matches; extern struct stats stats; #define TRADITIONAL_TABLESIZE (1<<16) static uint32 tablesize; static int32 *hash_table; #define SUM2HASH2(s1,s2) (((s1) + (s2)) & 0xFFFF) #define SUM2HASH(sum) SUM2HASH2((sum)&0xFFFF,(sum)>>16) #define BIG_SUM2HASH(sum) ((sum)%tablesize) static void build_hash_table(struct sum_struct *s) { static uint32 alloc_size; int32 i; /* Dynamically calculate the hash table size so that the hash load * for big files is about 80%. A number greater than the traditional * size must be odd or s2 will not be able to span the entire set. */ tablesize = (uint32)(s->count/8) * 10 + 11; if (tablesize < TRADITIONAL_TABLESIZE) tablesize = TRADITIONAL_TABLESIZE; if (tablesize > alloc_size || tablesize < alloc_size - 16*1024) { if (hash_table) free(hash_table); hash_table = new_array(int32, tablesize); if (!hash_table) out_of_memory("build_hash_table"); alloc_size = tablesize; } memset(hash_table, 0xFF, tablesize * sizeof hash_table[0]); if (tablesize == TRADITIONAL_TABLESIZE) { for (i = 0; i < s->count; i++) { uint32 t = SUM2HASH(s->sums[i].sum1); s->sums[i].chain = hash_table[t]; hash_table[t] = i; } } else { for (i = 0; i < s->count; i++) { uint32 t = BIG_SUM2HASH(s->sums[i].sum1); s->sums[i].chain = hash_table[t]; hash_table[t] = i; } } } static OFF_T last_match; /* Transmit a literal and/or match token. * * This delightfully-named function is called either when we find a * match and need to transmit all the unmatched data leading up to it, * or when we get bored of accumulating literal data and just need to * transmit it. As a result of this second case, it is called even if * we have not matched at all! * * If i >= 0, the number of a matched token. If < 0, indicates we have * only literal data. A -1 will send a 0-token-int too, and a -2 sends * only literal data, w/o any token-int. */ static void matched(int f, struct sum_struct *s, struct map_struct *buf, OFF_T offset, int32 i) { int32 n = (int32)(offset - last_match); /* max value: block_size (int32) */ int32 j; if (DEBUG_GTE(DELTASUM, 2) && i >= 0) { rprintf(FINFO, "match at %s last_match=%s j=%d len=%ld n=%ld\n", big_num(offset), big_num(last_match), i, (long)s->sums[i].len, (long)n); } send_token(f, i, buf, last_match, n, i < 0 ? 0 : s->sums[i].len); data_transfer += n; if (i >= 0) { stats.matched_data += s->sums[i].len; n += s->sums[i].len; } for (j = 0; j < n; j += CHUNK_SIZE) { int32 n1 = MIN(CHUNK_SIZE, n - j); sum_update(map_ptr(buf, last_match + j, n1), n1); } if (i >= 0) last_match = offset + s->sums[i].len; else last_match = offset; if (buf && INFO_GTE(PROGRESS, 1)) show_progress(last_match, buf->file_size); } static void hash_search(int f,struct sum_struct *s, struct map_struct *buf, OFF_T len) { OFF_T offset, aligned_offset, end; int32 k, want_i, aligned_i, backup; char sum2[SUM_LENGTH]; uint32 s1, s2, sum; int more; schar *map; /* want_i is used to encourage adjacent matches, allowing the RLL * coding of the output to work more efficiently. */ want_i = 0; if (DEBUG_GTE(DELTASUM, 2)) { rprintf(FINFO, "hash search b=%ld len=%s\n", (long)s->blength, big_num(len)); } k = (int32)MIN(len, (OFF_T)s->blength); map = (schar *)map_ptr(buf, 0, k); sum = get_checksum1((char *)map, k); s1 = sum & 0xFFFF; s2 = sum >> 16; if (DEBUG_GTE(DELTASUM, 3)) rprintf(FINFO, "sum=%.8x k=%ld\n", sum, (long)k); offset = aligned_offset = aligned_i = 0; end = len + 1 - s->sums[s->count-1].len; if (DEBUG_GTE(DELTASUM, 3)) { rprintf(FINFO, "hash search s->blength=%ld len=%s count=%s\n", (long)s->blength, big_num(len), big_num(s->count)); } do { int done_csum2 = 0; uint32 hash_entry; int32 i, *prev; if (DEBUG_GTE(DELTASUM, 4)) { rprintf(FINFO, "offset=%s sum=%04x%04x\n", big_num(offset), s2 & 0xFFFF, s1 & 0xFFFF); } if (tablesize == TRADITIONAL_TABLESIZE) { hash_entry = SUM2HASH2(s1,s2); if ((i = hash_table[hash_entry]) < 0) goto null_hash; sum = (s1 & 0xffff) | (s2 << 16); } else { sum = (s1 & 0xffff) | (s2 << 16); hash_entry = BIG_SUM2HASH(sum); if ((i = hash_table[hash_entry]) < 0) goto null_hash; } prev = &hash_table[hash_entry]; hash_hits++; do { int32 l; /* When updating in-place, the chunk's offset must be * either >= our offset or identical data at that offset. * Remove any bypassed entries that we can never use. */ if (updating_basis_file && s->sums[i].offset < offset && !(s->sums[i].flags & SUMFLG_SAME_OFFSET)) { *prev = s->sums[i].chain; continue; } prev = &s->sums[i].chain; if (sum != s->sums[i].sum1) continue; /* also make sure the two blocks are the same length */ l = (int32)MIN((OFF_T)s->blength, len-offset); if (l != s->sums[i].len) continue; if (DEBUG_GTE(DELTASUM, 3)) { rprintf(FINFO, "potential match at %s i=%ld sum=%08x\n", big_num(offset), (long)i, sum); } if (!done_csum2) { map = (schar *)map_ptr(buf,offset,l); get_checksum2((char *)map,l,sum2); done_csum2 = 1; } if (memcmp(sum2,s->sums[i].sum2,s->s2length) != 0) { false_alarms++; continue; } /* When updating in-place, the best possible match is * one with an identical offset, so we prefer that over * the adjacent want_i optimization. */ if (updating_basis_file) { /* All the generator's chunks start at blength boundaries. */ while (aligned_offset < offset) { aligned_offset += s->blength; aligned_i++; } if ((offset == aligned_offset || (sum == 0 && l == s->blength && aligned_offset + l <= len)) && aligned_i < s->count) { if (i != aligned_i) { if (sum != s->sums[aligned_i].sum1 || l != s->sums[aligned_i].len || memcmp(sum2, s->sums[aligned_i].sum2, s->s2length) != 0) goto check_want_i; i = aligned_i; } if (offset != aligned_offset) { /* We've matched some zeros in a spot that is also zeros * further along in the basis file, if we find zeros ahead * in the sender's file, we'll output enough literal data * to re-align with the basis file, and get back to seeking * instead of writing. */ backup = (int32)(aligned_offset - last_match); if (backup < 0) backup = 0; map = (schar *)map_ptr(buf, aligned_offset - backup, l + backup) + backup; sum = get_checksum1((char *)map, l); if (sum != s->sums[i].sum1) goto check_want_i; get_checksum2((char *)map, l, sum2); if (memcmp(sum2, s->sums[i].sum2, s->s2length) != 0) goto check_want_i; /* OK, we have a re-alignment match. Bump the offset * forward to the new match point. */ offset = aligned_offset; } /* This identical chunk is in the same spot in the old and new file. */ s->sums[i].flags |= SUMFLG_SAME_OFFSET; want_i = i; } } check_want_i: /* we've found a match, but now check to see * if want_i can hint at a better match. */ if (i != want_i && want_i < s->count && (!updating_basis_file || s->sums[want_i].offset >= offset || s->sums[want_i].flags & SUMFLG_SAME_OFFSET) && sum == s->sums[want_i].sum1 && memcmp(sum2, s->sums[want_i].sum2, s->s2length) == 0) { /* we've found an adjacent match - the RLL coder * will be happy */ i = want_i; } want_i = i + 1; matched(f,s,buf,offset,i); offset += s->sums[i].len - 1; k = (int32)MIN((OFF_T)s->blength, len-offset); map = (schar *)map_ptr(buf, offset, k); sum = get_checksum1((char *)map, k); s1 = sum & 0xFFFF; s2 = sum >> 16; matches++; break; } while ((i = s->sums[i].chain) >= 0); null_hash: backup = (int32)(offset - last_match); /* We sometimes read 1 byte prior to last_match... */ if (backup < 0) backup = 0; /* Trim off the first byte from the checksum */ more = offset + k < len; map = (schar *)map_ptr(buf, offset - backup, k + more + backup) + backup; s1 -= map[0] + CHAR_OFFSET; s2 -= k * (map[0]+CHAR_OFFSET); /* Add on the next byte (if there is one) to the checksum */ if (more) { s1 += map[k] + CHAR_OFFSET; s2 += s1; } else --k; /* By matching early we avoid re-reading the data 3 times in the case where a token match comes a long way after last match. The 3 reads are caused by the running match, the checksum update and the literal send. */ if (backup >= s->blength+CHUNK_SIZE && end-offset > CHUNK_SIZE) matched(f, s, buf, offset - s->blength, -2); } while (++offset < end); matched(f, s, buf, len, -1); map_ptr(buf, len-1, 1); } /** * Scan through a origin file, looking for sections that match * checksums from the generator, and transmit either literal or token * data. * * Also calculates the MD4 checksum of the whole file, using the md * accumulator. This is transmitted with the file as protection * against corruption on the wire. * * @param s Checksums received from the generator. If s->count == * 0, then there are actually no checksums for this file. * * @param len Length of the file to send. **/ void match_sums(int f, struct sum_struct *s, struct map_struct *buf, OFF_T len) { int sum_len; last_match = 0; false_alarms = 0; hash_hits = 0; matches = 0; data_transfer = 0; sum_init(xfersum_type, checksum_seed); if (append_mode > 0) { if (append_mode == 2) { OFF_T j = 0; for (j = CHUNK_SIZE; j < s->flength; j += CHUNK_SIZE) { if (buf && INFO_GTE(PROGRESS, 1)) show_progress(last_match, buf->file_size); sum_update(map_ptr(buf, last_match, CHUNK_SIZE), CHUNK_SIZE); last_match = j; } if (last_match < s->flength) { int32 n = (int32)(s->flength - last_match); if (buf && INFO_GTE(PROGRESS, 1)) show_progress(last_match, buf->file_size); sum_update(map_ptr(buf, last_match, n), n); } } last_match = s->flength; s->count = 0; } if (len > 0 && s->count > 0) { build_hash_table(s); if (DEBUG_GTE(DELTASUM, 2)) rprintf(FINFO,"built hash table\n"); hash_search(f, s, buf, len); if (DEBUG_GTE(DELTASUM, 2)) rprintf(FINFO,"done hash search\n"); } else { OFF_T j; /* by doing this in pieces we avoid too many seeks */ for (j = last_match + CHUNK_SIZE; j < len; j += CHUNK_SIZE) matched(f, s, buf, j, -2); matched(f, s, buf, len, -1); } sum_len = sum_end(sender_file_sum); /* If we had a read error, send a bad checksum. We use all bits * off as long as the checksum doesn't happen to be that, in * which case we turn the last 0 bit into a 1. */ if (buf && buf->status != 0) { int i; for (i = 0; i < sum_len && sender_file_sum[i] == 0; i++) {} memset(sender_file_sum, 0, sum_len); if (i == sum_len) sender_file_sum[i-1]++; } if (DEBUG_GTE(DELTASUM, 2)) rprintf(FINFO,"sending file_sum\n"); write_buf(f, sender_file_sum, sum_len); if (DEBUG_GTE(DELTASUM, 2)) { rprintf(FINFO, "false_alarms=%d hash_hits=%d matches=%d\n", false_alarms, hash_hits, matches); } total_hash_hits += hash_hits; total_false_alarms += false_alarms; total_matches += matches; stats.literal_data += data_transfer; } void match_report(void) { if (!DEBUG_GTE(DELTASUM, 1)) return; rprintf(FINFO, "total: matches=%d hash_hits=%d false_alarms=%d data=%s\n", total_matches, total_hash_hits, total_false_alarms, big_num(stats.literal_data)); }