1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
// Copyright 2009 The RE2 Authors. All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "util/util.h"
#include "util/flags.h"
#include "util/benchmark.h"
#include "re2/re2.h"
DEFINE_string(test_tmpdir, "/var/tmp", "temp directory");
using testing::Benchmark;
using namespace re2;
static Benchmark* benchmarks[10000];
static int nbenchmarks;
void Benchmark::Register() {
benchmarks[nbenchmarks] = this;
if(lo < 1)
lo = 1;
if(hi < lo)
hi = lo;
nbenchmarks++;
}
static int64 nsec() {
#if defined(__APPLE__)
struct timeval tv;
if(gettimeofday(&tv, 0) < 0)
return -1;
return (int64)tv.tv_sec*1000*1000*1000 + tv.tv_usec*1000;
#elif defined(_WIN32)
// https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408.aspx
// describes how to query ticks and convert to microseconds. Of course,
// what we want in this case are nanoseconds. Also, note that .QuadPart
// is a signed 64-bit integer, so casting to int64 shouldn't be needed.
LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq);
LARGE_INTEGER ticks;
QueryPerformanceCounter(&ticks);
ticks.QuadPart *= 1000*1000*1000;
ticks.QuadPart /= freq.QuadPart;
return ticks.QuadPart;
#else
struct timespec tp;
#ifdef CLOCK_PROCESS_CPUTIME_ID
if(clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &tp) < 0)
#else
if(clock_gettime(CLOCK_REALTIME, &tp) < 0)
#endif
return -1;
return (int64)tp.tv_sec*1000*1000*1000 + tp.tv_nsec;
#endif
}
static int64 bytes;
static int64 ns;
static int64 t0;
static int64 items;
void SetBenchmarkBytesProcessed(long long x) {
bytes = x;
}
void StopBenchmarkTiming() {
if(t0 != 0)
ns += nsec() - t0;
t0 = 0;
}
void StartBenchmarkTiming() {
if(t0 == 0)
t0 = nsec();
}
void SetBenchmarkItemsProcessed(int n) {
items = n;
}
void BenchmarkMemoryUsage() {
// TODO(rsc): Implement.
}
int NumCPUs() {
return 1;
}
static void runN(Benchmark *b, int n, int siz) {
bytes = 0;
items = 0;
ns = 0;
t0 = nsec();
if(b->fn)
b->fn(n);
else if(b->fnr)
b->fnr(n, siz);
else {
fprintf(stderr, "%s: missing function\n", b->name);
exit(2);
}
if(t0 != 0)
ns += nsec() - t0;
}
static int round(int n) {
int base = 1;
while(base*10 < n)
base *= 10;
if(n < 2*base)
return 2*base;
if(n < 5*base)
return 5*base;
return 10*base;
}
void RunBench(Benchmark* b, int nthread, int siz) {
int n, last;
// TODO(rsc): Threaded benchmarks.
if(nthread != 1)
return;
// run once in case it's expensive
n = 1;
runN(b, n, siz);
while(ns < (int)1e9 && n < (int)1e9) {
last = n;
if(ns/n == 0)
n = (int)1e9;
else
n = (int)1e9 / static_cast<int>(ns/n);
n = max(last+1, min(n+n/2, 100*last));
n = round(n);
runN(b, n, siz);
}
char mb[100];
char suf[100];
mb[0] = '\0';
suf[0] = '\0';
if(ns > 0 && bytes > 0)
snprintf(mb, sizeof mb, "\t%7.2f MB/s", ((double)bytes/1e6)/((double)ns/1e9));
if(b->fnr || b->lo != b->hi) {
if(siz >= (1<<20))
snprintf(suf, sizeof suf, "/%dM", siz/(1<<20));
else if(siz >= (1<<10))
snprintf(suf, sizeof suf, "/%dK", siz/(1<<10));
else
snprintf(suf, sizeof suf, "/%d", siz);
}
printf("%s%s\t%8lld\t%10lld ns/op%s\n", b->name, suf, (long long)n, (long long)ns/n, mb);
fflush(stdout);
}
static int match(const char* name, int argc, const char** argv) {
if(argc == 1)
return 1;
for(int i = 1; i < argc; i++)
if(RE2::PartialMatch(name, argv[i]))
return 1;
return 0;
}
int main(int argc, const char** argv) {
for(int i = 0; i < nbenchmarks; i++) {
Benchmark* b = benchmarks[i];
if(match(b->name, argc, argv))
for(int j = b->threadlo; j <= b->threadhi; j++)
for(int k = max(b->lo, 1); k <= max(b->hi, 1); k<<=1)
RunBench(b, j, k);
}
}
|