summaryrefslogtreecommitdiff
path: root/aapl/avlcommon.h
blob: 06983bc65812fdcea8f6b59d5b6afc94808b5117 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
/*
 *  Copyright 2001 Adrian Thurston <thurston@complang.org>
 */

/*  This file is part of Aapl.
 *
 *  Aapl is free software; you can redistribute it and/or modify it under the
 *  terms of the GNU Lesser General Public License as published by the Free
 *  Software Foundation; either version 2.1 of the License, or (at your option)
 *  any later version.
 *
 *  Aapl is distributed in the hope that it will be useful, but WITHOUT ANY
 *  WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 *  FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for
 *  more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with Aapl; if not, write to the Free Software Foundation, Inc., 59
 *  Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

/* This header is not wrapped in ifndef becuase it is not intended to
 * be included by the user. */

#include <assert.h>

#ifdef AAPL_NAMESPACE
namespace Aapl {
#endif

#ifdef WALKABLE
/* This is used by AvlTree, AvlMel and AvlMelKey so it
 * must be protected by global ifdefs. */
#ifndef __AAPL_AVLI_EL__
#define __AAPL_AVLI_EL__

/**
 * \brief Tree element properties for linked AVL trees.
 *
 * AvliTreeEl needs to be inherited by classes that intend to be element in an
 * AvliTree. 
 */
template<class SubClassEl> struct AvliTreeEl 
{
	/**
	 * \brief Tree pointers connecting element in a tree.
	 */
	SubClassEl *left, *right, *parent;

	/**
	 * \brief Linked list pointers.
	 */
	SubClassEl *prev, *next;

	/**
	 * \brief Height of the tree rooted at this element.
	 *
	 * Height is required by the AVL balancing algorithm.
	 */
	long height;
};
#endif /* __AAPL_AVLI_EL__ */

#else /* not WALKABLE */

/* This is used by All the non walkable trees so it must be
 * protected by a global ifdef. */
#ifndef __AAPL_AVL_EL__
#define __AAPL_AVL_EL__
/**
 * \brief Tree element properties for linked AVL trees.
 *
 * AvlTreeEl needs to be inherited by classes that intend to be element in an
 * AvlTree. 
 */
template<class SubClassEl> struct AvlTreeEl
{
	/**
	 * \brief Tree pointers connecting element in a tree.
	 */
	SubClassEl *left, *right, *parent;

	/**
	 * \brief Height of the tree rooted at this element.
	 *
	 * Height is required by the AVL balancing algorithm.
	 */
	long height;
};
#endif /* __AAPL_AVL_EL__ */
#endif /* def WALKABLE */


#if defined( AVLTREE_MAP )

#ifdef WALKABLE

/**
 * \brief Tree element for AvliMap
 *
 * Stores the key and value pair.
 */
template <class Key, class Value> struct AvliMapEl :
		public AvliTreeEl< AvliMapEl<Key, Value> >
{
	AvliMapEl(const Key &key) 
		: key(key) { }
	AvliMapEl(const Key &key, const Value &value) 
		: key(key), value(value) { }

	const Key &getKey() const { return key; }

	/** \brief The key. */
	Key key;

	/** \brief The value. */
	Value value;
};
#else /* not WALKABLE */

/**
 * \brief Tree element for AvlMap
 *
 * Stores the key and value pair.
 */
template <class Key, class Value> struct AvlMapEl :
		public AvlTreeEl< AvlMapEl<Key, Value> >
{
	AvlMapEl(const Key &key) 
		: key(key) { }
	AvlMapEl(const Key &key, const Value &value) 
		: key(key), value(value) { }

	const Key &getKey() const { return key; }

	/** \brief The key. */
	Key key;

	/** \brief The value. */
	Value value;
};
#endif /* def WALKABLE */

#elif defined( AVLTREE_SET )

#ifdef WALKABLE
/**
 * \brief Tree element for AvliSet
 *
 * Stores the key.
 */
template <class Key> struct AvliSetEl :
		public AvliTreeEl< AvliSetEl<Key> >
{
	AvliSetEl(const Key &key) : key(key) { }

	const Key &getKey() const { return key; }

	/** \brief The key. */
	Key key;
};
#else /* not WALKABLE */
/**
 * \brief Tree element for AvlSet
 *
 * Stores the key.
 */
template <class Key> struct AvlSetEl :
		public AvlTreeEl< AvlSetEl<Key> >
{
	AvlSetEl(const Key &key) : key(key) { }

	const Key &getKey() const { return key; }

	/** \brief The key. */
	Key key;
};
#endif /* def WALKABLE */

#endif /* AVLTREE_SET */

/* Common AvlTree Class */
template < AVLMEL_CLASSDEF > class AvlTree
#if !defined( AVL_KEYLESS ) && defined ( WALKABLE )
		: public Compare, public BASELIST
#elif !defined( AVL_KEYLESS )
		: public Compare
#elif defined( WALKABLE )
		: public BASELIST
#endif
{
public:
	/**
	 * \brief Create an empty tree.
	 */
#ifdef WALKABLE
	AvlTree() : root(0), treeSize(0) { }
#else
	AvlTree() : root(0), head(0), tail(0), treeSize(0) { }
#endif

	/** 
	 * \brief Perform a deep copy of the tree. 
	 *
	 * Each element is duplicated for the new tree. Copy constructors are used
	 * to create the new elements.
	 */
	AvlTree(const AvlTree &other);

#if defined( AVLTREE_MAP ) || defined( AVLTREE_SET )
	/**
	 * \brief Clear the contents of the tree.
	 *
	 * All element are deleted.
	 */
	~AvlTree() { empty(); }

	/** 
	 * \brief Perform a deep copy of the tree. 
	 *
	 * Each element is duplicated for the new tree. Copy constructors are used
	 * to create the new element. If this tree contains items, they are first
	 * deleted.
	 *
	 * \returns A reference to this.
	 */
	AvlTree &operator=( const AvlTree &tree );

	/**
	 * \brief Transfer the elements of another tree into this.
	 *
	 * First deletes all elements in this tree.
	 */
	void transfer( AvlTree &tree );
#else
	/**
	 * \brief Abandon all elements in the tree. 
	 *
	 * Tree elements are not deleted.
	 */
	~AvlTree() {}

	/**
	 * \brief Perform a deep copy of the tree.
	 *
	 * Each element is duplicated for the new tree. Copy constructors are used
	 * to create the new element. If this tree contains items, they are
	 * abandoned.
	 *
	 * \returns A reference to this.
	 */
	AvlTree &operator=( const AvlTree &tree );

	/**
	 * \brief Transfer the elements of another tree into this.
	 *
	 * All elements in this tree are abandoned first.
	 */
	void transfer( AvlTree &tree );
#endif

#ifndef AVL_KEYLESS
	/* Insert a element into the tree. */
	Element *insert( Element *element, Element **lastFound = 0 );

#ifdef AVL_BASIC
	/* Find a element in the tree. Returns the element if 
	 * element exists, false otherwise. */
	Element *find( const Element *element ) const;

#else
	Element *insert( const Key &key, Element **lastFound = 0 );

#ifdef AVLTREE_MAP
	Element *insert( const Key &key, const Value &val,
			Element **lastFound = 0 );
#endif

	/* Find a element in the tree. Returns the element if 
	 * key exists, false otherwise. */
	Element *find( const Key &key ) const;

	/* Detach a element from the tree. */
	Element *detach( const Key &key );

	/* Detach and delete a element from the tree. */
	bool remove( const Key &key );
#endif /* AVL_BASIC */
#endif /* AVL_KEYLESS */

	/* Detach a element from the tree. */
	Element *detach( Element *element );

	/* Detach and delete a element from the tree. */
	void remove( Element *element );

	/* Free all memory used by tree. */
	void empty();

	/* Abandon all element in the tree. Does not delete element. */
	void abandon();

	/** Root element of the tree. */
	Element *root;

#ifndef WALKABLE
	Element *head, *tail;
#endif

	/** The number of element in the tree. */
	long treeSize;

	/** \brief Return the number of elements in the tree. */
	long length() const         { return treeSize; }

	/** \brief Return the number of elements in the tree. */
	long size() const           { return treeSize; }

	/* Various classes for setting the iterator */
	struct Iter;
	struct IterFirst { IterFirst( const AvlTree &t ) : t(t) { } const AvlTree &t; };
	struct IterLast { IterLast( const AvlTree &t ) : t(t) { } const AvlTree &t; };
	struct IterNext { IterNext( const Iter &i ) : i(i) { } const Iter &i; };
	struct IterPrev { IterPrev( const Iter &i ) : i(i) { } const Iter &i; };

#ifdef WALKABLE
	/** 
	 * \brief Avl Tree Iterator. 
	 * \ingroup iterators
	 */
	struct Iter
	{
		/* Default construct. */
		Iter() : ptr(0) { }

		/* Construct from an avl tree and iterator-setting classes. */
		Iter( const AvlTree &t ) : ptr(t.head) { }
		Iter( const IterFirst &af ) : ptr(af.t.head) { }
		Iter( const IterLast &al ) : ptr(al.t.tail) { }
		Iter( const IterNext &an ) : ptr(findNext(an.i.ptr)) { }
		Iter( const IterPrev &ap ) : ptr(findPrev(ap.i.ptr)) { }
		
		/* Assign from a tree and iterator-setting classes. */
		Iter &operator=( const AvlTree &tree ) { ptr = tree.head; return *this; }
		Iter &operator=( const IterFirst &af ) { ptr = af.t.head; return *this; }
		Iter &operator=( const IterLast &al )  { ptr = al.t.tail; return *this; }
		Iter &operator=( const IterNext &an )  { ptr = findNext(an.i.ptr); return *this; }
		Iter &operator=( const IterPrev &ap )  { ptr = findPrev(ap.i.ptr); return *this; }

		/** \brief Less than end? */
		bool lte() const { return ptr != 0; }

		/** \brief At end? */
		bool end() const { return ptr == 0; }

		/** \brief Greater than beginning? */
		bool gtb() const { return ptr != 0; }

		/** \brief At beginning? */
		bool beg() const { return ptr == 0; }

		/** \brief At first element? */
		bool first() const { return ptr && ptr->BASE_EL(prev) == 0; }

		/** \brief At last element? */
		bool last() const { return ptr && ptr->BASE_EL(next) == 0; }

		/** \brief Implicit cast to Element*. */
		operator Element*() const      { return ptr; }

		/** \brief Dereference operator returns Element&. */
		Element &operator *() const    { return *ptr; }

		/** \brief Arrow operator returns Element*. */
		Element *operator->() const    { return ptr; }

		/** \brief Move to next item. */
		inline Element *operator++();

		/** \brief Move to next item. */
		inline Element *operator++(int);

		/** \brief Move to next item. */
		inline Element *increment();

		/** \brief Move to previous item. */
		inline Element *operator--();

		/** \brief Move to previous item. */
		inline Element *operator--(int);

		/** \brief Move to previous item. */
		inline Element *decrement();

		/** \brief Return the next item. Does not modify this. */
		IterNext next() const { return IterNext( *this ); }

		/** \brief Return the previous item. Does not modify this. */
		IterPrev prev() const { return IterPrev( *this ); }

	private:
		static Element *findPrev( Element *element ) { return element->BASE_EL(prev); }
		static Element *findNext( Element *element ) { return element->BASE_EL(next); }

	public:

		/** \brief The iterator is simply a pointer. */
		Element *ptr;
	};

#else

	/**
	 * \brief Avl Tree Iterator.
	 * \ingroup iterators
	 */
	struct Iter
	{
		/* Default construct. */
		Iter() : ptr(0), tree(0) { }

		/* Construct from a tree and iterator-setting classes. */
		Iter( const AvlTree &t ) : ptr(t.head), tree(&t) { }
		Iter( const IterFirst &af ) : ptr(af.t.head), tree(&af.t) { }
		Iter( const IterLast &al ) : ptr(al.t.tail), tree(&al.t) { }
		Iter( const IterNext &an ) : ptr(findNext(an.i.ptr)), tree(an.i.tree) { }
		Iter( const IterPrev &ap ) : ptr(findPrev(ap.i.ptr)), tree(ap.i.tree) { }
		
		/* Assign from a tree and iterator-setting classes. */
		Iter &operator=( const AvlTree &t )    
				{ ptr = t.head; tree = &t; return *this; }
		Iter &operator=( const IterFirst &af ) 
				{ ptr = af.t.head; tree = &af.t; return *this; }
		Iter &operator=( const IterLast &al )  
				{ ptr = al.t.tail; tree = &al.t; return *this; }
		Iter &operator=( const IterNext &an )  
				{ ptr = findNext(an.i.ptr); tree = an.i.tree; return *this; }
		Iter &operator=( const IterPrev &ap )  
				{ ptr = findPrev(ap.i.ptr); tree = ap.i.tree; return *this; }

		/** \brief Less than end? */
		bool lte() const { return ptr != 0; }

		/** \brief At end? */
		bool end() const { return ptr == 0; }

		/** \brief Greater than beginning? */
		bool gtb() const { return ptr != 0; }

		/** \brief At beginning? */
		bool beg() const { return ptr == 0; }

		/** \brief At first element? */
		bool first() const { return ptr && ptr == tree->head; }

		/** \brief At last element? */
		bool last() const { return ptr && ptr == tree->tail; }

		/** \brief Implicit cast to Element*. */
		operator Element*() const      { return ptr; }

		/** \brief Dereference operator returns Element&. */
		Element &operator *() const    { return *ptr; }

		/** \brief Arrow operator returns Element*. */
		Element *operator->() const    { return ptr; }

		/** \brief Move to next item. */
		inline Element *operator++();

		/** \brief Move to next item. */
		inline Element *operator++(int);

		/** \brief Move to next item. */
		inline Element *increment();

		/** \brief Move to previous item. */
		inline Element *operator--();

		/** \brief Move to previous item. */
		inline Element *operator--(int);

		/** \brief Move to previous item. */
		inline Element *decrement();

		/** \brief Return the next item. Does not modify this. */
		IterNext next() const { return IterNext( *this ); }

		/** \brief Return the previous item. Does not modify this. */
		IterPrev prev() const { return IterPrev( *this ); }

	private:
		static Element *findPrev( Element *element );
		static Element *findNext( Element *element );

	public:
		/** \brief The iterator is simply a pointer. */
		Element *ptr;

		/* The list is not walkable so we need to keep a pointerto the tree
		 * so we can test against head and tail in O(1) time. */
		const AvlTree *tree;
	};
#endif

	/** \brief Return first element. */
	IterFirst first()  { return IterFirst( *this ); }

	/** \brief Return last element. */
	IterLast last()    { return IterLast( *this ); }

protected:
	/* Recursive worker for the copy constructor. */
	Element *copyBranch( Element *element );

	/* Recursively delete element in the tree. */
	void deleteChildrenOf(Element *n);

	/* rebalance the tree beginning at the leaf whose 
	 * grandparent is unbalanced. */
	Element *rebalance(Element *start);

	/* Move up the tree from a given element, recalculating the heights. */
	void recalcHeights(Element *start);

	/* Move up the tree and find the first element whose 
	 * grand-parent is unbalanced. */
	Element *findFirstUnbalGP(Element *start);

	/* Move up the tree and find the first element which is unbalanced. */
	Element *findFirstUnbalEl(Element *start);

	/* Replace a element in the tree with another element not in the tree. */
	void replaceEl(Element *element, Element *replacement);

	/* Remove a element from the tree and put another (normally a child of element)
	 * in its place. */
	void removeEl(Element *element, Element *filler);

	/* Once an insertion point is found at a leaf then do the insert. */
	void attachRebal( Element *element, Element *parentEl, Element *lastLess );
};

/* Copy constructor. New up each item. */
template <AVLMEL_TEMPDEF> AvlTree<AVLMEL_TEMPUSE>::
		AvlTree(const AvlTree<AVLMEL_TEMPUSE> &other)
#ifdef WALKABLE
:
	/* Make an empty list, copyBranch will fill in the details for us. */
	BASELIST()
#endif
{
	treeSize = other.treeSize;
	root = other.root;

#ifndef WALKABLE
	head = 0;
	tail = 0;
#endif

	/* If there is a root, copy the tree. */
	if ( other.root != 0 )
		root = copyBranch( other.root );
}

#if defined( AVLTREE_MAP ) || defined( AVLTREE_SET )

/* Assignment does deep copy. */
template <AVLMEL_TEMPDEF> AvlTree<AVLMEL_TEMPUSE> &AvlTree<AVLMEL_TEMPUSE>::
	operator=( const AvlTree &other )
{
	/* Clear the tree first. */
	empty();

	/* Reset the list pointers, the tree copy will fill in the list for us. */
#ifdef WALKABLE
	BASELIST::abandon();
#else
	head = 0;
	tail = 0;
#endif

	/* Copy the entire tree. */
	treeSize = other.treeSize;
	root = other.root;
	if ( other.root != 0 )
		root = copyBranch( other.root );
	return *this;
}

template <AVLMEL_TEMPDEF> void AvlTree<AVLMEL_TEMPUSE>::
		transfer(AvlTree<AVLMEL_TEMPUSE> &other)
{
	/* Clear the tree first. */
	empty();

	treeSize = other.treeSize;
	root = other.root;

#ifdef WALKABLE
	BASELIST::head = other.BASELIST::head;
	BASELIST::tail = other.BASELIST::tail;
	BASELIST::listLen = other.BASELIST::listLen;
#else
	head = other.head;
	tail = other.tail;
#endif

	other.abandon();
}

#else /* ! AVLTREE_MAP && ! AVLTREE_SET */

/* Assignment does deep copy. This version does not clear the tree first. */
template <AVLMEL_TEMPDEF> AvlTree<AVLMEL_TEMPUSE> &AvlTree<AVLMEL_TEMPUSE>::
	operator=( const AvlTree &other )
{
	/* Reset the list pointers, the tree copy will fill in the list for us. */
#ifdef WALKABLE
	BASELIST::abandon();
#else
	head = 0;
	tail = 0;
#endif

	/* Copy the entire tree. */
	treeSize = other.treeSize;
	root = other.root;
	if ( other.root != 0 )
		root = copyBranch( other.root );
	return *this;
}

template <AVLMEL_TEMPDEF> void AvlTree<AVLMEL_TEMPUSE>::
		transfer(AvlTree<AVLMEL_TEMPUSE> &other)
{
	treeSize = other.treeSize;
	root = other.root;

#ifdef WALKABLE
	BASELIST::head = other.BASELIST::head;
	BASELIST::tail = other.BASELIST::tail;
	BASELIST::listLen = other.BASELIST::listLen;
#else
	head = other.head;
	tail = other.tail;
#endif

	other.abandon();
}

#endif

/*
 * Iterator operators.
 */

/* Prefix ++ */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::Iter::
		operator++()       
{
	return ptr = findNext( ptr );
}

/* Postfix ++ */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::Iter::
		operator++(int)       
{
	Element *rtn = ptr; 
	ptr = findNext( ptr );
	return rtn;
}

/* increment */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::Iter::
		increment()
{
	return ptr = findNext( ptr );
}

/* Prefix -- */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::Iter::
		operator--()       
{
	return ptr = findPrev( ptr );
}

/* Postfix -- */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::Iter::
		operator--(int)       
{
	Element *rtn = ptr;
	ptr = findPrev( ptr );
	return rtn;
}

/* decrement */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::Iter::
		decrement()
{
	return ptr = findPrev( ptr );
}

#ifndef WALKABLE

/* Move ahead one. */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::Iter::
		findNext( Element *element )
{
	/* Try to go right once then infinite left. */
	if ( element->BASE_EL(right) != 0 ) {
		element = element->BASE_EL(right);
		while ( element->BASE_EL(left) != 0 )
			element = element->BASE_EL(left);
	}
	else {
		/* Go up to parent until we were just a left child. */
		while ( true ) {
			Element *last = element;
			element = element->BASE_EL(parent);
			if ( element == 0 || element->BASE_EL(left) == last )
				break;
		}
	}
	return element;
}

/* Move back one. */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::Iter::
		findPrev( Element *element )
{
	/* Try to go left once then infinite right. */
	if ( element->BASE_EL(left) != 0 ) {
		element = element->BASE_EL(left);
		while ( element->BASE_EL(right) != 0 )
			element = element->BASE_EL(right);
	}
	else {
		/* Go up to parent until we were just a left child. */
		while ( true ) {
			Element *last = element;
			element = element->BASE_EL(parent);
			if ( element == 0 || element->BASE_EL(right) == last )
				break;
		}
	}
	return element;
}

#endif


/* Recursive worker for tree copying. */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::
		copyBranch( Element *element )
{
	/* Duplicate element. Either the base element's copy constructor or defaul
	 * constructor will get called. Both will suffice for initting the
	 * pointers to null when they need to be. */
	Element *retVal = new Element(*element);

	/* If the left tree is there, copy it. */
	if ( retVal->BASE_EL(left) ) {
		retVal->BASE_EL(left) = copyBranch(retVal->BASE_EL(left));
		retVal->BASE_EL(left)->BASE_EL(parent) = retVal;
	}

#ifdef WALKABLE
	BASELIST::addAfter( BASELIST::tail, retVal );
#else
	if ( head == 0 )
		head = retVal;
	tail = retVal;
#endif

	/* If the right tree is there, copy it. */
	if ( retVal->BASE_EL(right) ) {
		retVal->BASE_EL(right) = copyBranch(retVal->BASE_EL(right));
		retVal->BASE_EL(right)->BASE_EL(parent) = retVal;
	}
	return retVal;
}

/* Once an insertion position is found, attach a element to the tree. */
template <AVLMEL_TEMPDEF> void AvlTree<AVLMEL_TEMPUSE>::
		attachRebal( Element *element, Element *parentEl, Element *lastLess )
{
	/* Increment the number of element in the tree. */
	treeSize += 1;

	/* Set element's parent. */
	element->BASE_EL(parent) = parentEl;

	/* New element always starts as a leaf with height 1. */
	element->BASE_EL(left) = 0;
	element->BASE_EL(right) = 0;
	element->BASE_EL(height) = 1;

	/* Are we inserting in the tree somewhere? */
	if ( parentEl != 0 ) {
		/* We have a parent so we are somewhere in the tree. If the parent
		 * equals lastLess, then the last traversal in the insertion went
		 * left, otherwise it went right. */
		if ( lastLess == parentEl ) {
			parentEl->BASE_EL(left) = element;
#ifdef WALKABLE
			BASELIST::addBefore( parentEl, element );
#endif
		}
		else {
			parentEl->BASE_EL(right) = element;
#ifdef WALKABLE
			BASELIST::addAfter( parentEl, element );
#endif
		}

#ifndef WALKABLE
		/* Maintain the first and last pointers. */
		if ( head->BASE_EL(left) == element )
			head = element;

		/* Maintain the first and last pointers. */
		if ( tail->BASE_EL(right) == element )
			tail = element;
#endif
	}
	else {
		/* No parent element so we are inserting the root. */
		root = element;
#ifdef WALKABLE
		BASELIST::addAfter( BASELIST::tail, element );
#else
		head = tail = element;
#endif
	}


	/* Recalculate the heights. */
	recalcHeights(parentEl);

	/* Find the first unbalance. */
	Element *ub = findFirstUnbalGP(element);

	/* rebalance. */
	if ( ub != 0 )
	{
		/* We assert that after this single rotation the 
		 * tree is now properly balanced. */
		rebalance(ub);
	}
}

#ifndef AVL_KEYLESS

/**
 * \brief Insert an existing element into the tree. 
 *
 * If the insert succeeds and lastFound is given then it is set to the element
 * inserted. If the insert fails then lastFound is set to the existing element in
 * the tree that has the same key as element. If the element's avl pointers are
 * already in use then undefined behaviour results.
 * 
 * \returns The element inserted upon success, null upon failure.
 */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::
		insert( Element *element, Element **lastFound )
{
	long keyRelation;
	Element *curEl = root, *parentEl = 0;
	Element *lastLess = 0;

	while (true) {
		if ( curEl == 0 ) {
			/* We are at an external element and did not find the key we were
			 * looking for. Attach underneath the leaf and rebalance. */
			attachRebal( element, parentEl, lastLess );

			if ( lastFound != 0 )
				*lastFound = element;
			return element;
		}

#ifdef AVL_BASIC
		keyRelation = compare( *element, *curEl );
#else
		keyRelation = compare( element->BASEKEY(getKey()), 
				curEl->BASEKEY(getKey()) );
#endif

		/* Do we go left? */
		if ( keyRelation < 0 ) {
			parentEl = lastLess = curEl;
			curEl = curEl->BASE_EL(left);
		}
		/* Do we go right? */
		else if ( keyRelation > 0 ) {
			parentEl = curEl;
			curEl = curEl->BASE_EL(right);
		}
		/* We have hit the target. */
		else {
			if ( lastFound != 0 )
				*lastFound = curEl;
			return 0;
		}
	}
}

#ifdef AVL_BASIC

/**
 * \brief Find a element in the tree with the given key.
 *
 * \returns The element if key exists, null if the key does not exist.
 */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::
		find( const Element *element ) const
{
	Element *curEl = root;
	long keyRelation;

	while (curEl) {
		keyRelation = compare( *element, *curEl );

		/* Do we go left? */
		if ( keyRelation < 0 )
			curEl = curEl->BASE_EL(left);
		/* Do we go right? */
		else if ( keyRelation > 0 )
			curEl = curEl->BASE_EL(right);
		/* We have hit the target. */
		else {
			return curEl;
		}
	}
	return 0;
}

#else

/**
 * \brief Insert a new element into the tree with given key.
 *
 * If the key is not already in the tree then a new element is made using the
 * Element(const Key &key) constructor and the insert succeeds. If lastFound is
 * given then it is set to the element inserted. If the insert fails then
 * lastFound is set to the existing element in the tree that has the same key as
 * element.
 * 
 * \returns The new element upon success, null upon failure.
 */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::
		insert( const Key &key, Element **lastFound )
{
	long keyRelation;
	Element *curEl = root, *parentEl = 0;
	Element *lastLess = 0;

	while (true) {
		if ( curEl == 0 ) {
			/* We are at an external element and did not find the key we were
			 * looking for. Create the new element, attach it underneath the leaf
			 * and rebalance. */
			Element *element = new Element( key );
			attachRebal( element, parentEl, lastLess );

			if ( lastFound != 0 )
				*lastFound = element;
			return element;
		}

		keyRelation = compare( key, curEl->BASEKEY(getKey()) );

		/* Do we go left? */
		if ( keyRelation < 0 ) {
			parentEl = lastLess = curEl;
			curEl = curEl->BASE_EL(left);
		}
		/* Do we go right? */
		else if ( keyRelation > 0 ) {
			parentEl = curEl;
			curEl = curEl->BASE_EL(right);
		}
		/* We have hit the target. */
		else {
			if ( lastFound != 0 )
				*lastFound = curEl;
			return 0;
		}
	}
}

#ifdef AVLTREE_MAP
/**
 * \brief Insert a new element into the tree with key and value. 
 *
 * If the key is not already in the tree then a new element is constructed and
 * the insert succeeds. If lastFound is given then it is set to the element
 * inserted. If the insert fails then lastFound is set to the existing element in
 * the tree that has the same key as element. This insert routine is only
 * available in AvlMap because it is the only class that knows about a Value
 * type.
 * 
 * \returns The new element upon success, null upon failure.
 */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::
		insert( const Key &key, const Value &val, Element **lastFound )
{
	long keyRelation;
	Element *curEl = root, *parentEl = 0;
	Element *lastLess = 0;

	while (true) {
		if ( curEl == 0 ) {
			/* We are at an external element and did not find the key we were
			 * looking for. Create the new element, attach it underneath the leaf
			 * and rebalance. */
			Element *element = new Element( key, val );
			attachRebal( element, parentEl, lastLess );

			if ( lastFound != 0 )
				*lastFound = element;
			return element;
		}

		keyRelation = compare(key, curEl->getKey());

		/* Do we go left? */
		if ( keyRelation < 0 ) {
			parentEl = lastLess = curEl;
			curEl = curEl->BASE_EL(left);
		}
		/* Do we go right? */
		else if ( keyRelation > 0 ) {
			parentEl = curEl;
			curEl = curEl->BASE_EL(right);
		}
		/* We have hit the target. */
		else {
			if ( lastFound != 0 )
				*lastFound = curEl;
			return 0;
		}
	}
}
#endif /* AVLTREE_MAP */


/**
 * \brief Find a element in the tree with the given key.
 *
 * \returns The element if key exists, null if the key does not exist.
 */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::
		find( const Key &key ) const
{
	Element *curEl = root;
	long keyRelation;

	while (curEl) {
		keyRelation = compare( key, curEl->BASEKEY(getKey()) );

		/* Do we go left? */
		if ( keyRelation < 0 )
			curEl = curEl->BASE_EL(left);
		/* Do we go right? */
		else if ( keyRelation > 0 )
			curEl = curEl->BASE_EL(right);
		/* We have hit the target. */
		else {
			return curEl;
		}
	}
	return 0;
}


/**
 * \brief Find a element, then detach it from the tree. 
 * 
 * The element is not deleted.
 *
 * \returns The element detached if the key is found, othewise returns null.
 */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::
		detach(const Key &key)
{
	Element *element = find( key );
	if ( element ) {
		detach(element);
	}

	return element;
}

/**
 * \brief Find, detach and delete a element from the tree. 
 *
 * \returns True if the element was found and deleted, false otherwise.
 */
template <AVLMEL_TEMPDEF> bool AvlTree<AVLMEL_TEMPUSE>::
		remove(const Key &key)
{
	/* Assume not found. */
	bool retVal = false;

	/* Look for the key. */
	Element *element = find( key );
	if ( element != 0 ) {
		/* If found, detach the element and delete. */
		detach( element );
		delete element;
		retVal = true;
	}

	return retVal;
}

#endif /* AVL_BASIC */
#endif /* AVL_KEYLESS */


/**
 * \brief Detach and delete a element from the tree. 
 *
 * If the element is not in the tree then undefined behaviour results.
 */
template <AVLMEL_TEMPDEF> void AvlTree<AVLMEL_TEMPUSE>::
		remove(Element *element)
{
	/* Detach and delete. */
	detach(element);
	delete element;
}

/**
 * \brief Detach a element from the tree. 
 *
 * If the element is not in the tree then undefined behaviour results.
 * 
 * \returns The element given.
 */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::
		detach(Element *element)
{
	Element *replacement, *fixfrom;
	long lheight, rheight;

#ifdef WALKABLE
	/* Remove the element from the ordered list. */
	BASELIST::detach( element );
#endif
	
	/* Update treeSize. */
	treeSize--;

	/* Find a replacement element. */
	if (element->BASE_EL(right))
	{
		/* Find the leftmost element of the right subtree. */
		replacement = element->BASE_EL(right);
		while (replacement->BASE_EL(left))
			replacement = replacement->BASE_EL(left);

		/* If replacing the element the with its child then we need to start
		 * fixing at the replacement, otherwise we start fixing at the
		 * parent of the replacement. */
		if (replacement->BASE_EL(parent) == element)
			fixfrom = replacement;
		else
			fixfrom = replacement->BASE_EL(parent);

#ifndef WALKABLE
		if ( element == head )
			head = replacement;
#endif

		removeEl(replacement, replacement->BASE_EL(right));
		replaceEl(element, replacement);
	}
	else if (element->BASE_EL(left))
	{
		/* Find the rightmost element of the left subtree. */
		replacement = element->BASE_EL(left);
		while (replacement->BASE_EL(right))
			replacement = replacement->BASE_EL(right);

		/* If replacing the element the with its child then we need to start
		 * fixing at the replacement, otherwise we start fixing at the
		 * parent of the replacement. */
		if (replacement->BASE_EL(parent) == element)
			fixfrom = replacement;
		else
			fixfrom = replacement->BASE_EL(parent);

#ifndef WALKABLE
		if ( element == tail )
			tail = replacement;
#endif

		removeEl(replacement, replacement->BASE_EL(left));
		replaceEl(element, replacement);
	}
	else
	{
		/* We need to start fixing at the parent of the element. */
		fixfrom = element->BASE_EL(parent);

#ifndef WALKABLE
		if ( element == head )
			head = element->BASE_EL(parent);
		if ( element == tail )
			tail = element->BASE_EL(parent);
#endif

		/* The element we are deleting is a leaf element. */
		removeEl(element, 0);
	}

	/* If fixfrom is null it means we just deleted
	 * the root of the tree. */
	if ( fixfrom == 0 )
		return element;

	/* Fix the heights after the deletion. */
	recalcHeights(fixfrom);

	/* Fix every unbalanced element going up in the tree. */
	Element *ub = findFirstUnbalEl(fixfrom);
	while ( ub )
	{
		/* Find the element to rebalance by moving down from the first unbalanced
		 * element 2 levels in the direction of the greatest heights. On the
		 * second move down, the heights may be equal ( but not on the first ).
		 * In which case go in the direction of the first move. */
		lheight = ub->BASE_EL(left) ? ub->BASE_EL(left)->BASE_EL(height) : 0;
		rheight = ub->BASE_EL(right) ? ub->BASE_EL(right)->BASE_EL(height) : 0;
		assert( lheight != rheight );
		if (rheight > lheight)
		{
			ub = ub->BASE_EL(right);
			lheight = ub->BASE_EL(left) ?
					ub->BASE_EL(left)->BASE_EL(height) : 0;
			rheight = ub->BASE_EL(right) ? 
					ub->BASE_EL(right)->BASE_EL(height) : 0;
			if (rheight > lheight)
				ub = ub->BASE_EL(right);
			else if (rheight < lheight)
				ub = ub->BASE_EL(left);
			else
				ub = ub->BASE_EL(right);
		}
		else
		{
			ub = ub->BASE_EL(left);
			lheight = ub->BASE_EL(left) ? 
					ub->BASE_EL(left)->BASE_EL(height) : 0;
			rheight = ub->BASE_EL(right) ? 
					ub->BASE_EL(right)->BASE_EL(height) : 0;
			if (rheight > lheight)
				ub = ub->BASE_EL(right);
			else if (rheight < lheight)
				ub = ub->BASE_EL(left);
			else
				ub = ub->BASE_EL(left);
		}


		/* rebalance returns the grandparant of the subtree formed
		 * by the element that were rebalanced.
		 * We must continue upward from there rebalancing. */
		fixfrom = rebalance(ub);

		/* Find the next unbalaced element. */
		ub = findFirstUnbalEl(fixfrom);
	}

	return element;
}


/**
 * \brief Empty the tree and delete all the element. 
 *
 * Resets the tree to its initial state.
 */
template <AVLMEL_TEMPDEF> void AvlTree<AVLMEL_TEMPUSE>::empty()
{
	if ( root ) {
		/* Recursively delete from the tree structure. */
		deleteChildrenOf(root);
		delete root;
		root = 0;
		treeSize = 0;

#ifdef WALKABLE
		BASELIST::abandon();
#endif
	}
}

/**
 * \brief Forget all element in the tree. 
 *
 * Does not delete element. Resets the the tree to it's initial state.
 */
template <AVLMEL_TEMPDEF> void AvlTree<AVLMEL_TEMPUSE>::abandon()
{
	root = 0;
	treeSize = 0;

#ifdef WALKABLE
	BASELIST::abandon();
#endif
}

/* Recursively delete all the children of a element. */
template <AVLMEL_TEMPDEF> void AvlTree<AVLMEL_TEMPUSE>::
		deleteChildrenOf( Element *element )
{
	/* Recurse left. */
	if (element->BASE_EL(left)) {
		deleteChildrenOf(element->BASE_EL(left));

		/* Delete left element. */
		delete element->BASE_EL(left);
		element->BASE_EL(left) = 0;
	}

	/* Recurse right. */
	if (element->BASE_EL(right)) {
		deleteChildrenOf(element->BASE_EL(right));

		/* Delete right element. */
		delete element->BASE_EL(right);
		element->BASE_EL(left) = 0;
	}
}

/* rebalance from a element whose gradparent is unbalanced. Only
 * call on a element that has a grandparent. */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::
		rebalance(Element *n)
{
	long lheight, rheight;
	Element *a, *b, *c;
	Element *t1, *t2, *t3, *t4;

	Element *p = n->BASE_EL(parent);      /* parent (Non-NUL). L*/
	Element *gp = p->BASE_EL(parent);     /* Grand-parent (Non-NULL). */
	Element *ggp = gp->BASE_EL(parent);   /* Great grand-parent (may be NULL). */

	if (gp->BASE_EL(right) == p)
	{
		/*  gp
		 *   \
		 *    p
		 */
		if (p->BASE_EL(right) == n)
		{
			/*  gp
			 *   \
			 *    p
			 *     \
			 *      n
			 */
			a = gp;
			b = p;
			c = n;
			t1 = gp->BASE_EL(left);
			t2 = p->BASE_EL(left);
			t3 = n->BASE_EL(left);
			t4 = n->BASE_EL(right);
		}
		else
		{
			/*  gp
			 *     \
			 *       p
			 *      /
			 *     n
			 */
			a = gp;
			b = n;
			c = p;
			t1 = gp->BASE_EL(left);
			t2 = n->BASE_EL(left);
			t3 = n->BASE_EL(right);
			t4 = p->BASE_EL(right);
		}
	}
	else
	{
		/*    gp
		 *   /
		 *  p
		 */
		if (p->BASE_EL(right) == n)
		{
			/*      gp
			 *    /
			 *  p
			 *   \
			 *    n
			 */
			a = p;
			b = n;
			c = gp;
			t1 = p->BASE_EL(left);
			t2 = n->BASE_EL(left);
			t3 = n->BASE_EL(right);
			t4 = gp->BASE_EL(right);
		}
		else
		{
			/*      gp
			 *     /
			 *    p
			 *   /
			 *  n
			 */
			a = n;
			b = p;
			c = gp;
			t1 = n->BASE_EL(left);
			t2 = n->BASE_EL(right);
			t3 = p->BASE_EL(right);
			t4 = gp->BASE_EL(right);
		}
	}

	/* Perform rotation.
	 */

	/* Tie b to the great grandparent. */
	if ( ggp == 0 )
		root = b;
	else if ( ggp->BASE_EL(left) == gp )
		ggp->BASE_EL(left) = b;
	else
		ggp->BASE_EL(right) = b;
	b->BASE_EL(parent) = ggp;

	/* Tie a as a leftchild of b. */
	b->BASE_EL(left) = a;
	a->BASE_EL(parent) = b;

	/* Tie c as a rightchild of b. */
	b->BASE_EL(right) = c;
	c->BASE_EL(parent) = b;

	/* Tie t1 as a leftchild of a. */
	a->BASE_EL(left) = t1;
	if ( t1 != 0 ) t1->BASE_EL(parent) = a;

	/* Tie t2 as a rightchild of a. */
	a->BASE_EL(right) = t2;
	if ( t2 != 0 ) t2->BASE_EL(parent) = a;

	/* Tie t3 as a leftchild of c. */
	c->BASE_EL(left) = t3;
	if ( t3 != 0 ) t3->BASE_EL(parent) = c;

	/* Tie t4 as a rightchild of c. */
	c->BASE_EL(right) = t4;
	if ( t4 != 0 ) t4->BASE_EL(parent) = c;

	/* The heights are all recalculated manualy and the great
	 * grand-parent is passed to recalcHeights() to ensure
	 * the heights are correct up the tree.
	 *
	 * Note that recalcHeights() cuts out when it comes across
	 * a height that hasn't changed.
	 */

	/* Fix height of a. */
	lheight = a->BASE_EL(left) ? a->BASE_EL(left)->BASE_EL(height) : 0;
	rheight = a->BASE_EL(right) ? a->BASE_EL(right)->BASE_EL(height) : 0;
	a->BASE_EL(height) = (lheight > rheight ? lheight : rheight) + 1;

	/* Fix height of c. */
	lheight = c->BASE_EL(left) ? c->BASE_EL(left)->BASE_EL(height) : 0;
	rheight = c->BASE_EL(right) ? c->BASE_EL(right)->BASE_EL(height) : 0;
	c->BASE_EL(height) = (lheight > rheight ? lheight : rheight) + 1;

	/* Fix height of b. */
	lheight = a->BASE_EL(height);
	rheight = c->BASE_EL(height);
	b->BASE_EL(height) = (lheight > rheight ? lheight : rheight) + 1;

	/* Fix height of b's parents. */
	recalcHeights(ggp);
	return ggp;
}

/* Recalculates the heights of all the ancestors of element. */
template <AVLMEL_TEMPDEF> void AvlTree<AVLMEL_TEMPUSE>::
		recalcHeights(Element *element)
{
	long lheight, rheight, new_height;
	while ( element != 0 )
	{
		lheight = element->BASE_EL(left) ? element->BASE_EL(left)->BASE_EL(height) : 0;
		rheight = element->BASE_EL(right) ? element->BASE_EL(right)->BASE_EL(height) : 0;

		new_height = (lheight > rheight ? lheight : rheight) + 1;

		/* If there is no chage in the height, then there will be no
		 * change in any of the ancestor's height. We can stop going up.
		 * If there was a change, continue upward. */
		if (new_height == element->BASE_EL(height))
			return;
		else
			element->BASE_EL(height) = new_height;

		element = element->BASE_EL(parent);
	}
}

/* Finds the first element whose grandparent is unbalanced. */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::
		findFirstUnbalGP(Element *element)
{
	long lheight, rheight, balanceProp;
	Element *gp;

	if ( element == 0 || element->BASE_EL(parent) == 0 ||
			element->BASE_EL(parent)->BASE_EL(parent) == 0 )
		return 0;
	
	/* Don't do anything if we we have no grandparent. */
	gp = element->BASE_EL(parent)->BASE_EL(parent);
	while ( gp != 0 )
	{
		lheight = gp->BASE_EL(left) ? gp->BASE_EL(left)->BASE_EL(height) : 0;
		rheight = gp->BASE_EL(right) ? gp->BASE_EL(right)->BASE_EL(height) : 0;
		balanceProp = lheight - rheight;

		if ( balanceProp < -1 || balanceProp > 1 )
			return element;

		element = element->BASE_EL(parent);
		gp = gp->BASE_EL(parent);
	}
	return 0;
}


/* Finds the first element that is unbalanced. */
template <AVLMEL_TEMPDEF> Element *AvlTree<AVLMEL_TEMPUSE>::
		findFirstUnbalEl(Element *element)
{
	if ( element == 0 )
		return 0;
	
	while ( element != 0 )
	{
		long lheight = element->BASE_EL(left) ? 
				element->BASE_EL(left)->BASE_EL(height) : 0;
		long rheight = element->BASE_EL(right) ? 
				element->BASE_EL(right)->BASE_EL(height) : 0;
		long balanceProp = lheight - rheight;

		if ( balanceProp < -1 || balanceProp > 1 )
			return element;

		element = element->BASE_EL(parent);
	}
	return 0;
}

/* Replace a element in the tree with another element not in the tree. */
template <AVLMEL_TEMPDEF> void AvlTree<AVLMEL_TEMPUSE>::
		replaceEl(Element *element, Element *replacement)
{
	Element *parent = element->BASE_EL(parent),
		*left = element->BASE_EL(left),
		*right = element->BASE_EL(right);

	replacement->BASE_EL(left) = left;
	if (left)
		left->BASE_EL(parent) = replacement;
	replacement->BASE_EL(right) = right;
	if (right)
		right->BASE_EL(parent) = replacement;

	replacement->BASE_EL(parent) = parent;
	if (parent)
	{
		if (parent->BASE_EL(left) == element)
			parent->BASE_EL(left) = replacement;
		else
			parent->BASE_EL(right) = replacement;
	}
	else
		root = replacement;

	replacement->BASE_EL(height) = element->BASE_EL(height);
}

/* Removes a element from a tree and puts filler in it's place.
 * Filler should be null or a child of element. */
template <AVLMEL_TEMPDEF> void AvlTree<AVLMEL_TEMPUSE>::
		removeEl(Element *element, Element *filler)
{
	Element *parent = element->BASE_EL(parent);

	if (parent)
	{
		if (parent->BASE_EL(left) == element)
			parent->BASE_EL(left) = filler;
		else
			parent->BASE_EL(right) = filler;
	}
	else
		root = filler;
	
	if (filler)
		filler->BASE_EL(parent) = parent;

	return;
}

#ifdef AAPL_NAMESPACE
}
#endif