1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
from __future__ import print_function
import sys
import os
import re
import math
import shutil
import random
import tempfile
import unittest
import traceback
import torch
import torch.nn as nn
import torch.utils.data
import torch.cuda
import warnings
from torch.utils.checkpoint import checkpoint, checkpoint_sequential
import torch.hub as hub
from torch.autograd._functions.utils import prepare_onnx_paddings
from torch.autograd._functions.utils import check_onnx_broadcast
from common_utils import IS_WINDOWS, IS_PPC, skipIfRocm, load_tests
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
try:
import torchvision.models as models
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
HAS_CUDA = torch.cuda.is_available()
from common_utils import TestCase, run_tests, download_file
class RandomDatasetMock(object):
def __getitem__(self, index):
return torch.tensor([torch.rand(1).item(), random.uniform(0, 1)])
def __len__(self):
return 1000
class TestCheckpoint(TestCase):
# This runs checkpoint_sequential on each of the nets in
# module_lists_to_compare, and compares them against the uncheckpointed model.
# To compare, it checks outputs as well as input gradients and parameter gradients
def _check_checkpoint_sequential(
self,
model,
module_lists_to_compare,
num_chunks,
*inputs
):
# not checkpointed
if not isinstance(inputs, tuple):
inputs = (inputs,)
out = model(*inputs)
out_not_checkpointed = out.data.clone()
model.zero_grad()
out.sum().backward()
grad_not_checkpointed = {
name: param.grad.data.clone()
for name, param in model.named_parameters()
}
input_grad_not_checkpointed = [i.grad.data.clone() for i in inputs]
for model_to_compare in module_lists_to_compare:
# checkpointed model by passing list of modules
detached_inputs = [i.detach() for i in inputs]
for detached in detached_inputs:
detached.requires_grad = True
# pass list of modules to checkpoint
out = checkpoint_sequential(model_to_compare, num_chunks, *detached_inputs)
out_checkpointed = out.data.clone()
model.zero_grad()
out.sum().backward()
grad_checkpointed = {
name: param.grad.data.clone()
for name, param in model.named_parameters()
}
input_grad_checkpointed = [d.grad.data.clone() for d in detached_inputs]
# compare outputs as well as the gradients of input and parameters
self.assertEqual(out_checkpointed, out_not_checkpointed)
for i, j in zip(input_grad_not_checkpointed, input_grad_checkpointed):
self.assertEqual(i, j)
for name in grad_checkpointed:
self.assertEqual(grad_checkpointed[name], grad_not_checkpointed[name])
# Test whether checkpoint is being triggered or not. For this, we check
# the number of times forward pass happens
def test_checkpoint_trigger(self):
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.counter = 0
def forward(self, input_var):
self.counter += 1
return input_var
# checkpointed
modules = [Net() for _ in range(10)]
for m in modules:
self.assertEqual(m.counter, 0)
input_var = torch.randn(3, 4, requires_grad=True)
out = checkpoint_sequential(modules, 2, input_var)
for m in modules:
self.assertEqual(m.counter, 1)
out.sum().backward()
for m in modules[:(len(modules) // 2)]:
self.assertEqual(m.counter, 2)
for m in modules[(len(modules) // 2):]:
self.assertEqual(m.counter, 1)
def test_checkpoint_valid(self):
model = nn.Sequential(
nn.Linear(100, 50),
nn.ReLU(),
nn.Linear(50, 20),
nn.ReLU(),
nn.Linear(20, 5),
nn.ReLU()
)
input_var = torch.randn(1, 100, requires_grad=True)
# checkpointed
chunks = 2
modules = list(model.children())
out = checkpoint_sequential(modules, chunks, input_var)
with self.assertRaisesRegex(RuntimeError, "Checkpointing is not compatible"):
torch.autograd.grad(
outputs=[out], grad_outputs=[torch.ones(1, 5)], inputs=[input_var], create_graph=True
)
def test_checkpoint(self):
model = nn.Sequential(
nn.Linear(100, 50),
nn.ReLU(),
nn.Linear(50, 20),
nn.ReLU(),
nn.Linear(20, 5),
nn.ReLU()
)
# Compare uncheckpointed model with its checkpointed counterparts
# In addition to running checkpoint_sequential on the nn.Sequential
# instance, we also run the function on the list of functions within
# the module.
self._check_checkpoint_sequential(
model,
[list(model.children()), model],
2,
torch.randn(1, 100, requires_grad=True)
)
def test_checkpoint_module_list_multiple_args(self):
class ModuleListNet(nn.Module):
def __init__(self):
super(ModuleListNet, self).__init__()
module_list = [
nn.Bilinear(100, 60, 50),
nn.ReLU(),
nn.Linear(50, 20),
nn.ReLU(),
nn.Linear(20, 5),
nn.ReLU(),
]
self.module_list = nn.ModuleList(module_list)
def forward(self, *inputs):
for layer in self.module_list:
if isinstance(inputs, tuple):
inputs = layer(*inputs)
else:
inputs = layer(inputs)
return inputs
model = ModuleListNet()
# Compare uncheckpointed model with its checkpointed counterparts
# In addition to running checkpoint_sequential on the nn.ModuleList
# instance, we also run the function on the list of functions within
# the ModuleList.
self._check_checkpoint_sequential(
model,
[list(model.module_list.children()), model.module_list],
2,
torch.randn(1, 100, requires_grad=True),
torch.randn(1, 60, requires_grad=True)
)
def test_checkpoint_rng_cpu(self):
for i in range(5):
inp = torch.randn(20000, device='cpu').requires_grad_()
phase1 = torch.nn.Dropout()
phase2 = torch.nn.Dropout()
def run_fn(input):
return phase2(input)
state = torch.get_rng_state()
out = phase1(inp)
out = checkpoint(run_fn, out)
out.sum().backward()
grad_with_checkpointing = inp.grad
torch.set_rng_state(state)
inp.grad = None
out = phase1(inp)
out = run_fn(out)
out.sum().backward()
grad_no_checkpointing = inp.grad
self.assertEqual(grad_with_checkpointing, grad_no_checkpointing)
@unittest.skipIf(not HAS_CUDA, 'No CUDA')
@skipIfRocm
def test_checkpoint_rng_cuda(self):
for i in range(5):
inp = torch.randn(20000, device='cuda').requires_grad_()
phase1 = torch.nn.Dropout()
phase2 = torch.nn.Dropout()
def run_fn(input):
return phase2(input)
state = torch.cuda.get_rng_state()
out = phase1(inp)
out = checkpoint(run_fn, out)
out.sum().backward()
grad_with_checkpointing = inp.grad
torch.cuda.set_rng_state(state)
inp.grad = None
out = phase1(inp)
out = run_fn(out)
out.sum().backward()
grad_no_checkpointing = inp.grad
self.assertEqual(grad_with_checkpointing, grad_no_checkpointing)
class TestDataLoader(TestCase):
def setUp(self):
self.dataset = torch.randn(5, 3, 3, 2)
self.batch_size = 3
def test_random_seed(self):
def run():
dataloader = torch.utils.data.DataLoader(RandomDatasetMock(),
batch_size=2,
num_workers=4,
shuffle=True)
return next(iter(dataloader))
torch.manual_seed(2018)
x1 = run()
torch.manual_seed(2018)
x2 = run()
self.assertEqual(x1, x2)
def test_single_keep(self):
dataloader = torch.utils.data.DataLoader(self.dataset,
batch_size=self.batch_size,
num_workers=0,
drop_last=False)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 2)
def test_single_drop(self):
dataloader = torch.utils.data.DataLoader(self.dataset,
batch_size=self.batch_size,
num_workers=0,
drop_last=True)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 1)
@unittest.skip("FIXME: Intermittent CUDA out-of-memory error on Windows and time-out under ASAN")
def test_multi_keep(self):
dataloader = torch.utils.data.DataLoader(self.dataset,
batch_size=self.batch_size,
num_workers=2,
drop_last=False)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 2)
def test_multi_drop(self):
dataloader = torch.utils.data.DataLoader(self.dataset,
batch_size=self.batch_size,
num_workers=2,
drop_last=True)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 1)
test_dir = os.path.abspath(os.path.dirname(str(__file__)))
class TestFFI(TestCase):
def test_deprecated(self):
with self.assertRaisesRegex(ImportError, "torch.utils.ffi is deprecated. Please use cpp extensions instead."):
from torch.utils.ffi import create_extension
@unittest.skipIf('SKIP_TEST_BOTTLENECK' in os.environ.keys(), 'SKIP_TEST_BOTTLENECK is set')
class TestBottleneck(TestCase):
def _run(self, command):
"""Returns (return-code, stdout, stderr)"""
import subprocess
from common_utils import PY3
p = subprocess.Popen(command, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, shell=True)
output, err = p.communicate()
rc = p.returncode
if PY3:
output = output.decode("ascii")
err = err.decode("ascii")
return (rc, output, err)
def _run_bottleneck(self, test_file, scriptargs=''):
curdir = os.path.dirname(os.path.abspath(__file__))
filepath = '{}/{}'.format(curdir, test_file)
if scriptargs != '':
scriptargs = ' {}'.format(scriptargs)
rc, out, err = self._run(
'{} -m torch.utils.bottleneck {}{}'.format(sys.executable, filepath, scriptargs))
return rc, out, err
def _check_run_args(self):
# Check that this fails due to missing args
rc, out, err = self._run_bottleneck('bottleneck/test_args.py')
self.assertEqual(rc, 2, None, self._fail_msg('Missing args should error', out + err))
# This should succeed
rc, out, err = self._run_bottleneck('bottleneck/test_args.py', '--foo foo --bar bar')
self.assertEqual(rc, 0, None, self._fail_msg('Should pass args to script', out + err))
def _fail_msg(self, msg, output):
return '{}, output was:\n{}'.format(msg, output)
def _check_environment_summary(self, output):
results = re.search('Environment Summary', output)
self.assertIsNotNone(results, self._fail_msg('Should have Enviroment Summary', output))
# Up to five lines away from the heading, there should be the version number
results = re.search(r'Environment Summary.*(\n.*){,5}\nPyTorch \d+\.\d+', output)
self.assertIsNotNone(results, self._fail_msg('Should have PyTorch version', output))
def _check_cprof_summary(self, output):
results = re.search('cProfile output', output)
self.assertIsNotNone(results, self._fail_msg('Should have cProfile output', output))
# This assumes that after the cProfile output section we have
# the autograd profiler output
results = re.search(r'cProfile output.*(\n.*){6,50}\n.*autograd profiler output', output)
self.assertIsNotNone(results, self._fail_msg(
'Distance between cProfile and autograd prof out not in [6, 50] lines', output))
def _check_autograd_summary(self, output):
results = re.search('autograd profiler output', output)
self.assertIsNotNone(results, self._fail_msg('Should have autograd profiler output', output))
# This assumes that after the autograd profiler output is the end of the
# output.
results = re.search(r'autograd profiler output.*(\n.*){6,100}', output)
self.assertIsNotNone(results, self._fail_msg(
'Distance between autograd prof output and end of output not in [6, 100] lines', output))
def _check_cuda(self, output):
if HAS_CUDA:
results = re.search('CUDA mode', output)
self.assertIsNotNone(results, self._fail_msg('Should tell users CUDA', output))
else:
results = re.search('CUDA mode', output)
self.assertIsNone(results, self._fail_msg('Should not tell users about CUDA', output))
@unittest.skipIf(HAS_CUDA, 'CPU-only test')
def test_bottleneck_cpu_only(self):
rc, out, err = self._run_bottleneck('bottleneck/test.py')
self.assertEqual(rc, 0, 'Run failed with\n{}'.format(err))
self._check_run_args()
self._check_environment_summary(out)
self._check_autograd_summary(out)
self._check_cprof_summary(out)
self._check_cuda(out)
@unittest.skipIf(not HAS_CUDA, 'No CUDA')
@skipIfRocm
def test_bottleneck_cuda(self):
rc, out, err = self._run_bottleneck('bottleneck/test_cuda.py')
self.assertEqual(rc, 0, 'Run failed with\n{}'.format(err))
self._check_run_args()
self._check_environment_summary(out)
self._check_autograd_summary(out)
self._check_cprof_summary(out)
self._check_cuda(out)
from torch.utils.collect_env import get_pretty_env_info
class TestCollectEnv(TestCase):
def test_smoke(self):
info_output = get_pretty_env_info()
self.assertTrue(info_output.count('\n') >= 17)
class TestONNXUtils(TestCase):
def test_prepare_onnx_paddings(self):
sizes = [2, 3, 4]
pad = [1, 2, 3, 4]
paddings = prepare_onnx_paddings(len(sizes), pad)
self.assertEqual(paddings, [0, 3, 1, 0, 4, 2])
def test_check_onnx_broadcast(self):
def try_check_onnx_broadcast(dims1, dims2, expect_broadcast, expect_fail):
broadcast = True
fail = False
try:
broadcast = check_onnx_broadcast(dims1, dims2)
except ValueError:
fail = True
self.assertEqual(broadcast, expect_broadcast)
self.assertEqual(fail, expect_fail)
# Case 1, check the case when len(dims1) < len(dims2) and numel(dims2) > 1
dims1 = [3, 4]
dims2 = [2, 3, 4]
try_check_onnx_broadcast(dims1, dims2, True, True)
# Case 2, check the case when len(dims1) < len(dims2) and numel(dims2) == 1
dims1 = [3, 4]
dims2 = [1, 1, 1]
try_check_onnx_broadcast(dims1, dims2, True, False)
# Case 3, check the case when len(dims1) > len(dims2) and numel(dims2) == 1
dims1 = [1, 1]
dims2 = [1]
try_check_onnx_broadcast(dims1, dims2, True, False)
# Case 4, check the case when len(dims1) > len(dims2) and dims1[x:] == dims2
dims1 = [2, 3, 4]
dims2 = [3, 4]
try_check_onnx_broadcast(dims1, dims2, True, False)
# Case 5, check the case when len(dims1) > len(dims2), but dims1[x:] != dims2
dims1 = [2, 3, 4]
dims2 = [1, 4]
try_check_onnx_broadcast(dims1, dims2, True, True)
# Case 6, check the equal case, no broadcast
dims1 = [3, 4]
dims2 = [3, 4]
try_check_onnx_broadcast(dims1, dims2, False, False)
# Case 7, check the case when len(dims1) == len(dims2), but dims1 != dims2
dims1 = [3, 4]
dims2 = [1, 4]
try_check_onnx_broadcast(dims1, dims2, True, True)
# Case 8, check the case when len(dims1) == len(dims2) and numel(s2) == 1
dims1 = [3, 4]
dims2 = [1, 1]
try_check_onnx_broadcast(dims1, dims2, True, False)
class TestHub(TestCase):
@classmethod
@skipIfNoTorchVision
def setUpClass(cls):
cls.resnet18_pretrained = models.__dict__['resnet18'](pretrained=True).state_dict()
@skipIfNoTorchVision
def test_load_from_github(self):
hub_model = hub.load(
'pytorch/vision',
'resnet18',
pretrained=True)
self.assertEqual(self.resnet18_pretrained, hub_model.state_dict())
@skipIfNoTorchVision
def test_set_dir(self):
temp_dir = tempfile.gettempdir()
hub.set_dir(temp_dir)
hub_model = hub.load(
'pytorch/vision',
'resnet18',
pretrained=True)
self.assertEqual(self.resnet18_pretrained, hub_model.state_dict())
assert os.path.exists(temp_dir + '/vision_master')
shutil.rmtree(temp_dir + '/vision_master')
if __name__ == '__main__':
run_tests()
|