summaryrefslogtreecommitdiff
path: root/torch/distributed/distributed_c10d.py
blob: 1461469924ac41400be6780725791628f85a5181 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
import torch
import warnings
from torch._six import string_classes
from datetime import timedelta

from .rendezvous import rendezvous, register_rendezvous_handler
from . import BroadcastOptions, AllreduceOptions, ReduceOptions, \
    ScatterOptions, GatherOptions
from . import ReduceOp
from . import PrefixStore
from . import ProcessGroupGloo


_MPI_AVAILABLE = True
_NCCL_AVAILABLE = True


try:
    from. import ProcessGroupMPI
except ImportError:
    _MPI_AVAILABLE = False

try:
    from. import ProcessGroupNCCL
except ImportError:
    _NCCL_AVAILABLE = False


class Backend(object):
    """
    An enum-like class of available backends: GLOO, NCCL, and MPI.

    The values of this class are lowercase strings, e.g., ``"gloo"``. They can
    be accessed as attributes, e.g., ``Backend.NCCL``.

    This class can be directly called to parse the string, e.g.,
    ``Backend(backend_str)`` will check if ``backend_str`` is valid, and
    return the parsed lowercase string if so. It also accepts uppercase strings,
    e.g., ``Backend("GLOO")`` returns ``"gloo"``.

    .. note:: The entry ``Backend.UNDEFINED`` is present but only used as
              initial value of some fields. Users should neither use it directly
              nor assume its existence.
    """
    UNDEFINED = "undefined"
    GLOO = "gloo"
    NCCL = "nccl"
    MPI = "mpi"
    TCP = "tcp"

    def __new__(cls, name):
        if not isinstance(name, string_classes):
            raise ValueError("Backend name must be a string, but got: {}".format(name))
        value = getattr(Backend, name.upper(), Backend.UNDEFINED)

        if value == Backend.TCP:
            raise ValueError("TCP backend has been deprecated. Please use "
                             "Gloo or MPI backend for collective operations "
                             "on CPU tensors.")
        elif value == Backend.UNDEFINED:
            raise ValueError("Invalid backend: '{}'".format(name))
        return value

# `_backend`, `dist_backend`, and `reduce_op` are here to maintain backward
# compatibility with pre-c10d distributed package.
# TODO: remove them when users are ready to take a hard dependency on PyTorch 1.
_backend = Backend.UNDEFINED
dist_backend = Backend


class reduce_op(object):
    r"""
    Deprecated enum-like class for reduction operations: ``SUM``, ``PRODUCT``,
    ``MIN``, and ``MAX``.

    :class:`~torch.distributed.ReduceOp` is recommended to use instead.
    """

    def __init__(self):
        # __members__ is a dict storing key-value pairs for enum classes
        for k, v in ReduceOp.__members__.items():
            setattr(self, k, v)
        self.__members__ = ReduceOp.__members__

    def __getattribute__(self, key):
        warnings.warn("torch.distributed.reduce_op is deprecated, please use "
                      "torch.distributed.ReduceOp instead")
        return object.__getattribute__(self, key)

reduce_op = reduce_op()


class group(object):
    WORLD = object()


class GroupMember(object):
    # Alias to group.WORLD for backward compatibility
    WORLD = group.WORLD
    NON_GROUP_MEMBER = object()


# Cached process groups
# For NCCL and GLOO pg, it is a map from ProcessGroup to (Backend, Store)
# For MPI pg, it is a map from ProcessGroup to (Backend, Bool), where bool
# represents if the ProcessGroup objects is part of the group
_pg_map = {}
# Process group's names, map from ProcessGroup to str
_pg_names = {}
# Process group's global rank to local rank mapping
_pg_group_ranks = {}

# Default process group state
_default_pg = None
_default_pg_init_method = None

# Default process group wide timeout, if applicable.
# This currently only applies to the gloo backend. To make an attempt at
# backwards compatibility with THD, we use an extraordinarily high default
# timeout, given that THD did not have timeouts.
_default_pg_timeout = timedelta(minutes=30)

# Process group count for default naming
_group_count = 0


def _rank_not_in_group(group):
    """
    Helper that checks if the current process's rank is not in a given group

    """
    default_backend, _ = _pg_map[_get_default_group()]
    if default_backend != Backend.MPI:
        return group == GroupMember.NON_GROUP_MEMBER
    else:
        if group == GroupMember.WORLD:
            return False
        else:
            _, in_group = _pg_map[group]
            return not in_group


def _get_group_rank(group, rank):
    """
    Helper that gets a given group's local rank in the group from a given global
    rank

    """
    if group is GroupMember.WORLD:
        raise RuntimeError("group.WORLD does not have local rank to global "
                           "rank mapping")
    if group not in _pg_group_ranks:
        raise RuntimeError("The given group does not exist")
    try:
        group_rank = _pg_group_ranks[group][rank]
    except KeyError:
        raise RuntimeError("The global rank is not part of the group")
    return group_rank


def _get_global_rank(group, group_rank):
    """
    Helper that gets a given group's global rank from a given local rank in the
    group

    """
    if group is GroupMember.WORLD:
        raise RuntimeError("group.WORLD does not have local rank to global "
                           "rank mapping")
    group_rank_map = _pg_group_ranks[group]
    for rank, grp_rank in group_rank_map.items():
        if grp_rank == group_rank:
            return rank
    raise RuntimeError("The group rank is not part of the group")


def _check_default_pg():
    """
    Helper that checks if the default ProcessGroup has been initializd, with
    assertion

    """
    assert _default_pg is not None, \
        "Default process group is not initialized"


def _get_group_size(group):
    """
    Helper that gets a given group's world size

    """
    if group is GroupMember.WORLD:
        _check_default_pg()
        return _default_pg.size()
    if group not in _pg_group_ranks:
        raise RuntimeError("The given group does not exist")
    return len(_pg_group_ranks[group])


def _check_single_tensor(param, param_name):
    """
    Helper that check the parameter: param_name is a single Tensor

    """
    if not isinstance(param, torch.Tensor):
        raise RuntimeError("Invalid function argument. Expecting parameter: {} "
                           "to be a torch.Tensor type".format(param_name))


def _check_tensor_list(param, param_name):
    """
    Helper that check the parameter: param_name is a Tensor list

    """
    wrong_type = False
    if isinstance(param, list):
        for p in param:
            if not isinstance(p, torch.Tensor):
                wrong_type = True
                break
    else:
        wrong_type = True
    if wrong_type:
        raise RuntimeError("Invalid function argument. Expecting parameter: {} "
                           "to be a List[torch.Tensor] type".format(param_name))


def is_mpi_available():
    """
    Checks if MPI is available

    """
    return _MPI_AVAILABLE


def is_nccl_available():
    """
    Checks if NCCL is available

    """
    return _NCCL_AVAILABLE


def is_initialized():
    """
    Checking if the default process group has been initialized

    """
    return _default_pg is not None


def _get_default_group():
    """
    Getting the default process group created by init_process_group

    """
    if not is_initialized():
        raise RuntimeError("Default process group has not been initialized, "
                           "please make sure to call init_process_group.")
    return _default_pg


def get_backend(group=group.WORLD):
    """
    Returns the backend of the given process group.

    Arguments:
        group (ProcessGroup, optional): The process group to work on. The
            default is the general main process group. If another specific group
            is specified, the calling process must be part of :attr:`group`.

    Returns:
        The backend of the given process group as a lower case string.

    """
    _check_default_pg()

    if group == GroupMember.WORLD:
        pg = _default_pg
    else:
        pg = group
    if _rank_not_in_group(pg):
        raise RuntimeError("Invalid process group specified")
    return _pg_map.get(pg, None)[0]


def init_process_group(backend,
                       init_method="env://",
                       timeout=_default_pg_timeout,
                       **kwargs):
    """
    Initializes the default distributed process group, and this will also
    initialize the distributed package

    Arguments:
        backend (str or Backend): The backend to use. Depending on
            build-time configurations, valid values include ``mpi``, ``gloo``,
            and ``nccl``. This field should be given as a lowercase string
            (e.g., ``"gloo"``), which can also be accessed via
            :class:`Backend` attributes (e.g., ``Backend.GLOO``).
        init_method (str, optional): URL specifying how to initialize the
                                     process group.
        world_size (int, optional): Number of processes participating in
                                    the job.
        rank (int, optional): Rank of the current process.
        store(Store, optional): Rendevous key/value store as an alternative
                                to other init methods.
        timeout (timedelta, optional): Timeout for operations executed against
            the process group. Default value equals 30 minutes.
            This is only applicable for the ``gloo`` backend.
        group_name (str, optional, deprecated): Group name.

    To enable ``backend == Backend.MPI``, PyTorch needs to built from source
    on a system that supports MPI. The same applies to NCCL as well.

    """
    global _pg_map
    global _pg_names
    global _backend
    global _default_pg
    global _default_pg_init_method

    if not isinstance(timeout, timedelta):
        raise RuntimeError("Expected timeout argument to be of type"
                           "datetime.timedelta")

    if _default_pg is not None:
        raise RuntimeError("trying to initialize the default process group "
                           "twice!")

    world_size = kwargs.pop('world_size', -1)
    group_name = kwargs.pop('group_name', '')
    rank = kwargs.pop('rank', -1)
    store = kwargs.pop('store', None)
    if store is not None:
        assert world_size > 0, 'world_size needs to be positive'
        assert rank >= 0, 'rank needs to be non-negative'
    assert len(kwargs) == 0, \
        "got unexpected keyword arguments: %s" % ",".join(kwargs.keys())

    backend = Backend(backend)

    if backend == Backend.MPI:
        if not is_mpi_available():
            raise RuntimeError("Distributed package doesn't have MPI built in")

        _default_pg = ProcessGroupMPI([])
        _pg_map[_default_pg] = (Backend.MPI, True)
        _pg_names[_default_pg] = group_name
    else:
        # backward compatible API
        url = init_method
        if world_size != -1 and rank != -1:
            url += "?rank={}&world_size={}".format(rank, world_size)
        elif rank != -1:
            url += "?rank={}".format(rank)
        elif world_size != -1:
            url += "?world_size={}".format(world_size)

        if store is None:
            store, rank, world_size = next(rendezvous(url))
        if backend == Backend.GLOO:
            _default_pg = ProcessGroupGloo(
                store,
                rank,
                world_size,
                timeout=timeout)
            _pg_map[_default_pg] = (Backend.GLOO, store)
            _pg_names[_default_pg] = group_name
        elif backend == Backend.NCCL:
            if not is_nccl_available():
                raise RuntimeError("Distributed package doesn't have NCCL "
                                   "built in")
            _default_pg = ProcessGroupNCCL(store, rank, world_size)
            _pg_map[_default_pg] = (Backend.NCCL, store)
            _pg_names[_default_pg] = group_name

    _backend = _pg_map[_default_pg][0]
    _default_pg_init_method = init_method


def _new_process_group_helper(world_size,
                              rank,
                              group_ranks,
                              in_group,
                              group_name,
                              timeout=_default_pg_timeout):
    """
    Create a new distributed process group. And the new process group can be
    used to perform collective operations.

    """
    global _pg_map
    global _group_count
    global _pg_names

    if not group_name:
        group_name = str(_group_count)
        _group_count += 1

    if group_name in _pg_names.values():
        raise RuntimeError("The specified group name has already been "
                           "created, please use a different group name")

    if not isinstance(timeout, timedelta):
        raise RuntimeError("Expected timeout argument to be of type"
                           "datetime.timedelta")

    default_backend, default_store = _pg_map[_default_pg]

    if default_backend == Backend.MPI:
        if not is_mpi_available():
            raise RuntimeError("Distributed package doesn't have MPI built in")
        pg = ProcessGroupMPI(group_ranks)
        _pg_map[pg] = (Backend.MPI, in_group)
        _pg_names[pg] = group_name
    else:
        # Create the prefix store
        store = PrefixStore(group_name, default_store)

        if default_backend == Backend.GLOO:
            pg = ProcessGroupGloo(
                store,
                rank,
                world_size,
                timeout=timeout)
            _pg_map[pg] = (Backend.GLOO, store)
            _pg_names[pg] = group_name
        elif default_backend == Backend.NCCL:
            if not is_nccl_available():
                raise RuntimeError("Distributed package doesn't have NCCL "
                                   "built in")
            pg = ProcessGroupNCCL(store, rank, world_size, group_name)
            _pg_map[pg] = (Backend.NCCL, store)
            _pg_names[pg] = group_name
        else:
            raise RuntimeError("Unsupported distributed backend by group")
    return pg


def destroy_process_group(group=group.WORLD):
    """
    Destroy a given process group, and deinitialize the distributed package

    Arguments:
        group (ProcessGroup, optional): The process group to be destroyed, if
                                        group.WORLD is given, all process
                                        groups including the default one will
                                        be destroyed.
    """
    global _pg_map
    global _pg_names
    global _pg_group_ranks
    global _default_pg
    global _default_pg_init_method

    default_backend, _ = _pg_map[_get_default_group()]
    if (default_backend != Backend.MPI and
            group == GroupMember.NON_GROUP_MEMBER):
        return

    if group == GroupMember.WORLD:
        pg = _default_pg
    else:
        pg = group
    if _pg_map.get(pg, None) is None:
        raise RuntimeError("Invalid process group specified")

    if group == GroupMember.WORLD:
        _default_pg = None
        _default_pg_init_method = None
        _pg_map.clear()
        _pg_names.clear()
        _pg_group_ranks.clear()
    else:
        del _pg_map[pg]
        del _pg_names[pg]
        del _pg_group_ranks[pg]


def get_rank(group=group.WORLD):
    """
    Returns the rank of current process group

    Rank is a unique identifier assigned to each process within a distributed
    process group. They are always consecutive integers ranging from 0 to
    ``world_size``.

    Arguments:
        group (ProcessGroup, optional): The process group to work on

    Returns:
        The rank of the process group
        -1, if not part of the group

    """
    if _rank_not_in_group(group):
        return -1

    _check_default_pg()
    if group == GroupMember.WORLD:
        return _default_pg.rank()

    return _get_group_rank(group, _default_pg.rank())


def get_world_size(group=group.WORLD):
    """
    Returns the number of processes in the current process group

    Arguments:
        group (ProcessGroup, optional): The process group to work on

    Returns:
        The world size of the process group
        -1, if not part of the group

    """
    if _rank_not_in_group(group):
        return -1

    return _get_group_size(group)


def isend(tensor,
          dst,
          group=group.WORLD,
          tag=0):
    """
    Sends a tensor asynchronously.

    Arguments:
        tensor (Tensor): Tensor to send.
        dst (int): Destination rank.
        group (ProcessGroup, optional): The process group to work on
        tag (int, optional): Tag to match send with remote recv

    Returns:
        A distributed request object.
        None, if not part of the group

    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        return

    if group == GroupMember.WORLD:
        _check_default_pg()
        return _default_pg.send([tensor], dst, tag)
    else:
        group_dst_rank = _get_group_rank(group, dst)
        return group.send([tensor], group_dst_rank, tag)


def irecv(tensor,
          src,
          group=group.WORLD,
          tag=0):
    """
    Receives a tensor asynchronously.

    Arguments:
        tensor (Tensor): Tensor to fill with received data.
        src (int): Source rank.
        group (ProcessGroup, optional): The process group to work on
        tag (int, optional): Tag to match recv with remote send

    Returns:
        A distributed request object.
        None, if not part of the group

    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        return

    if group == GroupMember.WORLD:
        _check_default_pg()
        return _default_pg.recv([tensor], src, tag)
    else:
        group_src_rank = _get_group_rank(group, src)
        return group.recv([tensor], group_src_rank, tag)


def send(tensor,
         dst,
         group=group.WORLD,
         tag=0):
    """
    Sends a tensor synchronously.

    Arguments:
        tensor (Tensor): Tensor to send.
        dst (int): Destination rank.
        group (ProcessGroup, optional): The process group to work on
        tag (int, optional): Tag to match send with remote recv

    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        return

    if group == GroupMember.WORLD:
        _check_default_pg()
        _default_pg.send([tensor], dst, tag).wait()
    else:
        group_dst_rank = _get_group_rank(group, dst)
        group.send([tensor], group_dst_rank, tag).wait()


def recv(tensor,
         src=None,
         group=group.WORLD,
         tag=0):
    """
    Receives a tensor synchronously.

    Arguments:
        tensor (Tensor): Tensor to fill with received data.
        src (int, optional): Source rank. Will receive from any
            process if unspecified.
        group (ProcessGroup, optional): The process group to work on
        tag (int, optional): Tag to match recv with remote send

    Returns:
        Sender rank
        -1, if not part of the group

    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        return -1

    if group == GroupMember.WORLD:
        _check_default_pg()
        pg = _default_pg
    else:
        pg = group

    if src is None:
        work = pg.recv_anysource([tensor], tag)
        work.wait()
        src_rank = work.source_rank()
        if group == GroupMember.WORLD:
            return src_rank
        else:
            return _get_global_rank(pg, src_rank)
    else:
        if group == GroupMember.WORLD:
            pg.recv([tensor], src, tag).wait()
        else:
            group_src_rank = _get_group_rank(pg, src)
            pg.recv([tensor], group_src_rank, tag).wait()
        return src


def broadcast_multigpu(tensor_list,
                       src,
                       group=group.WORLD,
                       async_op=False,
                       src_tensor=0):
    """
    Broadcasts the tensor to the whole group with multiple GPU tensors
    per node.

    ``tensor`` must have the same number of elements in all the GPUs from
    all processes participating in the collective. each tensor in the list must
    be on a different GPU

    Only nccl and gloo backend are currently supported
    tensors should only be GPU tensors

    Arguments:
        tensor_list (List[Tensor]): Tensors that participate in the collective
            operation. If ``src`` is the rank, then the specified ``src_tensor``
            element of ``tensor_list`` (``tensor_list[src_tensor]``) will be
            broadcast to all other tensors (on different GPUs) in the src process
            and all tensors in ``tensor_list`` of other non-src processes.
            You also need to make sure that ``len(tensor_list)`` is the same
            for all the distributed processes calling this function.

        src (int): Source rank.
        group (ProcessGroup, optional): The process group to work on
        async_op (bool, optional): Whether this op should be an async op
        src_tensor (int, optional): Source tensor rank within ``tensor_list``

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    """
    if _rank_not_in_group(group):
        return

    opts = BroadcastOptions()
    opts.rootRank = src
    opts.rootTensor = src_tensor

    if group == GroupMember.WORLD:
        _check_default_pg()
        work = _default_pg.broadcast(tensor_list, opts)
    else:
        group_src_rank = _get_group_rank(group, src)
        opts.rootRank = group_src_rank
        work = group.broadcast(tensor_list, opts)
    if async_op:
        return work
    else:
        work.wait()


def broadcast(tensor,
              src,
              group=group.WORLD,
              async_op=False):
    """
    Broadcasts the tensor to the whole group.

    ``tensor`` must have the same number of elements in all processes
    participating in the collective.

    Arguments:
        tensor (Tensor): Data to be sent if ``src`` is the rank of current
            process, and tensor to be used to save received data otherwise.
        src (int): Source rank.
        group (ProcessGroup, optional): The process group to work on
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        return

    opts = BroadcastOptions()
    opts.rootRank = src
    opts.rootTensor = 0

    if group == GroupMember.WORLD:
        _check_default_pg()
        work = _default_pg.broadcast([tensor], opts)
    else:
        group_src_rank = _get_group_rank(group, src)
        opts.rootRank = group_src_rank
        work = group.broadcast([tensor], opts)
    if async_op:
        return work
    else:
        work.wait()


def all_reduce_multigpu(tensor_list,
                        op=ReduceOp.SUM,
                        group=group.WORLD,
                        async_op=False):
    r"""
    Reduces the tensor data across all machines in such a way that all get
    the final result. This function reduces a number of tensors on every node,
    while each tensor resides on different GPUs.
    Therefore, the input tensor in the tensor list needs to be GPU tensors.
    Also, each tensor in the tensor list needs to reside on a different GPU.

    After the call, all ``tensor`` in ``tensor_list`` is going to be bitwise
    identical in all processes.

    Only nccl and gloo backend is currently supported
    tensors should only be GPU tensors

    Arguments:
        tensor list (List[Tensor]): List of input and output tensors of
            the collective. The function operates in-place and requires that
            each tensor to be a GPU tensor on different GPUs.
            You also need to make sure that ``len(tensor_list)`` is the same for
            all the distributed processes calling this function.
        op (optional): One of the values from
            ``torch.distributed.ReduceOp``
            enum.  Specifies an operation used for element-wise reductions.
        group (ProcessGroup, optional): The process group to work on
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    """
    if _rank_not_in_group(group):
        return

    opts = AllreduceOptions()
    opts.reduceOp = op
    if group == GroupMember.WORLD:
        _check_default_pg()
        work = _default_pg.allreduce(tensor_list, opts)
    else:
        work = group.allreduce(tensor_list, opts)

    if async_op:
        return work
    else:
        work.wait()


def all_reduce(tensor,
               op=ReduceOp.SUM,
               group=group.WORLD,
               async_op=False):
    """
    Reduces the tensor data across all machines in such a way that all get
    the final result.

    After the call ``tensor`` is going to be bitwise identical in all processes.

    Arguments:
        tensor (Tensor): Input and output of the collective. The function
            operates in-place.
        op (optional): One of the values from
            ``torch.distributed.ReduceOp``
            enum.  Specifies an operation used for element-wise reductions.
        group (ProcessGroup, optional): The process group to work on
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        return

    opts = AllreduceOptions()
    opts.reduceOp = op
    if group == GroupMember.WORLD:
        _check_default_pg()
        work = _default_pg.allreduce([tensor], opts)
    else:
        work = group.allreduce([tensor], opts)

    if async_op:
        return work
    else:
        work.wait()


def reduce_multigpu(tensor_list,
                    dst,
                    op=ReduceOp.SUM,
                    group=group.WORLD,
                    async_op=False,
                    dst_tensor=0):
    """
    Reduces the tensor data on multiple GPUs across all machines. Each tensor
    in ``tensor_list`` should reside on a separate GPU

    Only the GPU of ``tensor_list[dst_tensor]`` on the process with rank ``dst``
    is going to receive the final result.

    Only nccl backend is currently supported
    tensors should only be GPU tensors

    Arguments:
        tensor_list (List[Tensor]): Input and output GPU tensors of the
            collective. The function operates in-place.
            You also need to make sure that ``len(tensor_list)`` is the same for
            all the distributed processes calling this function.
        dst (int): Destination rank
        op (optional): One of the values from
            ``torch.distributed.ReduceOp``
            enum.  Specifies an operation used for element-wise reductions.
        group (ProcessGroup, optional): The process group to work on
        async_op (bool, optional): Whether this op should be an async op
        dst_tensor (int, optional): Destination tensor rank within
                                    ``tensor_list``

    Returns:
        Async work handle, if async_op is set to True.
        None, otherwise

    """
    if _rank_not_in_group(group):
        return

    opts = ReduceOptions()
    opts.reduceOp = op
    opts.rootRank = dst
    opts.rootTensor = dst_tensor

    if group == GroupMember.WORLD:
        _check_default_pg()
        work = _default_pg.reduce(tensor_list, opts)
    else:
        group_dst_rank = _get_group_rank(group, dst)
        opts.rootRank = group_dst_rank
        work = group.reduce(tensor_list, opts)

    if async_op:
        return work
    else:
        work.wait()


def reduce(tensor,
           dst,
           op=ReduceOp.SUM,
           group=group.WORLD,
           async_op=False):
    """
    Reduces the tensor data across all machines.

    Only the process with rank ``dst`` is going to receive the final result.

    Arguments:
        tensor (Tensor): Input and output of the collective. The function
            operates in-place.
        dst (int): Destination rank
        op (optional): One of the values from
            ``torch.distributed.ReduceOp``
            enum.  Specifies an operation used for element-wise reductions.
        group (ProcessGroup, optional): The process group to work on
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        return

    opts = ReduceOptions()
    opts.reduceOp = op
    opts.rootRank = dst

    if group == GroupMember.WORLD:
        _check_default_pg()
        work = _default_pg.reduce([tensor], opts)
    else:
        group_dst_rank = _get_group_rank(group, dst)
        opts.rootRank = group_dst_rank
        work = group.reduce([tensor], opts)

    if async_op:
        return work
    else:
        work.wait()


def all_gather_multigpu(output_tensor_lists,
                        input_tensor_list,
                        group=group.WORLD,
                        async_op=False):
    """
    Gathers tensors from the whole group in a list.
    Each tensor in ``tensor_list`` should reside on a separate GPU

    Only nccl backend is currently supported
    tensors should only be GPU tensors

    Arguments:
        output_tensor_lists (List[List[Tensor]]): Output lists. It should
            contain correctly-sized tensors on each GPU to be used for output of
            the collective.
            e.g. ``output_tensor_lists[i]`` contains the all_gather
            result that resides on the GPU of ``input_tensor_list[i]``.
            Note that each element of ``output_tensor_lists[i]`` has the size of
            ``world_size * len(input_tensor_list)``, since the function all
            gathers the result from every single GPU in the group. To interpret
            each element of ``output_tensor_list[i]``, note that
            ``input_tensor_list[j]`` of rank k will be appear in
            ``output_tensor_list[i][rank * world_size + j]``
            Also note that ``len(output_tensor_lists)``, and the size of each
            element in ``output_tensor_lists`` (each element is a list,
            therefore ``len(output_tensor_lists[i])``) need to be the same
            for all the distributed processes calling this function.

        input_tensor_list (List[Tensor]): List of tensors(on different GPUs) to
            be broadcast from current process.
            Note that ``len(input_tensor_list)`` needs to be the same for
            all the distributed processes calling this function.

        group (ProcessGroup, optional): The process group to work on
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    """
    if _rank_not_in_group(group):
        return

    if group == GroupMember.WORLD:
        _check_default_pg()
        work = _default_pg.allgather(output_tensor_lists, input_tensor_list)
    else:
        work = group.allgather(output_tensor_lists, input_tensor_list)

    if async_op:
        return work
    else:
        work.wait()


def all_gather(tensor_list,
               tensor,
               group=group.WORLD,
               async_op=False):
    """
    Gathers tensors from the whole group in a list.

    Arguments:
        tensor_list (list[Tensor]): Output list. It should contain
            correctly-sized tensors to be used for output of the collective.
        tensor (Tensor): Tensor to be broadcast from current process.
        group (ProcessGroup, optional): The process group to work on
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    """
    _check_tensor_list(tensor_list, "tensor_list")
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        return

    if group == GroupMember.WORLD:
        _check_default_pg()
        work = _default_pg.allgather([tensor_list], [tensor])
    else:
        work = group.allgather([tensor_list], [tensor])

    if async_op:
        return work
    else:
        work.wait()


def gather(tensor,
           gather_list,
           dst,
           group=group.WORLD,
           async_op=False):
    """
    Gathers a list of tensors in a single process.

    Arguments:
        tensor (Tensor): Input tensor.
        gather_list (list[Tensor]): List of appropriately-sized tensors to
            use for received data. Required only in the receiving process.
        dst (int): Destination rank. Required in all processes except the one
            that is receiveing the data.
        group (ProcessGroup, optional): The process group to work on
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    """
    _check_single_tensor(tensor, "tensor")
    _check_tensor_list(gather_list, "gather_list")
    if _rank_not_in_group(group):
        return

    my_rank = get_rank()
    if dst == my_rank:
        if gather_list is None:
            raise RuntimeError("gather_list is a required argument in gather "
                               "destination")
        input_tensors = [tensor]
        output_tensors = [gather_list]
    else:
        if gather_list:
            raise RuntimeError("non-empty gather_list can be given only "
                               "to gather destination")
        input_tensors = [tensor]
        output_tensors = []

    opts = GatherOptions()
    opts.rootRank = dst

    if group == GroupMember.WORLD:
        _check_default_pg()
        work = _default_pg.gather(output_tensors, input_tensors, opts)
    else:
        group_dst_rank = _get_group_rank(group, dst)
        opts.rootRank = group_dst_rank
        work = group.gather(output_tensors, input_tensors, opts)

    if async_op:
        return work
    else:
        work.wait()


def scatter(tensor,
            scatter_list,
            src,
            group=group.WORLD,
            async_op=False):
    """
    Scatters a list of tensors to all processes in a group.

    Each process will receive exactly one tensor and store its data in the
    ``tensor`` argument.

    Arguments:
        tensor (Tensor): Output tensor.
        scatter_list (list[Tensor]): List of tensors to scatter. Required only
            in the process that is sending the data.
        src (int): Source rank. Required in all processes except the one that
            is sending the data.
        group (ProcessGroup, optional): The process group to work on
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group

    """
    _check_single_tensor(tensor, "tensor")
    _check_tensor_list(scatter_list, "scatter_list")
    if _rank_not_in_group(group):
        return

    my_rank = get_rank()
    if src == my_rank:
        if scatter_list is None:
            raise RuntimeError("scatter_list is a required argument in "
                               "scatter source")
        input_tensors = [scatter_list]
        output_tensors = [tensor]
    else:
        if scatter_list:
            raise RuntimeError("non-empty can be given only to scatter "
                               "source")
        input_tensors = []
        output_tensors = [tensor]

    opts = ScatterOptions()
    opts.rootRank = src

    if group == GroupMember.WORLD:
        _check_default_pg()
        work = _default_pg.scatter(output_tensors, input_tensors, opts)
    else:
        group_src_rank = _get_group_rank(group, src)
        opts.rootRank = group_src_rank
        work = group.scatter(output_tensors, input_tensors, opts)

    if async_op:
        return work
    else:
        work.wait()


def barrier(group=group.WORLD,
            async_op=False):
    """
    Synchronizes all processes.

    This collective blocks processes until the whole group enters this function,
    if async_op is False, or if async work handle is called on wait().

    Arguments:
        group (ProcessGroup, optional): The process group to work on
        async_op (bool, optional): Whether this op should be an async op

    Returns:
        Async work handle, if async_op is set to True.
        None, if not async_op or if not part of the group
    """
    if _rank_not_in_group(group):
        return

    if group == GroupMember.WORLD:
        _check_default_pg()
        work = _default_pg.barrier()
    else:
        work = group.barrier()

    if async_op:
        return work
    else:
        work.wait()


def new_group(ranks=None, timeout=_default_pg_timeout):
    """
    Creates a new distributed group.

    This function requires that all processes in the main group (i.e. all
    processes that are part of the distributed job) enter this function, even
    if they are not going to be members of the group. Additionally, groups
    should be created in the same order in all processes.

    Arguments:
        ranks (list[int]): List of ranks of group members.
        timeout (timedelta, optional): Timeout for operations executed against
            the process group. Default value equals 30 minutes.
            This is only applicable for the ``gloo`` backend.

    Returns:
        A handle of distributed group that can be given to collective calls.
    """

    _check_default_pg()

    global _pg_group_ranks
    global _group_count
    global _pg_names

    group_name = str(_group_count)
    _group_count += 1

    if group_name in _pg_names.values():
        raise RuntimeError("The specified group name has already been "
                           "created, please use a different group name")

    default_backend, _ = _pg_map[_default_pg]
    global_rank = _default_pg.rank()
    global_world_size = _default_pg.size()

    # checks the input ranks
    if ranks is not None:
        input_ranks = list(ranks)
        group_world_size = len(ranks)
        if group_world_size > global_world_size:
            raise RuntimeError("the new group's world size should be less or "
                               "equal to the world size set by "
                               "init_process_group")
        # check ranks' sanity
        for rank in ranks:
            if rank < 0 or rank >= global_world_size:
                raise RuntimeError("The new group's rank should be within the "
                                   "the world_size set by init_process_group")
        if global_rank in ranks:
            group_rank = ranks.index(global_rank)
        else:
            group_rank = None
    else:
        input_ranks = []
        ranks = list(range(global_world_size))
        group_world_size = global_world_size
        group_rank = global_rank

    if default_backend == Backend.MPI:
        in_group = global_rank in ranks
        pg = _new_process_group_helper(group_world_size,
                                       group_rank,
                                       input_ranks,
                                       in_group,
                                       group_name,
                                       timeout=timeout)
    else:
        # Release ranks not in the group
        if global_rank not in ranks:
            return GroupMember.NON_GROUP_MEMBER

        if default_backend != Backend.MPI:
            pg = _new_process_group_helper(group_world_size,
                                           group_rank,
                                           input_ranks,
                                           True,
                                           group_name,
                                           timeout=timeout)

    # Create the global rank to group rank mapping
    _pg_group_ranks[pg] = {}
    if default_backend == Backend.MPI:
        _pg_group_ranks[pg] = pg.group_ranks()
    else:
        for rank in range(global_world_size):
            if rank in ranks:
                _pg_group_ranks[pg][rank] = ranks.index(rank)
    return pg