diff options
author | Anas Nashif <anas.nashif@intel.com> | 2012-11-06 07:50:24 -0800 |
---|---|---|
committer | Anas Nashif <anas.nashif@intel.com> | 2012-11-06 07:50:24 -0800 |
commit | 060629c6ef0b7e5c267d84c91600113264d33120 (patch) | |
tree | 18fcb144ac71b9c4d08ee5d1dc58e2b16c109a5a /kvm-all.c | |
download | qemu-060629c6ef0b7e5c267d84c91600113264d33120.tar.gz qemu-060629c6ef0b7e5c267d84c91600113264d33120.tar.bz2 qemu-060629c6ef0b7e5c267d84c91600113264d33120.zip |
Imported Upstream version 1.2.0upstream/1.2.0
Diffstat (limited to 'kvm-all.c')
-rw-r--r-- | kvm-all.c | 1995 |
1 files changed, 1995 insertions, 0 deletions
diff --git a/kvm-all.c b/kvm-all.c new file mode 100644 index 000000000..34b02c1fb --- /dev/null +++ b/kvm-all.c @@ -0,0 +1,1995 @@ +/* + * QEMU KVM support + * + * Copyright IBM, Corp. 2008 + * Red Hat, Inc. 2008 + * + * Authors: + * Anthony Liguori <aliguori@us.ibm.com> + * Glauber Costa <gcosta@redhat.com> + * + * This work is licensed under the terms of the GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + * + */ + +#include <sys/types.h> +#include <sys/ioctl.h> +#include <sys/mman.h> +#include <stdarg.h> + +#include <linux/kvm.h> + +#include "qemu-common.h" +#include "qemu-barrier.h" +#include "qemu-option.h" +#include "qemu-config.h" +#include "sysemu.h" +#include "hw/hw.h" +#include "hw/msi.h" +#include "gdbstub.h" +#include "kvm.h" +#include "bswap.h" +#include "memory.h" +#include "exec-memory.h" +#include "event_notifier.h" + +/* This check must be after config-host.h is included */ +#ifdef CONFIG_EVENTFD +#include <sys/eventfd.h> +#endif + +/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ +#define PAGE_SIZE TARGET_PAGE_SIZE + +//#define DEBUG_KVM + +#ifdef DEBUG_KVM +#define DPRINTF(fmt, ...) \ + do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) +#else +#define DPRINTF(fmt, ...) \ + do { } while (0) +#endif + +#define KVM_MSI_HASHTAB_SIZE 256 + +typedef struct KVMSlot +{ + target_phys_addr_t start_addr; + ram_addr_t memory_size; + void *ram; + int slot; + int flags; +} KVMSlot; + +typedef struct kvm_dirty_log KVMDirtyLog; + +struct KVMState +{ + KVMSlot slots[32]; + int fd; + int vmfd; + int coalesced_mmio; + struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; + bool coalesced_flush_in_progress; + int broken_set_mem_region; + int migration_log; + int vcpu_events; + int robust_singlestep; + int debugregs; +#ifdef KVM_CAP_SET_GUEST_DEBUG + struct kvm_sw_breakpoint_head kvm_sw_breakpoints; +#endif + int pit_state2; + int xsave, xcrs; + int many_ioeventfds; + /* The man page (and posix) say ioctl numbers are signed int, but + * they're not. Linux, glibc and *BSD all treat ioctl numbers as + * unsigned, and treating them as signed here can break things */ + unsigned irqchip_inject_ioctl; +#ifdef KVM_CAP_IRQ_ROUTING + struct kvm_irq_routing *irq_routes; + int nr_allocated_irq_routes; + uint32_t *used_gsi_bitmap; + unsigned int gsi_count; + QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; + bool direct_msi; +#endif +}; + +KVMState *kvm_state; +bool kvm_kernel_irqchip; +bool kvm_async_interrupts_allowed; +bool kvm_irqfds_allowed; +bool kvm_msi_via_irqfd_allowed; +bool kvm_gsi_routing_allowed; + +static const KVMCapabilityInfo kvm_required_capabilites[] = { + KVM_CAP_INFO(USER_MEMORY), + KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), + KVM_CAP_LAST_INFO +}; + +static KVMSlot *kvm_alloc_slot(KVMState *s) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(s->slots); i++) { + if (s->slots[i].memory_size == 0) { + return &s->slots[i]; + } + } + + fprintf(stderr, "%s: no free slot available\n", __func__); + abort(); +} + +static KVMSlot *kvm_lookup_matching_slot(KVMState *s, + target_phys_addr_t start_addr, + target_phys_addr_t end_addr) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(s->slots); i++) { + KVMSlot *mem = &s->slots[i]; + + if (start_addr == mem->start_addr && + end_addr == mem->start_addr + mem->memory_size) { + return mem; + } + } + + return NULL; +} + +/* + * Find overlapping slot with lowest start address + */ +static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, + target_phys_addr_t start_addr, + target_phys_addr_t end_addr) +{ + KVMSlot *found = NULL; + int i; + + for (i = 0; i < ARRAY_SIZE(s->slots); i++) { + KVMSlot *mem = &s->slots[i]; + + if (mem->memory_size == 0 || + (found && found->start_addr < mem->start_addr)) { + continue; + } + + if (end_addr > mem->start_addr && + start_addr < mem->start_addr + mem->memory_size) { + found = mem; + } + } + + return found; +} + +int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, + target_phys_addr_t *phys_addr) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(s->slots); i++) { + KVMSlot *mem = &s->slots[i]; + + if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { + *phys_addr = mem->start_addr + (ram - mem->ram); + return 1; + } + } + + return 0; +} + +static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) +{ + struct kvm_userspace_memory_region mem; + + mem.slot = slot->slot; + mem.guest_phys_addr = slot->start_addr; + mem.memory_size = slot->memory_size; + mem.userspace_addr = (unsigned long)slot->ram; + mem.flags = slot->flags; + if (s->migration_log) { + mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; + } + return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); +} + +static void kvm_reset_vcpu(void *opaque) +{ + CPUArchState *env = opaque; + + kvm_arch_reset_vcpu(env); +} + +int kvm_init_vcpu(CPUArchState *env) +{ + KVMState *s = kvm_state; + long mmap_size; + int ret; + + DPRINTF("kvm_init_vcpu\n"); + + ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); + if (ret < 0) { + DPRINTF("kvm_create_vcpu failed\n"); + goto err; + } + + env->kvm_fd = ret; + env->kvm_state = s; + env->kvm_vcpu_dirty = 1; + + mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); + if (mmap_size < 0) { + ret = mmap_size; + DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); + goto err; + } + + env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, + env->kvm_fd, 0); + if (env->kvm_run == MAP_FAILED) { + ret = -errno; + DPRINTF("mmap'ing vcpu state failed\n"); + goto err; + } + + if (s->coalesced_mmio && !s->coalesced_mmio_ring) { + s->coalesced_mmio_ring = + (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE; + } + + ret = kvm_arch_init_vcpu(env); + if (ret == 0) { + qemu_register_reset(kvm_reset_vcpu, env); + kvm_arch_reset_vcpu(env); + } +err: + return ret; +} + +/* + * dirty pages logging control + */ + +static int kvm_mem_flags(KVMState *s, bool log_dirty) +{ + return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; +} + +static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) +{ + KVMState *s = kvm_state; + int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; + int old_flags; + + old_flags = mem->flags; + + flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty); + mem->flags = flags; + + /* If nothing changed effectively, no need to issue ioctl */ + if (s->migration_log) { + flags |= KVM_MEM_LOG_DIRTY_PAGES; + } + + if (flags == old_flags) { + return 0; + } + + return kvm_set_user_memory_region(s, mem); +} + +static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, + ram_addr_t size, bool log_dirty) +{ + KVMState *s = kvm_state; + KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); + + if (mem == NULL) { + fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" + TARGET_FMT_plx "\n", __func__, phys_addr, + (target_phys_addr_t)(phys_addr + size - 1)); + return -EINVAL; + } + return kvm_slot_dirty_pages_log_change(mem, log_dirty); +} + +static void kvm_log_start(MemoryListener *listener, + MemoryRegionSection *section) +{ + int r; + + r = kvm_dirty_pages_log_change(section->offset_within_address_space, + section->size, true); + if (r < 0) { + abort(); + } +} + +static void kvm_log_stop(MemoryListener *listener, + MemoryRegionSection *section) +{ + int r; + + r = kvm_dirty_pages_log_change(section->offset_within_address_space, + section->size, false); + if (r < 0) { + abort(); + } +} + +static int kvm_set_migration_log(int enable) +{ + KVMState *s = kvm_state; + KVMSlot *mem; + int i, err; + + s->migration_log = enable; + + for (i = 0; i < ARRAY_SIZE(s->slots); i++) { + mem = &s->slots[i]; + + if (!mem->memory_size) { + continue; + } + if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { + continue; + } + err = kvm_set_user_memory_region(s, mem); + if (err) { + return err; + } + } + return 0; +} + +/* get kvm's dirty pages bitmap and update qemu's */ +static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, + unsigned long *bitmap) +{ + unsigned int i, j; + unsigned long page_number, c; + target_phys_addr_t addr, addr1; + unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS; + unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; + + /* + * bitmap-traveling is faster than memory-traveling (for addr...) + * especially when most of the memory is not dirty. + */ + for (i = 0; i < len; i++) { + if (bitmap[i] != 0) { + c = leul_to_cpu(bitmap[i]); + do { + j = ffsl(c) - 1; + c &= ~(1ul << j); + page_number = (i * HOST_LONG_BITS + j) * hpratio; + addr1 = page_number * TARGET_PAGE_SIZE; + addr = section->offset_within_region + addr1; + memory_region_set_dirty(section->mr, addr, + TARGET_PAGE_SIZE * hpratio); + } while (c != 0); + } + } + return 0; +} + +#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) + +/** + * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space + * This function updates qemu's dirty bitmap using + * memory_region_set_dirty(). This means all bits are set + * to dirty. + * + * @start_add: start of logged region. + * @end_addr: end of logged region. + */ +static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) +{ + KVMState *s = kvm_state; + unsigned long size, allocated_size = 0; + KVMDirtyLog d; + KVMSlot *mem; + int ret = 0; + target_phys_addr_t start_addr = section->offset_within_address_space; + target_phys_addr_t end_addr = start_addr + section->size; + + d.dirty_bitmap = NULL; + while (start_addr < end_addr) { + mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); + if (mem == NULL) { + break; + } + + /* XXX bad kernel interface alert + * For dirty bitmap, kernel allocates array of size aligned to + * bits-per-long. But for case when the kernel is 64bits and + * the userspace is 32bits, userspace can't align to the same + * bits-per-long, since sizeof(long) is different between kernel + * and user space. This way, userspace will provide buffer which + * may be 4 bytes less than the kernel will use, resulting in + * userspace memory corruption (which is not detectable by valgrind + * too, in most cases). + * So for now, let's align to 64 instead of HOST_LONG_BITS here, in + * a hope that sizeof(long) wont become >8 any time soon. + */ + size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), + /*HOST_LONG_BITS*/ 64) / 8; + if (!d.dirty_bitmap) { + d.dirty_bitmap = g_malloc(size); + } else if (size > allocated_size) { + d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); + } + allocated_size = size; + memset(d.dirty_bitmap, 0, allocated_size); + + d.slot = mem->slot; + + if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { + DPRINTF("ioctl failed %d\n", errno); + ret = -1; + break; + } + + kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); + start_addr = mem->start_addr + mem->memory_size; + } + g_free(d.dirty_bitmap); + + return ret; +} + +int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) +{ + int ret = -ENOSYS; + KVMState *s = kvm_state; + + if (s->coalesced_mmio) { + struct kvm_coalesced_mmio_zone zone; + + zone.addr = start; + zone.size = size; + zone.pad = 0; + + ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); + } + + return ret; +} + +int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) +{ + int ret = -ENOSYS; + KVMState *s = kvm_state; + + if (s->coalesced_mmio) { + struct kvm_coalesced_mmio_zone zone; + + zone.addr = start; + zone.size = size; + zone.pad = 0; + + ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); + } + + return ret; +} + +int kvm_check_extension(KVMState *s, unsigned int extension) +{ + int ret; + + ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); + if (ret < 0) { + ret = 0; + } + + return ret; +} + +static int kvm_check_many_ioeventfds(void) +{ + /* Userspace can use ioeventfd for io notification. This requires a host + * that supports eventfd(2) and an I/O thread; since eventfd does not + * support SIGIO it cannot interrupt the vcpu. + * + * Older kernels have a 6 device limit on the KVM io bus. Find out so we + * can avoid creating too many ioeventfds. + */ +#if defined(CONFIG_EVENTFD) + int ioeventfds[7]; + int i, ret = 0; + for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { + ioeventfds[i] = eventfd(0, EFD_CLOEXEC); + if (ioeventfds[i] < 0) { + break; + } + ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true); + if (ret < 0) { + close(ioeventfds[i]); + break; + } + } + + /* Decide whether many devices are supported or not */ + ret = i == ARRAY_SIZE(ioeventfds); + + while (i-- > 0) { + kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false); + close(ioeventfds[i]); + } + return ret; +#else + return 0; +#endif +} + +static const KVMCapabilityInfo * +kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) +{ + while (list->name) { + if (!kvm_check_extension(s, list->value)) { + return list; + } + list++; + } + return NULL; +} + +static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) +{ + KVMState *s = kvm_state; + KVMSlot *mem, old; + int err; + MemoryRegion *mr = section->mr; + bool log_dirty = memory_region_is_logging(mr); + target_phys_addr_t start_addr = section->offset_within_address_space; + ram_addr_t size = section->size; + void *ram = NULL; + unsigned delta; + + /* kvm works in page size chunks, but the function may be called + with sub-page size and unaligned start address. */ + delta = TARGET_PAGE_ALIGN(size) - size; + if (delta > size) { + return; + } + start_addr += delta; + size -= delta; + size &= TARGET_PAGE_MASK; + if (!size || (start_addr & ~TARGET_PAGE_MASK)) { + return; + } + + if (!memory_region_is_ram(mr)) { + return; + } + + ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; + + while (1) { + mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); + if (!mem) { + break; + } + + if (add && start_addr >= mem->start_addr && + (start_addr + size <= mem->start_addr + mem->memory_size) && + (ram - start_addr == mem->ram - mem->start_addr)) { + /* The new slot fits into the existing one and comes with + * identical parameters - update flags and done. */ + kvm_slot_dirty_pages_log_change(mem, log_dirty); + return; + } + + old = *mem; + + if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { + kvm_physical_sync_dirty_bitmap(section); + } + + /* unregister the overlapping slot */ + mem->memory_size = 0; + err = kvm_set_user_memory_region(s, mem); + if (err) { + fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", + __func__, strerror(-err)); + abort(); + } + + /* Workaround for older KVM versions: we can't join slots, even not by + * unregistering the previous ones and then registering the larger + * slot. We have to maintain the existing fragmentation. Sigh. + * + * This workaround assumes that the new slot starts at the same + * address as the first existing one. If not or if some overlapping + * slot comes around later, we will fail (not seen in practice so far) + * - and actually require a recent KVM version. */ + if (s->broken_set_mem_region && + old.start_addr == start_addr && old.memory_size < size && add) { + mem = kvm_alloc_slot(s); + mem->memory_size = old.memory_size; + mem->start_addr = old.start_addr; + mem->ram = old.ram; + mem->flags = kvm_mem_flags(s, log_dirty); + + err = kvm_set_user_memory_region(s, mem); + if (err) { + fprintf(stderr, "%s: error updating slot: %s\n", __func__, + strerror(-err)); + abort(); + } + + start_addr += old.memory_size; + ram += old.memory_size; + size -= old.memory_size; + continue; + } + + /* register prefix slot */ + if (old.start_addr < start_addr) { + mem = kvm_alloc_slot(s); + mem->memory_size = start_addr - old.start_addr; + mem->start_addr = old.start_addr; + mem->ram = old.ram; + mem->flags = kvm_mem_flags(s, log_dirty); + + err = kvm_set_user_memory_region(s, mem); + if (err) { + fprintf(stderr, "%s: error registering prefix slot: %s\n", + __func__, strerror(-err)); +#ifdef TARGET_PPC + fprintf(stderr, "%s: This is probably because your kernel's " \ + "PAGE_SIZE is too big. Please try to use 4k " \ + "PAGE_SIZE!\n", __func__); +#endif + abort(); + } + } + + /* register suffix slot */ + if (old.start_addr + old.memory_size > start_addr + size) { + ram_addr_t size_delta; + + mem = kvm_alloc_slot(s); + mem->start_addr = start_addr + size; + size_delta = mem->start_addr - old.start_addr; + mem->memory_size = old.memory_size - size_delta; + mem->ram = old.ram + size_delta; + mem->flags = kvm_mem_flags(s, log_dirty); + + err = kvm_set_user_memory_region(s, mem); + if (err) { + fprintf(stderr, "%s: error registering suffix slot: %s\n", + __func__, strerror(-err)); + abort(); + } + } + } + + /* in case the KVM bug workaround already "consumed" the new slot */ + if (!size) { + return; + } + if (!add) { + return; + } + mem = kvm_alloc_slot(s); + mem->memory_size = size; + mem->start_addr = start_addr; + mem->ram = ram; + mem->flags = kvm_mem_flags(s, log_dirty); + + err = kvm_set_user_memory_region(s, mem); + if (err) { + fprintf(stderr, "%s: error registering slot: %s\n", __func__, + strerror(-err)); + abort(); + } +} + +static void kvm_begin(MemoryListener *listener) +{ +} + +static void kvm_commit(MemoryListener *listener) +{ +} + +static void kvm_region_add(MemoryListener *listener, + MemoryRegionSection *section) +{ + kvm_set_phys_mem(section, true); +} + +static void kvm_region_del(MemoryListener *listener, + MemoryRegionSection *section) +{ + kvm_set_phys_mem(section, false); +} + +static void kvm_region_nop(MemoryListener *listener, + MemoryRegionSection *section) +{ +} + +static void kvm_log_sync(MemoryListener *listener, + MemoryRegionSection *section) +{ + int r; + + r = kvm_physical_sync_dirty_bitmap(section); + if (r < 0) { + abort(); + } +} + +static void kvm_log_global_start(struct MemoryListener *listener) +{ + int r; + + r = kvm_set_migration_log(1); + assert(r >= 0); +} + +static void kvm_log_global_stop(struct MemoryListener *listener) +{ + int r; + + r = kvm_set_migration_log(0); + assert(r >= 0); +} + +static void kvm_mem_ioeventfd_add(MemoryRegionSection *section, + bool match_data, uint64_t data, int fd) +{ + int r; + + assert(match_data && section->size <= 8); + + r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, + data, true, section->size); + if (r < 0) { + abort(); + } +} + +static void kvm_mem_ioeventfd_del(MemoryRegionSection *section, + bool match_data, uint64_t data, int fd) +{ + int r; + + r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, + data, false, section->size); + if (r < 0) { + abort(); + } +} + +static void kvm_io_ioeventfd_add(MemoryRegionSection *section, + bool match_data, uint64_t data, int fd) +{ + int r; + + assert(match_data && section->size == 2); + + r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space, + data, true); + if (r < 0) { + abort(); + } +} + +static void kvm_io_ioeventfd_del(MemoryRegionSection *section, + bool match_data, uint64_t data, int fd) + +{ + int r; + + r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space, + data, false); + if (r < 0) { + abort(); + } +} + +static void kvm_eventfd_add(MemoryListener *listener, + MemoryRegionSection *section, + bool match_data, uint64_t data, + EventNotifier *e) +{ + if (section->address_space == get_system_memory()) { + kvm_mem_ioeventfd_add(section, match_data, data, + event_notifier_get_fd(e)); + } else { + kvm_io_ioeventfd_add(section, match_data, data, + event_notifier_get_fd(e)); + } +} + +static void kvm_eventfd_del(MemoryListener *listener, + MemoryRegionSection *section, + bool match_data, uint64_t data, + EventNotifier *e) +{ + if (section->address_space == get_system_memory()) { + kvm_mem_ioeventfd_del(section, match_data, data, + event_notifier_get_fd(e)); + } else { + kvm_io_ioeventfd_del(section, match_data, data, + event_notifier_get_fd(e)); + } +} + +static MemoryListener kvm_memory_listener = { + .begin = kvm_begin, + .commit = kvm_commit, + .region_add = kvm_region_add, + .region_del = kvm_region_del, + .region_nop = kvm_region_nop, + .log_start = kvm_log_start, + .log_stop = kvm_log_stop, + .log_sync = kvm_log_sync, + .log_global_start = kvm_log_global_start, + .log_global_stop = kvm_log_global_stop, + .eventfd_add = kvm_eventfd_add, + .eventfd_del = kvm_eventfd_del, + .priority = 10, +}; + +static void kvm_handle_interrupt(CPUArchState *env, int mask) +{ + env->interrupt_request |= mask; + + if (!qemu_cpu_is_self(env)) { + qemu_cpu_kick(env); + } +} + +int kvm_set_irq(KVMState *s, int irq, int level) +{ + struct kvm_irq_level event; + int ret; + + assert(kvm_async_interrupts_enabled()); + + event.level = level; + event.irq = irq; + ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event); + if (ret < 0) { + perror("kvm_set_irq"); + abort(); + } + + return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status; +} + +#ifdef KVM_CAP_IRQ_ROUTING +typedef struct KVMMSIRoute { + struct kvm_irq_routing_entry kroute; + QTAILQ_ENTRY(KVMMSIRoute) entry; +} KVMMSIRoute; + +static void set_gsi(KVMState *s, unsigned int gsi) +{ + s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); +} + +static void clear_gsi(KVMState *s, unsigned int gsi) +{ + s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); +} + +static void kvm_init_irq_routing(KVMState *s) +{ + int gsi_count, i; + + gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); + if (gsi_count > 0) { + unsigned int gsi_bits, i; + + /* Round up so we can search ints using ffs */ + gsi_bits = ALIGN(gsi_count, 32); + s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); + s->gsi_count = gsi_count; + + /* Mark any over-allocated bits as already in use */ + for (i = gsi_count; i < gsi_bits; i++) { + set_gsi(s, i); + } + } + + s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); + s->nr_allocated_irq_routes = 0; + + if (!s->direct_msi) { + for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { + QTAILQ_INIT(&s->msi_hashtab[i]); + } + } + + kvm_arch_init_irq_routing(s); +} + +static void kvm_irqchip_commit_routes(KVMState *s) +{ + int ret; + + s->irq_routes->flags = 0; + ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); + assert(ret == 0); +} + +static void kvm_add_routing_entry(KVMState *s, + struct kvm_irq_routing_entry *entry) +{ + struct kvm_irq_routing_entry *new; + int n, size; + + if (s->irq_routes->nr == s->nr_allocated_irq_routes) { + n = s->nr_allocated_irq_routes * 2; + if (n < 64) { + n = 64; + } + size = sizeof(struct kvm_irq_routing); + size += n * sizeof(*new); + s->irq_routes = g_realloc(s->irq_routes, size); + s->nr_allocated_irq_routes = n; + } + n = s->irq_routes->nr++; + new = &s->irq_routes->entries[n]; + memset(new, 0, sizeof(*new)); + new->gsi = entry->gsi; + new->type = entry->type; + new->flags = entry->flags; + new->u = entry->u; + + set_gsi(s, entry->gsi); + + kvm_irqchip_commit_routes(s); +} + +void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) +{ + struct kvm_irq_routing_entry e; + + assert(pin < s->gsi_count); + + e.gsi = irq; + e.type = KVM_IRQ_ROUTING_IRQCHIP; + e.flags = 0; + e.u.irqchip.irqchip = irqchip; + e.u.irqchip.pin = pin; + kvm_add_routing_entry(s, &e); +} + +void kvm_irqchip_release_virq(KVMState *s, int virq) +{ + struct kvm_irq_routing_entry *e; + int i; + + for (i = 0; i < s->irq_routes->nr; i++) { + e = &s->irq_routes->entries[i]; + if (e->gsi == virq) { + s->irq_routes->nr--; + *e = s->irq_routes->entries[s->irq_routes->nr]; + } + } + clear_gsi(s, virq); + + kvm_irqchip_commit_routes(s); +} + +static unsigned int kvm_hash_msi(uint32_t data) +{ + /* This is optimized for IA32 MSI layout. However, no other arch shall + * repeat the mistake of not providing a direct MSI injection API. */ + return data & 0xff; +} + +static void kvm_flush_dynamic_msi_routes(KVMState *s) +{ + KVMMSIRoute *route, *next; + unsigned int hash; + + for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { + QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { + kvm_irqchip_release_virq(s, route->kroute.gsi); + QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); + g_free(route); + } + } +} + +static int kvm_irqchip_get_virq(KVMState *s) +{ + uint32_t *word = s->used_gsi_bitmap; + int max_words = ALIGN(s->gsi_count, 32) / 32; + int i, bit; + bool retry = true; + +again: + /* Return the lowest unused GSI in the bitmap */ + for (i = 0; i < max_words; i++) { + bit = ffs(~word[i]); + if (!bit) { + continue; + } + + return bit - 1 + i * 32; + } + if (!s->direct_msi && retry) { + retry = false; + kvm_flush_dynamic_msi_routes(s); + goto again; + } + return -ENOSPC; + +} + +static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) +{ + unsigned int hash = kvm_hash_msi(msg.data); + KVMMSIRoute *route; + + QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { + if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && + route->kroute.u.msi.address_hi == (msg.address >> 32) && + route->kroute.u.msi.data == msg.data) { + return route; + } + } + return NULL; +} + +int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) +{ + struct kvm_msi msi; + KVMMSIRoute *route; + + if (s->direct_msi) { + msi.address_lo = (uint32_t)msg.address; + msi.address_hi = msg.address >> 32; + msi.data = msg.data; + msi.flags = 0; + memset(msi.pad, 0, sizeof(msi.pad)); + + return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); + } + + route = kvm_lookup_msi_route(s, msg); + if (!route) { + int virq; + + virq = kvm_irqchip_get_virq(s); + if (virq < 0) { + return virq; + } + + route = g_malloc(sizeof(KVMMSIRoute)); + route->kroute.gsi = virq; + route->kroute.type = KVM_IRQ_ROUTING_MSI; + route->kroute.flags = 0; + route->kroute.u.msi.address_lo = (uint32_t)msg.address; + route->kroute.u.msi.address_hi = msg.address >> 32; + route->kroute.u.msi.data = msg.data; + + kvm_add_routing_entry(s, &route->kroute); + + QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, + entry); + } + + assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); + + return kvm_set_irq(s, route->kroute.gsi, 1); +} + +int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) +{ + struct kvm_irq_routing_entry kroute; + int virq; + + if (!kvm_gsi_routing_enabled()) { + return -ENOSYS; + } + + virq = kvm_irqchip_get_virq(s); + if (virq < 0) { + return virq; + } + + kroute.gsi = virq; + kroute.type = KVM_IRQ_ROUTING_MSI; + kroute.flags = 0; + kroute.u.msi.address_lo = (uint32_t)msg.address; + kroute.u.msi.address_hi = msg.address >> 32; + kroute.u.msi.data = msg.data; + + kvm_add_routing_entry(s, &kroute); + + return virq; +} + +static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) +{ + struct kvm_irqfd irqfd = { + .fd = fd, + .gsi = virq, + .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, + }; + + if (!kvm_irqfds_enabled()) { + return -ENOSYS; + } + + return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); +} + +#else /* !KVM_CAP_IRQ_ROUTING */ + +static void kvm_init_irq_routing(KVMState *s) +{ +} + +void kvm_irqchip_release_virq(KVMState *s, int virq) +{ +} + +int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) +{ + abort(); +} + +int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) +{ + return -ENOSYS; +} + +static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) +{ + abort(); +} +#endif /* !KVM_CAP_IRQ_ROUTING */ + +int kvm_irqchip_add_irqfd(KVMState *s, int fd, int virq) +{ + return kvm_irqchip_assign_irqfd(s, fd, virq, true); +} + +int kvm_irqchip_add_irq_notifier(KVMState *s, EventNotifier *n, int virq) +{ + return kvm_irqchip_add_irqfd(s, event_notifier_get_fd(n), virq); +} + +int kvm_irqchip_remove_irqfd(KVMState *s, int fd, int virq) +{ + return kvm_irqchip_assign_irqfd(s, fd, virq, false); +} + +int kvm_irqchip_remove_irq_notifier(KVMState *s, EventNotifier *n, int virq) +{ + return kvm_irqchip_remove_irqfd(s, event_notifier_get_fd(n), virq); +} + +static int kvm_irqchip_create(KVMState *s) +{ + QemuOptsList *list = qemu_find_opts("machine"); + int ret; + + if (QTAILQ_EMPTY(&list->head) || + !qemu_opt_get_bool(QTAILQ_FIRST(&list->head), + "kernel_irqchip", true) || + !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { + return 0; + } + + ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); + if (ret < 0) { + fprintf(stderr, "Create kernel irqchip failed\n"); + return ret; + } + + s->irqchip_inject_ioctl = KVM_IRQ_LINE; + if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { + s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS; + } + kvm_kernel_irqchip = true; + /* If we have an in-kernel IRQ chip then we must have asynchronous + * interrupt delivery (though the reverse is not necessarily true) + */ + kvm_async_interrupts_allowed = true; + + kvm_init_irq_routing(s); + + return 0; +} + +static int kvm_max_vcpus(KVMState *s) +{ + int ret; + + /* Find number of supported CPUs using the recommended + * procedure from the kernel API documentation to cope with + * older kernels that may be missing capabilities. + */ + ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); + if (ret) { + return ret; + } + ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); + if (ret) { + return ret; + } + + return 4; +} + +int kvm_init(void) +{ + static const char upgrade_note[] = + "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" + "(see http://sourceforge.net/projects/kvm).\n"; + KVMState *s; + const KVMCapabilityInfo *missing_cap; + int ret; + int i; + int max_vcpus; + + s = g_malloc0(sizeof(KVMState)); + + /* + * On systems where the kernel can support different base page + * sizes, host page size may be different from TARGET_PAGE_SIZE, + * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum + * page size for the system though. + */ + assert(TARGET_PAGE_SIZE <= getpagesize()); + +#ifdef KVM_CAP_SET_GUEST_DEBUG + QTAILQ_INIT(&s->kvm_sw_breakpoints); +#endif + for (i = 0; i < ARRAY_SIZE(s->slots); i++) { + s->slots[i].slot = i; + } + s->vmfd = -1; + s->fd = qemu_open("/dev/kvm", O_RDWR); + if (s->fd == -1) { + fprintf(stderr, "Could not access KVM kernel module: %m\n"); + ret = -errno; + goto err; + } + + ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); + if (ret < KVM_API_VERSION) { + if (ret > 0) { + ret = -EINVAL; + } + fprintf(stderr, "kvm version too old\n"); + goto err; + } + + if (ret > KVM_API_VERSION) { + ret = -EINVAL; + fprintf(stderr, "kvm version not supported\n"); + goto err; + } + + max_vcpus = kvm_max_vcpus(s); + if (smp_cpus > max_vcpus) { + ret = -EINVAL; + fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus " + "supported by KVM (%d)\n", smp_cpus, max_vcpus); + goto err; + } + + s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); + if (s->vmfd < 0) { +#ifdef TARGET_S390X + fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " + "your host kernel command line\n"); +#endif + ret = s->vmfd; + goto err; + } + + missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); + if (!missing_cap) { + missing_cap = + kvm_check_extension_list(s, kvm_arch_required_capabilities); + } + if (missing_cap) { + ret = -EINVAL; + fprintf(stderr, "kvm does not support %s\n%s", + missing_cap->name, upgrade_note); + goto err; + } + + s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); + + s->broken_set_mem_region = 1; + ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); + if (ret > 0) { + s->broken_set_mem_region = 0; + } + +#ifdef KVM_CAP_VCPU_EVENTS + s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); +#endif + + s->robust_singlestep = + kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); + +#ifdef KVM_CAP_DEBUGREGS + s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); +#endif + +#ifdef KVM_CAP_XSAVE + s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); +#endif + +#ifdef KVM_CAP_XCRS + s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); +#endif + +#ifdef KVM_CAP_PIT_STATE2 + s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); +#endif + +#ifdef KVM_CAP_IRQ_ROUTING + s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); +#endif + + ret = kvm_arch_init(s); + if (ret < 0) { + goto err; + } + + ret = kvm_irqchip_create(s); + if (ret < 0) { + goto err; + } + + kvm_state = s; + memory_listener_register(&kvm_memory_listener, NULL); + + s->many_ioeventfds = kvm_check_many_ioeventfds(); + + cpu_interrupt_handler = kvm_handle_interrupt; + + return 0; + +err: + if (s) { + if (s->vmfd >= 0) { + close(s->vmfd); + } + if (s->fd != -1) { + close(s->fd); + } + } + g_free(s); + + return ret; +} + +static void kvm_handle_io(uint16_t port, void *data, int direction, int size, + uint32_t count) +{ + int i; + uint8_t *ptr = data; + + for (i = 0; i < count; i++) { + if (direction == KVM_EXIT_IO_IN) { + switch (size) { + case 1: + stb_p(ptr, cpu_inb(port)); + break; + case 2: + stw_p(ptr, cpu_inw(port)); + break; + case 4: + stl_p(ptr, cpu_inl(port)); + break; + } + } else { + switch (size) { + case 1: + cpu_outb(port, ldub_p(ptr)); + break; + case 2: + cpu_outw(port, lduw_p(ptr)); + break; + case 4: + cpu_outl(port, ldl_p(ptr)); + break; + } + } + + ptr += size; + } +} + +static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run) +{ + fprintf(stderr, "KVM internal error."); + if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { + int i; + + fprintf(stderr, " Suberror: %d\n", run->internal.suberror); + for (i = 0; i < run->internal.ndata; ++i) { + fprintf(stderr, "extra data[%d]: %"PRIx64"\n", + i, (uint64_t)run->internal.data[i]); + } + } else { + fprintf(stderr, "\n"); + } + if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { + fprintf(stderr, "emulation failure\n"); + if (!kvm_arch_stop_on_emulation_error(env)) { + cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); + return EXCP_INTERRUPT; + } + } + /* FIXME: Should trigger a qmp message to let management know + * something went wrong. + */ + return -1; +} + +void kvm_flush_coalesced_mmio_buffer(void) +{ + KVMState *s = kvm_state; + + if (s->coalesced_flush_in_progress) { + return; + } + + s->coalesced_flush_in_progress = true; + + if (s->coalesced_mmio_ring) { + struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; + while (ring->first != ring->last) { + struct kvm_coalesced_mmio *ent; + + ent = &ring->coalesced_mmio[ring->first]; + + cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); + smp_wmb(); + ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; + } + } + + s->coalesced_flush_in_progress = false; +} + +static void do_kvm_cpu_synchronize_state(void *_env) +{ + CPUArchState *env = _env; + + if (!env->kvm_vcpu_dirty) { + kvm_arch_get_registers(env); + env->kvm_vcpu_dirty = 1; + } +} + +void kvm_cpu_synchronize_state(CPUArchState *env) +{ + if (!env->kvm_vcpu_dirty) { + run_on_cpu(env, do_kvm_cpu_synchronize_state, env); + } +} + +void kvm_cpu_synchronize_post_reset(CPUArchState *env) +{ + kvm_arch_put_registers(env, KVM_PUT_RESET_STATE); + env->kvm_vcpu_dirty = 0; +} + +void kvm_cpu_synchronize_post_init(CPUArchState *env) +{ + kvm_arch_put_registers(env, KVM_PUT_FULL_STATE); + env->kvm_vcpu_dirty = 0; +} + +int kvm_cpu_exec(CPUArchState *env) +{ + struct kvm_run *run = env->kvm_run; + int ret, run_ret; + + DPRINTF("kvm_cpu_exec()\n"); + + if (kvm_arch_process_async_events(env)) { + env->exit_request = 0; + return EXCP_HLT; + } + + do { + if (env->kvm_vcpu_dirty) { + kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE); + env->kvm_vcpu_dirty = 0; + } + + kvm_arch_pre_run(env, run); + if (env->exit_request) { + DPRINTF("interrupt exit requested\n"); + /* + * KVM requires us to reenter the kernel after IO exits to complete + * instruction emulation. This self-signal will ensure that we + * leave ASAP again. + */ + qemu_cpu_kick_self(); + } + qemu_mutex_unlock_iothread(); + + run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); + + qemu_mutex_lock_iothread(); + kvm_arch_post_run(env, run); + + kvm_flush_coalesced_mmio_buffer(); + + if (run_ret < 0) { + if (run_ret == -EINTR || run_ret == -EAGAIN) { + DPRINTF("io window exit\n"); + ret = EXCP_INTERRUPT; + break; + } + fprintf(stderr, "error: kvm run failed %s\n", + strerror(-run_ret)); + abort(); + } + + switch (run->exit_reason) { + case KVM_EXIT_IO: + DPRINTF("handle_io\n"); + kvm_handle_io(run->io.port, + (uint8_t *)run + run->io.data_offset, + run->io.direction, + run->io.size, + run->io.count); + ret = 0; + break; + case KVM_EXIT_MMIO: + DPRINTF("handle_mmio\n"); + cpu_physical_memory_rw(run->mmio.phys_addr, + run->mmio.data, + run->mmio.len, + run->mmio.is_write); + ret = 0; + break; + case KVM_EXIT_IRQ_WINDOW_OPEN: + DPRINTF("irq_window_open\n"); + ret = EXCP_INTERRUPT; + break; + case KVM_EXIT_SHUTDOWN: + DPRINTF("shutdown\n"); + qemu_system_reset_request(); + ret = EXCP_INTERRUPT; + break; + case KVM_EXIT_UNKNOWN: + fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", + (uint64_t)run->hw.hardware_exit_reason); + ret = -1; + break; + case KVM_EXIT_INTERNAL_ERROR: + ret = kvm_handle_internal_error(env, run); + break; + default: + DPRINTF("kvm_arch_handle_exit\n"); + ret = kvm_arch_handle_exit(env, run); + break; + } + } while (ret == 0); + + if (ret < 0) { + cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); + vm_stop(RUN_STATE_INTERNAL_ERROR); + } + + env->exit_request = 0; + return ret; +} + +int kvm_ioctl(KVMState *s, int type, ...) +{ + int ret; + void *arg; + va_list ap; + + va_start(ap, type); + arg = va_arg(ap, void *); + va_end(ap); + + ret = ioctl(s->fd, type, arg); + if (ret == -1) { + ret = -errno; + } + return ret; +} + +int kvm_vm_ioctl(KVMState *s, int type, ...) +{ + int ret; + void *arg; + va_list ap; + + va_start(ap, type); + arg = va_arg(ap, void *); + va_end(ap); + + ret = ioctl(s->vmfd, type, arg); + if (ret == -1) { + ret = -errno; + } + return ret; +} + +int kvm_vcpu_ioctl(CPUArchState *env, int type, ...) +{ + int ret; + void *arg; + va_list ap; + + va_start(ap, type); + arg = va_arg(ap, void *); + va_end(ap); + + ret = ioctl(env->kvm_fd, type, arg); + if (ret == -1) { + ret = -errno; + } + return ret; +} + +int kvm_has_sync_mmu(void) +{ + return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); +} + +int kvm_has_vcpu_events(void) +{ + return kvm_state->vcpu_events; +} + +int kvm_has_robust_singlestep(void) +{ + return kvm_state->robust_singlestep; +} + +int kvm_has_debugregs(void) +{ + return kvm_state->debugregs; +} + +int kvm_has_xsave(void) +{ + return kvm_state->xsave; +} + +int kvm_has_xcrs(void) +{ + return kvm_state->xcrs; +} + +int kvm_has_pit_state2(void) +{ + return kvm_state->pit_state2; +} + +int kvm_has_many_ioeventfds(void) +{ + if (!kvm_enabled()) { + return 0; + } + return kvm_state->many_ioeventfds; +} + +int kvm_has_gsi_routing(void) +{ +#ifdef KVM_CAP_IRQ_ROUTING + return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); +#else + return false; +#endif +} + +void *kvm_vmalloc(ram_addr_t size) +{ +#ifdef TARGET_S390X + void *mem; + + mem = kvm_arch_vmalloc(size); + if (mem) { + return mem; + } +#endif + return qemu_vmalloc(size); +} + +void kvm_setup_guest_memory(void *start, size_t size) +{ + if (!kvm_has_sync_mmu()) { + int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); + + if (ret) { + perror("qemu_madvise"); + fprintf(stderr, + "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); + exit(1); + } + } +} + +#ifdef KVM_CAP_SET_GUEST_DEBUG +struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env, + target_ulong pc) +{ + struct kvm_sw_breakpoint *bp; + + QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { + if (bp->pc == pc) { + return bp; + } + } + return NULL; +} + +int kvm_sw_breakpoints_active(CPUArchState *env) +{ + return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); +} + +struct kvm_set_guest_debug_data { + struct kvm_guest_debug dbg; + CPUArchState *env; + int err; +}; + +static void kvm_invoke_set_guest_debug(void *data) +{ + struct kvm_set_guest_debug_data *dbg_data = data; + CPUArchState *env = dbg_data->env; + + dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); +} + +int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) +{ + struct kvm_set_guest_debug_data data; + + data.dbg.control = reinject_trap; + + if (env->singlestep_enabled) { + data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; + } + kvm_arch_update_guest_debug(env, &data.dbg); + data.env = env; + + run_on_cpu(env, kvm_invoke_set_guest_debug, &data); + return data.err; +} + +int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, + target_ulong len, int type) +{ + struct kvm_sw_breakpoint *bp; + CPUArchState *env; + int err; + + if (type == GDB_BREAKPOINT_SW) { + bp = kvm_find_sw_breakpoint(current_env, addr); + if (bp) { + bp->use_count++; + return 0; + } + + bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); + if (!bp) { + return -ENOMEM; + } + + bp->pc = addr; + bp->use_count = 1; + err = kvm_arch_insert_sw_breakpoint(current_env, bp); + if (err) { + g_free(bp); + return err; + } + + QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, + bp, entry); + } else { + err = kvm_arch_insert_hw_breakpoint(addr, len, type); + if (err) { + return err; + } + } + + for (env = first_cpu; env != NULL; env = env->next_cpu) { + err = kvm_update_guest_debug(env, 0); + if (err) { + return err; + } + } + return 0; +} + +int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, + target_ulong len, int type) +{ + struct kvm_sw_breakpoint *bp; + CPUArchState *env; + int err; + + if (type == GDB_BREAKPOINT_SW) { + bp = kvm_find_sw_breakpoint(current_env, addr); + if (!bp) { + return -ENOENT; + } + + if (bp->use_count > 1) { + bp->use_count--; + return 0; + } + + err = kvm_arch_remove_sw_breakpoint(current_env, bp); + if (err) { + return err; + } + + QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); + g_free(bp); + } else { + err = kvm_arch_remove_hw_breakpoint(addr, len, type); + if (err) { + return err; + } + } + + for (env = first_cpu; env != NULL; env = env->next_cpu) { + err = kvm_update_guest_debug(env, 0); + if (err) { + return err; + } + } + return 0; +} + +void kvm_remove_all_breakpoints(CPUArchState *current_env) +{ + struct kvm_sw_breakpoint *bp, *next; + KVMState *s = current_env->kvm_state; + CPUArchState *env; + + QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { + if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { + /* Try harder to find a CPU that currently sees the breakpoint. */ + for (env = first_cpu; env != NULL; env = env->next_cpu) { + if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) { + break; + } + } + } + } + kvm_arch_remove_all_hw_breakpoints(); + + for (env = first_cpu; env != NULL; env = env->next_cpu) { + kvm_update_guest_debug(env, 0); + } +} + +#else /* !KVM_CAP_SET_GUEST_DEBUG */ + +int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) +{ + return -EINVAL; +} + +int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, + target_ulong len, int type) +{ + return -EINVAL; +} + +int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, + target_ulong len, int type) +{ + return -EINVAL; +} + +void kvm_remove_all_breakpoints(CPUArchState *current_env) +{ +} +#endif /* !KVM_CAP_SET_GUEST_DEBUG */ + +int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset) +{ + struct kvm_signal_mask *sigmask; + int r; + + if (!sigset) { + return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL); + } + + sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); + + sigmask->len = 8; + memcpy(sigmask->sigset, sigset, sizeof(*sigset)); + r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask); + g_free(sigmask); + + return r; +} + +int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign, + uint32_t size) +{ + int ret; + struct kvm_ioeventfd iofd; + + iofd.datamatch = val; + iofd.addr = addr; + iofd.len = size; + iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH; + iofd.fd = fd; + + if (!kvm_enabled()) { + return -ENOSYS; + } + + if (!assign) { + iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; + } + + ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); + + if (ret < 0) { + return -errno; + } + + return 0; +} + +int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign) +{ + struct kvm_ioeventfd kick = { + .datamatch = val, + .addr = addr, + .len = 2, + .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO, + .fd = fd, + }; + int r; + if (!kvm_enabled()) { + return -ENOSYS; + } + if (!assign) { + kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; + } + r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); + if (r < 0) { + return r; + } + return 0; +} + +int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr) +{ + return kvm_arch_on_sigbus_vcpu(env, code, addr); +} + +int kvm_on_sigbus(int code, void *addr) +{ + return kvm_arch_on_sigbus(code, addr); +} |