summaryrefslogtreecommitdiff
path: root/roms/seabios/src/clock.c
blob: 71b913e599e0d489a8c85f1f53edebd63d0bfc10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
// 16bit code to handle system clocks.
//
// Copyright (C) 2008-2010  Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002  MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU LGPLv3 license.

#include "biosvar.h" // SET_BDA
#include "util.h" // debug_enter
#include "disk.h" // floppy_tick
#include "cmos.h" // inb_cmos
#include "pic.h" // eoi_pic1
#include "bregs.h" // struct bregs
#include "biosvar.h" // GET_GLOBAL
#include "usb-hid.h" // usb_check_event

// RTC register flags
#define RTC_A_UIP 0x80

#define RTC_B_SET  0x80
#define RTC_B_PIE  0x40
#define RTC_B_AIE  0x20
#define RTC_B_UIE  0x10
#define RTC_B_BIN  0x04
#define RTC_B_24HR 0x02
#define RTC_B_DSE  0x01


// Bits for PORT_PS2_CTRLB
#define PPCB_T2GATE (1<<0)
#define PPCB_SPKR   (1<<1)
#define PPCB_T2OUT  (1<<5)

// Bits for PORT_PIT_MODE
#define PM_SEL_TIMER0   (0<<6)
#define PM_SEL_TIMER1   (1<<6)
#define PM_SEL_TIMER2   (2<<6)
#define PM_SEL_READBACK (3<<6)
#define PM_ACCESS_LATCH  (0<<4)
#define PM_ACCESS_LOBYTE (1<<4)
#define PM_ACCESS_HIBYTE (2<<4)
#define PM_ACCESS_WORD   (3<<4)
#define PM_MODE0 (0<<1)
#define PM_MODE1 (1<<1)
#define PM_MODE2 (2<<1)
#define PM_MODE3 (3<<1)
#define PM_MODE4 (4<<1)
#define PM_MODE5 (5<<1)
#define PM_CNT_BINARY (0<<0)
#define PM_CNT_BCD    (1<<0)
#define PM_READ_COUNTER0 (1<<1)
#define PM_READ_COUNTER1 (1<<2)
#define PM_READ_COUNTER2 (1<<3)
#define PM_READ_STATUSVALUE (0<<4)
#define PM_READ_VALUE       (1<<4)
#define PM_READ_STATUS      (2<<4)


/****************************************************************
 * TSC timer
 ****************************************************************/

#define CALIBRATE_COUNT 0x800   // Approx 1.7ms

u32 cpu_khz VAR16VISIBLE;
u8 no_tsc VAR16VISIBLE;

static void
calibrate_tsc(void)
{
    u32 eax, ebx, ecx, edx, cpuid_features = 0;
    cpuid(0, &eax, &ebx, &ecx, &edx);
    if (eax > 0)
        cpuid(1, &eax, &ebx, &ecx, &cpuid_features);

    if (!(cpuid_features & CPUID_TSC)) {
        SET_GLOBAL(no_tsc, 1);
        SET_GLOBAL(cpu_khz, PIT_TICK_RATE / 1000);
        dprintf(3, "386/486 class CPU. Using TSC emulation\n");
        return;
    }

    // Setup "timer2"
    u8 orig = inb(PORT_PS2_CTRLB);
    outb((orig & ~PPCB_SPKR) | PPCB_T2GATE, PORT_PS2_CTRLB);
    /* binary, mode 0, LSB/MSB, Ch 2 */
    outb(PM_SEL_TIMER2|PM_ACCESS_WORD|PM_MODE0|PM_CNT_BINARY, PORT_PIT_MODE);
    /* LSB of ticks */
    outb(CALIBRATE_COUNT & 0xFF, PORT_PIT_COUNTER2);
    /* MSB of ticks */
    outb(CALIBRATE_COUNT >> 8, PORT_PIT_COUNTER2);

    u64 start = rdtscll();
    while ((inb(PORT_PS2_CTRLB) & PPCB_T2OUT) == 0)
        ;
    u64 end = rdtscll();

    // Restore PORT_PS2_CTRLB
    outb(orig, PORT_PS2_CTRLB);

    // Store calibrated cpu khz.
    u64 diff = end - start;
    dprintf(6, "tsc calibrate start=%u end=%u diff=%u\n"
            , (u32)start, (u32)end, (u32)diff);
    u32 hz = diff * PIT_TICK_RATE / CALIBRATE_COUNT;
    SET_GLOBAL(cpu_khz, hz / 1000);

    dprintf(1, "CPU Mhz=%u\n", hz / 1000000);
}

/* TSC emulation timekeepers */
u64 TSC_8254 VARLOW;
int Last_TSC_8254 VARLOW;

static u64
emulate_tsc(void)
{
    /* read timer 0 current count */
    u64 ret = GET_LOW(TSC_8254);
    /* readback mode has slightly shifted registers, works on all
     * 8254, readback PIT0 latch */
    outb(PM_SEL_READBACK | PM_READ_VALUE | PM_READ_COUNTER0, PORT_PIT_MODE);
    int cnt = (inb(PORT_PIT_COUNTER0) | (inb(PORT_PIT_COUNTER0) << 8));
    int d = GET_LOW(Last_TSC_8254) - cnt;
    /* Determine the ticks count from last invocation of this function */
    ret += (d > 0) ? d : (PIT_TICK_INTERVAL + d);
    SET_LOW(Last_TSC_8254, cnt);
    SET_LOW(TSC_8254, ret);
    return ret;
}

u16 pmtimer_ioport VAR16VISIBLE;
u32 pmtimer_wraps VARLOW;
u32 pmtimer_last VARLOW;

void pmtimer_init(u16 ioport, u32 khz)
{
    if (!CONFIG_PMTIMER)
        return;
    dprintf(1, "Using pmtimer, ioport 0x%x, freq %d kHz\n", ioport, khz);
    SET_GLOBAL(pmtimer_ioport, ioport);
    SET_GLOBAL(cpu_khz, khz);
}

static u64 pmtimer_get(void)
{
    u16 ioport = GET_GLOBAL(pmtimer_ioport);
    u32 wraps = GET_LOW(pmtimer_wraps);
    u32 pmtimer = inl(ioport) & 0xffffff;

    if (pmtimer < GET_LOW(pmtimer_last)) {
        wraps++;
        SET_LOW(pmtimer_wraps, wraps);
    }
    SET_LOW(pmtimer_last, pmtimer);

    dprintf(9, "pmtimer: %u:%u\n", wraps, pmtimer);
    return (u64)wraps << 24 | pmtimer;
}

static u64
get_tsc(void)
{
    if (unlikely(GET_GLOBAL(no_tsc)))
        return emulate_tsc();
    if (CONFIG_PMTIMER && GET_GLOBAL(pmtimer_ioport))
        return pmtimer_get();
    return rdtscll();
}

int
check_tsc(u64 end)
{
    return (s64)(get_tsc() - end) > 0;
}

static void
tscdelay(u64 diff)
{
    u64 start = get_tsc();
    u64 end = start + diff;
    while (!check_tsc(end))
        cpu_relax();
}

static void
tscsleep(u64 diff)
{
    u64 start = get_tsc();
    u64 end = start + diff;
    while (!check_tsc(end))
        yield();
}

void ndelay(u32 count) {
    tscdelay(count * GET_GLOBAL(cpu_khz) / 1000000);
}
void udelay(u32 count) {
    tscdelay(count * GET_GLOBAL(cpu_khz) / 1000);
}
void mdelay(u32 count) {
    tscdelay(count * GET_GLOBAL(cpu_khz));
}

void nsleep(u32 count) {
    tscsleep(count * GET_GLOBAL(cpu_khz) / 1000000);
}
void usleep(u32 count) {
    tscsleep(count * GET_GLOBAL(cpu_khz) / 1000);
}
void msleep(u32 count) {
    tscsleep(count * GET_GLOBAL(cpu_khz));
}

// Return the TSC value that is 'msecs' time in the future.
u64
calc_future_tsc(u32 msecs)
{
    u32 khz = GET_GLOBAL(cpu_khz);
    return get_tsc() + ((u64)khz * msecs);
}
u64
calc_future_tsc_usec(u32 usecs)
{
    u32 khz = GET_GLOBAL(cpu_khz);
    return get_tsc() + ((u64)(khz/1000) * usecs);
}


/****************************************************************
 * Init
 ****************************************************************/

static int
rtc_updating(void)
{
    // This function checks to see if the update-in-progress bit
    // is set in CMOS Status Register A.  If not, it returns 0.
    // If it is set, it tries to wait until there is a transition
    // to 0, and will return 0 if such a transition occurs.  A -1
    // is returned only after timing out.  The maximum period
    // that this bit should be set is constrained to (1984+244)
    // useconds, but we wait for longer just to be sure.

    if ((inb_cmos(CMOS_STATUS_A) & RTC_A_UIP) == 0)
        return 0;
    u64 end = calc_future_tsc(15);
    for (;;) {
        if ((inb_cmos(CMOS_STATUS_A) & RTC_A_UIP) == 0)
            return 0;
        if (check_tsc(end))
            // update-in-progress never transitioned to 0
            return -1;
        yield();
    }
}

static void
pit_setup(void)
{
    // timer0: binary count, 16bit count, mode 2
    outb(PM_SEL_TIMER0|PM_ACCESS_WORD|PM_MODE2|PM_CNT_BINARY, PORT_PIT_MODE);
    // maximum count of 0000H = 18.2Hz
    outb(0x0, PORT_PIT_COUNTER0);
    outb(0x0, PORT_PIT_COUNTER0);
}

static void
init_rtc(void)
{
    outb_cmos(0x26, CMOS_STATUS_A);    // 32,768Khz src, 976.5625us updates
    u8 regB = inb_cmos(CMOS_STATUS_B);
    outb_cmos((regB & RTC_B_DSE) | RTC_B_24HR, CMOS_STATUS_B);
    inb_cmos(CMOS_STATUS_C);
    inb_cmos(CMOS_STATUS_D);
}

static u32
bcd2bin(u8 val)
{
    return (val & 0xf) + ((val >> 4) * 10);
}

void
timer_setup(void)
{
    dprintf(3, "init timer\n");
    calibrate_tsc();
    pit_setup();

    init_rtc();
    rtc_updating();
    u32 seconds = bcd2bin(inb_cmos(CMOS_RTC_SECONDS));
    u32 minutes = bcd2bin(inb_cmos(CMOS_RTC_MINUTES));
    u32 hours = bcd2bin(inb_cmos(CMOS_RTC_HOURS));
    u32 ticks = (hours * 60 + minutes) * 60 + seconds;
    ticks = ((u64)ticks * PIT_TICK_RATE) / PIT_TICK_INTERVAL;
    SET_BDA(timer_counter, ticks);

    enable_hwirq(0, FUNC16(entry_08));
    enable_hwirq(8, FUNC16(entry_70));
}


/****************************************************************
 * Standard clock functions
 ****************************************************************/

#define TICKS_PER_DAY (u32)((u64)60*60*24*PIT_TICK_RATE / PIT_TICK_INTERVAL)

// Calculate the timer value at 'count' number of full timer ticks in
// the future.
u32
calc_future_timer_ticks(u32 count)
{
    return (GET_BDA(timer_counter) + count + 1) % TICKS_PER_DAY;
}

// Return the timer value that is 'msecs' time in the future.
u32
calc_future_timer(u32 msecs)
{
    if (!msecs)
        return GET_BDA(timer_counter);
    u32 kticks = DIV_ROUND_UP((u64)msecs * PIT_TICK_RATE, PIT_TICK_INTERVAL);
    u32 ticks = DIV_ROUND_UP(kticks, 1000);
    return calc_future_timer_ticks(ticks);
}

// Check if the given timer value has passed.
int
check_timer(u32 end)
{
    return (((GET_BDA(timer_counter) + TICKS_PER_DAY - end) % TICKS_PER_DAY)
            < (TICKS_PER_DAY/2));
}

// get current clock count
static void
handle_1a00(struct bregs *regs)
{
    yield();
    u32 ticks = GET_BDA(timer_counter);
    regs->cx = ticks >> 16;
    regs->dx = ticks;
    regs->al = GET_BDA(timer_rollover);
    SET_BDA(timer_rollover, 0); // reset flag
    set_success(regs);
}

// Set Current Clock Count
static void
handle_1a01(struct bregs *regs)
{
    u32 ticks = (regs->cx << 16) | regs->dx;
    SET_BDA(timer_counter, ticks);
    SET_BDA(timer_rollover, 0); // reset flag
    // XXX - should use set_code_success()?
    regs->ah = 0;
    set_success(regs);
}

// Read CMOS Time
static void
handle_1a02(struct bregs *regs)
{
    if (rtc_updating()) {
        set_invalid(regs);
        return;
    }

    regs->dh = inb_cmos(CMOS_RTC_SECONDS);
    regs->cl = inb_cmos(CMOS_RTC_MINUTES);
    regs->ch = inb_cmos(CMOS_RTC_HOURS);
    regs->dl = inb_cmos(CMOS_STATUS_B) & RTC_B_DSE;
    regs->ah = 0;
    regs->al = regs->ch;
    set_success(regs);
}

// Set CMOS Time
static void
handle_1a03(struct bregs *regs)
{
    // Using a debugger, I notice the following masking/setting
    // of bits in Status Register B, by setting Reg B to
    // a few values and getting its value after INT 1A was called.
    //
    //        try#1       try#2       try#3
    // before 1111 1101   0111 1101   0000 0000
    // after  0110 0010   0110 0010   0000 0010
    //
    // Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
    // My assumption: RegB = ((RegB & 01100000b) | 00000010b)
    if (rtc_updating()) {
        init_rtc();
        // fall through as if an update were not in progress
    }
    outb_cmos(regs->dh, CMOS_RTC_SECONDS);
    outb_cmos(regs->cl, CMOS_RTC_MINUTES);
    outb_cmos(regs->ch, CMOS_RTC_HOURS);
    // Set Daylight Savings time enabled bit to requested value
    u8 val8 = ((inb_cmos(CMOS_STATUS_B) & (RTC_B_PIE|RTC_B_AIE))
               | RTC_B_24HR | (regs->dl & RTC_B_DSE));
    outb_cmos(val8, CMOS_STATUS_B);
    regs->ah = 0;
    regs->al = val8; // val last written to Reg B
    set_success(regs);
}

// Read CMOS Date
static void
handle_1a04(struct bregs *regs)
{
    regs->ah = 0;
    if (rtc_updating()) {
        set_invalid(regs);
        return;
    }
    regs->cl = inb_cmos(CMOS_RTC_YEAR);
    regs->dh = inb_cmos(CMOS_RTC_MONTH);
    regs->dl = inb_cmos(CMOS_RTC_DAY_MONTH);
    if (CONFIG_COREBOOT) {
        if (regs->cl > 0x80)
            regs->ch = 0x19;
        else
            regs->ch = 0x20;
    } else {
        regs->ch = inb_cmos(CMOS_CENTURY);
    }
    regs->al = regs->ch;
    set_success(regs);
}

// Set CMOS Date
static void
handle_1a05(struct bregs *regs)
{
    // Using a debugger, I notice the following masking/setting
    // of bits in Status Register B, by setting Reg B to
    // a few values and getting its value after INT 1A was called.
    //
    //        try#1       try#2       try#3       try#4
    // before 1111 1101   0111 1101   0000 0010   0000 0000
    // after  0110 1101   0111 1101   0000 0010   0000 0000
    //
    // Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
    // My assumption: RegB = (RegB & 01111111b)
    if (rtc_updating()) {
        init_rtc();
        set_invalid(regs);
        return;
    }
    outb_cmos(regs->cl, CMOS_RTC_YEAR);
    outb_cmos(regs->dh, CMOS_RTC_MONTH);
    outb_cmos(regs->dl, CMOS_RTC_DAY_MONTH);
    if (!CONFIG_COREBOOT)
        outb_cmos(regs->ch, CMOS_CENTURY);
    // clear halt-clock bit
    u8 val8 = inb_cmos(CMOS_STATUS_B) & ~RTC_B_SET;
    outb_cmos(val8, CMOS_STATUS_B);
    regs->ah = 0;
    regs->al = val8; // AL = val last written to Reg B
    set_success(regs);
}

// Set Alarm Time in CMOS
static void
handle_1a06(struct bregs *regs)
{
    // Using a debugger, I notice the following masking/setting
    // of bits in Status Register B, by setting Reg B to
    // a few values and getting its value after INT 1A was called.
    //
    //        try#1       try#2       try#3
    // before 1101 1111   0101 1111   0000 0000
    // after  0110 1111   0111 1111   0010 0000
    //
    // Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
    // My assumption: RegB = ((RegB & 01111111b) | 00100000b)
    u8 val8 = inb_cmos(CMOS_STATUS_B); // Get Status Reg B
    regs->ax = 0;
    if (val8 & RTC_B_AIE) {
        // Alarm interrupt enabled already
        set_invalid(regs);
        return;
    }
    if (rtc_updating()) {
        init_rtc();
        // fall through as if an update were not in progress
    }
    outb_cmos(regs->dh, CMOS_RTC_SECONDS_ALARM);
    outb_cmos(regs->cl, CMOS_RTC_MINUTES_ALARM);
    outb_cmos(regs->ch, CMOS_RTC_HOURS_ALARM);
    // enable Status Reg B alarm bit, clear halt clock bit
    outb_cmos((val8 & ~RTC_B_SET) | RTC_B_AIE, CMOS_STATUS_B);
    set_success(regs);
}

// Turn off Alarm
static void
handle_1a07(struct bregs *regs)
{
    // Using a debugger, I notice the following masking/setting
    // of bits in Status Register B, by setting Reg B to
    // a few values and getting its value after INT 1A was called.
    //
    //        try#1       try#2       try#3       try#4
    // before 1111 1101   0111 1101   0010 0000   0010 0010
    // after  0100 0101   0101 0101   0000 0000   0000 0010
    //
    // Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
    // My assumption: RegB = (RegB & 01010111b)
    u8 val8 = inb_cmos(CMOS_STATUS_B); // Get Status Reg B
    // clear clock-halt bit, disable alarm bit
    outb_cmos(val8 & ~(RTC_B_SET|RTC_B_AIE), CMOS_STATUS_B);
    regs->ah = 0;
    regs->al = val8; // val last written to Reg B
    set_success(regs);
}

// Unsupported
static void
handle_1aXX(struct bregs *regs)
{
    set_unimplemented(regs);
}

// INT 1Ah Time-of-day Service Entry Point
void VISIBLE16
handle_1a(struct bregs *regs)
{
    debug_enter(regs, DEBUG_HDL_1a);
    switch (regs->ah) {
    case 0x00: handle_1a00(regs); break;
    case 0x01: handle_1a01(regs); break;
    case 0x02: handle_1a02(regs); break;
    case 0x03: handle_1a03(regs); break;
    case 0x04: handle_1a04(regs); break;
    case 0x05: handle_1a05(regs); break;
    case 0x06: handle_1a06(regs); break;
    case 0x07: handle_1a07(regs); break;
    case 0xb1: handle_1ab1(regs); break;
    default:   handle_1aXX(regs); break;
    }
}

// INT 08h System Timer ISR Entry Point
void VISIBLE16
handle_08(void)
{
    debug_isr(DEBUG_ISR_08);

    floppy_tick();

    u32 counter = GET_BDA(timer_counter);
    counter++;
    // compare to one days worth of timer ticks at 18.2 hz
    if (counter >= TICKS_PER_DAY) {
        // there has been a midnight rollover at this point
        counter = 0;
        SET_BDA(timer_rollover, GET_BDA(timer_rollover) + 1);
    }

    SET_BDA(timer_counter, counter);

    usb_check_event();

    // chain to user timer tick INT #0x1c
    struct bregs br;
    memset(&br, 0, sizeof(br));
    br.flags = F_IF;
    call16_int(0x1c, &br);

    eoi_pic1();
}


/****************************************************************
 * Periodic timer
 ****************************************************************/

int RTCusers VARLOW;

void
useRTC(void)
{
    int count = GET_LOW(RTCusers);
    SET_LOW(RTCusers, count+1);
    if (count)
        return;
    // Turn on the Periodic Interrupt timer
    u8 bRegister = inb_cmos(CMOS_STATUS_B);
    outb_cmos(bRegister | RTC_B_PIE, CMOS_STATUS_B);
}

void
releaseRTC(void)
{
    int count = GET_LOW(RTCusers);
    SET_LOW(RTCusers, count-1);
    if (count != 1)
        return;
    // Clear the Periodic Interrupt.
    u8 bRegister = inb_cmos(CMOS_STATUS_B);
    outb_cmos(bRegister & ~RTC_B_PIE, CMOS_STATUS_B);
}

static int
set_usertimer(u32 usecs, u16 seg, u16 offset)
{
    if (GET_BDA(rtc_wait_flag) & RWS_WAIT_PENDING)
        return -1;

    // Interval not already set.
    SET_BDA(rtc_wait_flag, RWS_WAIT_PENDING);  // Set status byte.
    SET_BDA(user_wait_complete_flag, SEGOFF(seg, offset));
    SET_BDA(user_wait_timeout, usecs);
    useRTC();
    return 0;
}

static void
clear_usertimer(void)
{
    if (!(GET_BDA(rtc_wait_flag) & RWS_WAIT_PENDING))
        return;
    // Turn off status byte.
    SET_BDA(rtc_wait_flag, 0);
    releaseRTC();
}

#define RET_ECLOCKINUSE  0x83

// Wait for CX:DX microseconds
void
handle_1586(struct bregs *regs)
{
    // Use the rtc to wait for the specified time.
    u8 statusflag = 0;
    u32 count = (regs->cx << 16) | regs->dx;
    int ret = set_usertimer(count, GET_SEG(SS), (u32)&statusflag);
    if (ret) {
        set_code_invalid(regs, RET_ECLOCKINUSE);
        return;
    }
    while (!statusflag)
        yield_toirq();
    set_success(regs);
}

// Set Interval requested.
static void
handle_158300(struct bregs *regs)
{
    int ret = set_usertimer((regs->cx << 16) | regs->dx, regs->es, regs->bx);
    if (ret)
        // Interval already set.
        set_code_invalid(regs, RET_EUNSUPPORTED);
    else
        set_success(regs);
}

// Clear interval requested
static void
handle_158301(struct bregs *regs)
{
    clear_usertimer();
    set_success(regs);
}

static void
handle_1583XX(struct bregs *regs)
{
    set_code_unimplemented(regs, RET_EUNSUPPORTED);
    regs->al--;
}

void
handle_1583(struct bregs *regs)
{
    switch (regs->al) {
    case 0x00: handle_158300(regs); break;
    case 0x01: handle_158301(regs); break;
    default:   handle_1583XX(regs); break;
    }
}

#define USEC_PER_RTC DIV_ROUND_CLOSEST(1000000, 1024)

// int70h: IRQ8 - CMOS RTC
void VISIBLE16
handle_70(void)
{
    debug_isr(DEBUG_ISR_70);

    // Check which modes are enabled and have occurred.
    u8 registerB = inb_cmos(CMOS_STATUS_B);
    u8 registerC = inb_cmos(CMOS_STATUS_C);

    if (!(registerB & (RTC_B_PIE|RTC_B_AIE)))
        goto done;
    if (registerC & RTC_B_AIE) {
        // Handle Alarm Interrupt.
        struct bregs br;
        memset(&br, 0, sizeof(br));
        br.flags = F_IF;
        call16_int(0x4a, &br);
    }
    if (!(registerC & RTC_B_PIE))
        goto done;

    // Handle Periodic Interrupt.

    check_preempt();

    if (!GET_BDA(rtc_wait_flag))
        goto done;

    // Wait Interval (Int 15, AH=83) active.
    u32 time = GET_BDA(user_wait_timeout);  // Time left in microseconds.
    if (time < USEC_PER_RTC) {
        // Done waiting - write to specified flag byte.
        struct segoff_s segoff = GET_BDA(user_wait_complete_flag);
        u16 ptr_seg = segoff.seg;
        u8 *ptr_far = (u8*)(segoff.offset+0);
        u8 oldval = GET_FARVAR(ptr_seg, *ptr_far);
        SET_FARVAR(ptr_seg, *ptr_far, oldval | 0x80);

        clear_usertimer();
    } else {
        // Continue waiting.
        time -= USEC_PER_RTC;
        SET_BDA(user_wait_timeout, time);
    }

done:
    eoi_pic2();
}