summaryrefslogtreecommitdiff
path: root/test/test_autograd.py
blob: 3733e4ca2a477f7dd6a9e23a5445bfb057ccab3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
import contextlib
import gc
import sys
import math
import torch
import unittest
import warnings
from copy import deepcopy
from collections import OrderedDict
from itertools import product
from operator import mul
from functools import reduce
from torch._six import inf, nan, istuple
from torch.autograd.gradcheck import gradgradcheck, gradcheck
from torch.autograd.function import once_differentiable
from torch.autograd.profiler import profile
from torch.utils.checkpoint import checkpoint
from common_utils import (TEST_MKL, TestCase, run_tests, skipIfNoLapack,
                          suppress_warnings, skipIfRocm,
                          load_tests, random_symmetric_pd_matrix)
from common_cuda import TEST_CUDA
from torch.autograd import Variable, Function, detect_anomaly
from torch.autograd.function import InplaceFunction
from torch.testing import randn_like
from common_methods_invocations import (method_tests,
                                        create_input, unpack_variables,
                                        EXCLUDE_FUNCTIONAL, EXCLUDE_GRADCHECK,
                                        EXCLUDE_GRADGRADCHECK,
                                        EXCLUDE_GRADGRADCHECK_BY_TEST_NAME,
                                        exclude_tensor_method,
                                        mask_not_all_zeros,
                                        S)

# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests

if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle

PRECISION = 1e-4


@contextlib.contextmanager
def backward_engine(engine):
    _prev_engine = Variable._execution_engine
    Variable._execution_engine = engine()
    try:
        yield
    finally:
        Variable._execution_engine = _prev_engine


def graph_desc(fn):
    if fn is None:
        return 'None'
    result = type(fn).__name__ + '('
    next_functions = fn.next_functions
    for next_fn, _ in next_functions:
        result += graph_desc(next_fn)
        result += ', '
    if next_functions:
        result = result[:-2]
    return result + ')'


class TestAutograd(TestCase):

    def _function_test(self, cls):
        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5, 5, requires_grad=True)
        result = cls.apply(x, 2, y)
        go = torch.ones((), requires_grad=True)
        result.sum().backward(go, create_graph=True)

        self.assertEqual(x.grad.data, y.data + torch.ones(5, 5))
        self.assertEqual(y.grad.data, x.data + torch.ones(5, 5) * 2)
        self.assertIsNotNone(x.grad.grad_fn)
        self.assertIsNotNone(y.grad.grad_fn)

        return x, y

    def test_function(self):
        class MyFunction(Function):

            @staticmethod
            def forward(ctx, tensor1, pyscalar, tensor2):
                ctx.pyscalar = pyscalar
                ctx.save_for_backward(tensor1, tensor2)
                return tensor1 + pyscalar * tensor2 + tensor1 * tensor2

            @staticmethod
            def backward(ctx, grad_output):
                var1, var2 = ctx.saved_tensors
                # NOTE: self is the test case here
                self.assertIsInstance(var1, torch.Tensor)
                self.assertIsInstance(var2, torch.Tensor)
                self.assertIsInstance(grad_output, torch.Tensor)
                return (grad_output + grad_output * var2, None,
                        grad_output * ctx.pyscalar + grad_output * var1)

        x, y = self._function_test(MyFunction)

        x_grad_desc = graph_desc(x.grad.grad_fn)
        y_grad_desc = graph_desc(y.grad.grad_fn)
        self.assertExpected(x_grad_desc, "x_grad_desc")
        self.assertExpected(y_grad_desc, "y_grad_desc")

    def test_once_differentiable(self):
        class MyFunction(Function):

            @staticmethod
            def forward(ctx, tensor1, pyscalar, tensor2):
                ctx.pyscalar = pyscalar
                ctx.save_for_backward(tensor1, tensor2)
                return tensor1 + pyscalar * tensor2 + tensor1 * tensor2

            @staticmethod
            @once_differentiable
            def backward(ctx, grad_output):
                self.assertFalse(torch.is_grad_enabled())
                t1, t2 = ctx.saved_tensors
                return (grad_output + grad_output * t2, None,
                        grad_output * ctx.pyscalar + grad_output * t1)

        x, y = self._function_test(MyFunction)
        self.assertEqual(graph_desc(x.grad.grad_fn),
                         'CloneBackward(Error(AccumulateGrad(), None, AccumulateGrad()))')
        self.assertEqual(graph_desc(y.grad.grad_fn),
                         'CloneBackward(Error(AccumulateGrad(), None, AccumulateGrad()))')

    def test_function_returns_input(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, grad):
                return grad * 2

        for shape in [(1,), ()]:
            v = torch.ones(shape, requires_grad=True)
            MyFunction.apply(v).backward()
            self.assertEqual(v.grad, torch.full(shape, 2))

            v.grad.data.zero_()
            MyFunction.apply(v.clone()).backward()
            self.assertEqual(v.grad, torch.full(shape, 2))

    def test_legacy_function_none_grad(self):
        class MyFunction(Function):
            def forward(self, x):
                return torch.zeros(2, 2, 2)

            def backward(self, grad_output):
                return None

        shape = (2, 3)
        v = torch.ones(shape, requires_grad=True)
        y = v[0, 0].expand(3, 5).t().sum()
        MyFunction()(y).sum().backward()
        self.assertEqual(v.grad.data, torch.zeros(shape))

    def test_invalid_gradients(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, x):
                return x * 2

            @staticmethod
            def backward(ctx, grad_output):
                return torch.randn(10, dtype=torch.float)

        with self.assertRaisesRegex(RuntimeError, 'expected shape'):
            input = torch.randn(5, 5, dtype=torch.float, requires_grad=True)
            MyFunction.apply(input).sum().backward()
        with self.assertRaisesRegex(RuntimeError, 'expected type'):
            input = torch.randn(10, dtype=torch.double, requires_grad=True)
            MyFunction.apply(input).sum().backward()

    def test_accumulate_grad(self):
        grad_output = torch.ones(5, 5)

        def compute_grad(create_graph):
            x = torch.randn(5, 5, requires_grad=True)
            y = x + 2
            y.backward(grad_output, retain_graph=True)
            x_grad = x.grad
            x_grad_clone = x.grad.clone()
            y.backward(grad_output, create_graph=create_graph)
            return x_grad, x_grad_clone

        # Accumulate in-place when create_graph is False
        x_grad, x_grad_clone = compute_grad(create_graph=False)
        self.assertEqual(x_grad, x_grad_clone * 2)

        # Accumulate out-of-place when create_graph is False
        x_grad, x_grad_clone = compute_grad(create_graph=True)
        self.assertEqual(x_grad, x_grad_clone)

    def test_slogdet_sign(self):
        a = torch.randn(3, 3, requires_grad=True)
        s, logdet = a.slogdet()

        # test that sign should not require grad
        self.assertFalse(s.requires_grad)

        # test that backward through computation involving sign works
        def sign_mul_logdet(mat):
            s, logdet = mat.slogdet()
            return s * logdet

        u, s, v = a.detach().svd()
        s.abs_().clamp_(0.0001)
        for sign in (-1, 1):
            s[-1] = sign
            mat = torch.chain_matmul(u, s.diag(), v.t()).requires_grad_()
            gradcheck(sign_mul_logdet, mat)
            gradgradcheck(sign_mul_logdet, mat)

    def test_sum_to_with_empty_dim_grad(self):
        a = torch.rand(4, 0, requires_grad=True)
        b = torch.rand(4, 1, requires_grad=True)
        c = a + b
        assert c.shape == (4, 0)
        c.sum().backward()

        self.assertEqual(b.grad, torch.zeros(4, 1))
        self.assertEqual(a.grad, torch.zeros(4, 0))

    def test_hessian_vector(self):
        x = torch.randn(2, 2, requires_grad=True)
        y = torch.randn(2, 2, requires_grad=True)

        z = x ** 2 + y * x + y ** 2
        z.backward(torch.ones(2, 2), create_graph=True)

        x_grad = 2 * x.data + y.data
        y_grad = x.data + 2 * y.data
        self.assertEqual(x.grad.data, x_grad)
        self.assertEqual(y.grad.data, y_grad)

        grad_sum = 2 * x.grad + y.grad
        grad_sum.backward(torch.ones(2, 2))
        x_hv = torch.ones(2, 2) * 5
        y_hv = torch.ones(2, 2) * 4
        self.assertEqual(x.grad.data, x_grad + x_hv)
        self.assertEqual(y.grad.data, y_grad + y_hv)

    def test_grad(self):
        x = torch.randn(2, 2, requires_grad=True)
        y = torch.randn(2, 2, requires_grad=True)
        z = x ** 2 + y * x + y ** 2
        z.backward(torch.ones(2, 2), create_graph=True)

        x_grad = 2 * x.data + y.data
        y_grad = x.data + 2 * y.data
        self.assertEqual(x.grad.data, x_grad)
        self.assertEqual(y.grad.data, y_grad)

        grad_sum = 2 * x.grad + y.grad
        x_hv = torch.autograd.grad(
            outputs=[grad_sum], grad_outputs=[torch.ones(2, 2)],
            inputs=[x], create_graph=True)
        expected_x_hv = torch.ones(2, 2) * 5
        expected_y_hv = torch.ones(2, 2) * 4

        self.assertEqual(x_hv[0].data, expected_x_hv)
        self.assertEqual(x.grad.data, x_grad)
        self.assertEqual(y.grad.data, y_grad)

    def test_grad_nonleaf(self):
        x_init = torch.randn(2, 2, requires_grad=True)
        x = x_init
        y = torch.randn(2, 2, requires_grad=True)
        grad_output = torch.ones(2, 2)

        def fn(x):
            return x ** 2 + y * x + y ** 2

        for _ in range(5):
            grad_x, = torch.autograd.grad(
                fn(x), x, grad_outputs=grad_output, create_graph=True)

            grad_x_expected = 2 * x.data + y.data
            self.assertIsNone(y.grad)
            self.assertIsNone(x.grad)
            self.assertEqual(grad_x.data, grad_x_expected)

            x = x + 0.05 * grad_x

        val_init = fn(x_init).data.sum()
        val_final = fn(x).data.sum()
        self.assertGreater(val_final, val_init)

        x.backward(grad_output)
        self.assertIsNotNone(y.grad)
        self.assertIsNotNone(x_init.grad)

    def test_grad_nonleaf_many_outputs(self):
        # This checks an edge case for function callbacks
        # We want to capture two grads of a function, but can only
        # register a single callback.
        x = torch.randn(4, 2, requires_grad=True)
        a, b = x.chunk(2)

        def hook(*grads):
            hook_called[0] = True
        hook_called = [False]
        x.register_hook(hook)

        go = torch.randn(2, 2)
        grad_a, grad_b = torch.autograd.grad(
            (a + 2 * b), [a, b], grad_outputs=go, create_graph=True)

        self.assertEqual(grad_a.data, go)
        self.assertEqual(grad_b.data, go * 2)
        self.assertFalse(hook_called[0])
        self.assertIsNone(x.grad)

    def test_grad_nonleaf_register_hook(self):
        # This checks an edge case for register_hook.
        # We want to capture grad of a nonleaf tensor,
        # but avoid segfault during backward of other nonleaf tensors
        x = torch.randn(5, requires_grad=True)
        x_list = x.unbind()

        x0 = x_list[0]
        hook_results = [None]

        def hook(grad):
            hook_results[0] = grad
        x0.register_hook(hook)

        x_list[0].backward()
        self.assertEqual(hook_results[0], torch.tensor(1.))
        expected_grad = torch.tensor([1., 0, 0, 0, 0])
        self.assertEqual(x.grad, expected_grad)
        self.assertIsNone(x_list[0].grad)

        for i in range(1, 5, 1):
            x_list[i].backward()
            self.assertEqual(hook_results[0], None)
            expected_grad[i] = 1.0
            self.assertEqual(x.grad, expected_grad)
            self.assertIsNone(x_list[i].grad)

    def test_sharded_grad(self):
        leaves = [torch.zeros(5, 5, requires_grad=True) for _ in range(10)]
        intermediates = [l * i + l * l for i, l in enumerate(leaves)]
        loss = sum(v * i for i, v in enumerate(intermediates)).sum()

        # define a helper for dividing intermediates into groups
        def group(l, group_size):
            return (l[i:i + group_size] for i in range(0, len(l), group_size))

        # Compute the d loss / d intermediates in chunks of shard_size
        shard_size = 2
        d_intermediates = [d_i for intermediates_batch in group(intermediates, shard_size)
                           for d_i in torch.autograd.grad(loss, intermediates_batch)]
        # Compute rest of backward pass
        torch.autograd.backward(intermediates, d_intermediates)

        for i, l in enumerate(leaves):
            self.assertEqual(l.grad.data, i * i * (1 + l.data))

    def test_backward_badcalls(self):
        x = torch.ones(1)
        with self.assertRaisesRegex(RuntimeError, 'does not require grad'):
            x.backward()

    def test_grad_badcalls(self):
        x = torch.ones(1)
        y = x ** 2
        with self.assertRaisesRegex(RuntimeError, 'does not require grad'):
            torch.autograd.grad(x, y)
        with self.assertRaisesRegex(RuntimeError, 'does not require grad'):
            torch.autograd.grad(y, x)

        x = torch.ones(1, requires_grad=True)
        y = x ** 2
        torch.autograd.grad(y, x)  # this should succeed now

    def test_grad_fn_badcalls(self):
        error_regex = 'expected .* arguments, got .* instead'
        x = torch.ones(1, requires_grad=True)
        y = x ** 2
        with self.assertRaisesRegex(TypeError, error_regex):
            y.grad_fn(x.detach(), x.detach())  # too many
        with self.assertRaisesRegex(TypeError, error_regex):
            y.grad_fn()  # too few

        y.grad_fn(x.detach())  # this should succeed

    def test_grad_unreachable(self):
        x = torch.ones(1, requires_grad=True)
        y = torch.ones(1, requires_grad=True)
        # Make sure x and y have grad accumulators allocated
        z = x * 2
        w = y * 2

        grad_x, grad_y = torch.autograd.grad(x * 2, [x, y], allow_unused=True)
        self.assertEqual(grad_x, x * 2)
        self.assertIsNone(grad_y)

        # This is slightly different than the case above, because z doesn't even
        # have a grad accumulator allocated.
        z = torch.ones(1, requires_grad=True)
        grad_x, grad_z = torch.autograd.grad(x * 2, [x, z], allow_unused=True)
        self.assertEqual(grad_x, x * 2)
        self.assertIsNone(grad_z)

    def test_hooks(self):
        x = torch.ones(5, 5, requires_grad=True)
        y = Variable(torch.ones(5, 5) * 4, requires_grad=True)

        counter = [0]

        def bw_hook(inc, grad):
            self.assertIsInstance(grad, torch.Tensor)
            counter[0] += inc

        z = x ** 2 + x * 2 + x * y + y
        x.register_hook(lambda *args: bw_hook(0, *args))
        test = z.register_hook(lambda *args: bw_hook(1, *args))
        z.backward(torch.ones(5, 5), retain_graph=True)
        self.assertEqual(counter[0], 1)

        test2 = z.register_hook(lambda *args: bw_hook(2, *args))
        z.backward(torch.ones(5, 5), retain_graph=True)
        self.assertEqual(counter[0], 4)

        test2.remove()
        z.backward(torch.ones(5, 5), retain_graph=True)
        self.assertEqual(counter[0], 5)

        def bw_hook_modify(grad):
            return grad.mul(2)

        test.remove()
        z.register_hook(bw_hook_modify)
        y.grad.data.zero_()
        z.backward(torch.ones(5, 5), retain_graph=True)
        self.assertEqual(y.grad.data, (x.data + 1) * 2)

        y.register_hook(bw_hook_modify)
        y.grad.data.zero_()
        z.backward(torch.ones(5, 5))
        self.assertEqual(y.grad.data, (x.data + 1) * 4)

    def test_hooks_cpp(self):
        # Tests hooks for autograd function implemented in C++
        bn = torch.nn.BatchNorm1d(5, affine=False)
        bn.eval()

        counter = [0]

        def bw_hook(grad):
            counter[0] += 1
            return grad * 2

        x = torch.ones(5, 5, requires_grad=True)
        z = bn(x)
        z.register_hook(bw_hook)
        z.sum().backward()

        self.assertEqual(counter[0], 1, 'bw_hook not called')
        self.assertEqual(x.grad.data, torch.ones(5, 5) * 2)

    def test_hook_none(self):
        # WARNING: this is a test for autograd internals.
        # You should never have to use such things in your code.
        class NoneGradientFunction(Function):

            def forward(self, x, y):
                assert self.needs_input_grad[0]
                assert not self.needs_input_grad[1]
                return x, y

            def backward(self, grad_x, grad_y):
                return grad_x, None

        fn = NoneGradientFunction()
        was_called = [False]

        def hook(grad_input, grad_output):
            self.assertIsInstance(grad_input, tuple)
            self.assertIsInstance(grad_output, tuple)
            self.assertIsNotNone(grad_input[0])
            self.assertIsNotNone(grad_input[1])
            self.assertIsNotNone(grad_output[0])
            self.assertIsNotNone(grad_output[1])
            was_called[0] = True
        fn.register_hook(hook)

        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5, 5)
        sum(fn(x, y)).sum().backward()
        self.assertTrue(was_called[0])

    def test_retain_grad(self):
        input = torch.rand(1, 3, requires_grad=True)
        h1 = input * 3
        out = (h1 * h1).sum()

        # It should be possible to call retain_grad() multiple times
        h1.retain_grad()
        h1.retain_grad()

        # Gradient should be accumulated
        out.backward(retain_graph=True)
        self.assertEqual(h1.data * 2, h1.grad.data)
        out.backward(retain_graph=True)
        self.assertEqual(h1.data * 4, h1.grad.data)

        input.grad.data.zero_()
        # It should be a no-op for leaves
        input.retain_grad()
        input.retain_grad()
        out.backward()
        self.assertEqual(input.data * 18, input.grad.data)

    def test_retain_grad_cycle(self):
        import gc
        import weakref
        counter = [0]
        refs = [None]

        x = torch.ones(5, 5, requires_grad=True)

        def run_test():
            y = x * 2
            y.retain_grad()

            def inc(*args):
                counter[0] += 1
            refs[0] = weakref.ref(y, inc)
            return y / 2

        z = run_test()
        gc.collect()
        self.assertIsNone(refs[0]())
        self.assertEqual(counter[0], 1)
        z.sum().backward()

    def test_backward(self):
        v_t = torch.randn(5, 5)
        x_t = torch.randn(5, 5)
        y_t = torch.rand(5, 5) + 0.1
        z_t = torch.randn(5, 5)
        grad_output = torch.randn(5, 5)
        v = Variable(v_t, requires_grad=True)
        x = Variable(x_t, requires_grad=True)
        y = Variable(y_t, requires_grad=True)
        z = Variable(z_t, requires_grad=True)

        v.backward(grad_output)
        self.assertEqual(v.grad.data, grad_output)

        a = x + (y * z) + 4 * z ** 2 * x / y
        a.backward(grad_output)
        x_grad = 4 * z_t.pow(2) / y_t + 1
        y_grad = z_t - 4 * x_t * z_t.pow(2) / y_t.pow(2)
        z_grad = 8 * x_t * z_t / y_t + y_t
        self.assertEqual(x.grad.data, x_grad * grad_output)
        self.assertEqual(y.grad.data, y_grad * grad_output)
        self.assertEqual(z.grad.data, z_grad * grad_output)

    def test_sparse_backward(self):
        class FixedGradientFunction(Function):
            def __init__(self, grad):
                self.grad = grad

            def forward(self, x):
                return x

            def backward(self, grad_x):
                return self.grad

        size = torch.Size([6, 3, 2])
        i1 = torch.LongTensor([
            [0, 3, 4],
            [0, 2, 2],
        ])
        v1 = torch.DoubleTensor([[1, 2], [4, 5], [7, 8]])
        sparse_grad1 = torch.sparse.DoubleTensor(i1, v1, size)
        i2 = torch.LongTensor([
            [0, 1, 3, 4],
            [0, 1, 2, 2],
        ])
        v2 = torch.DoubleTensor([[1, 2], [4, 3], [4, 5], [7, 8]])
        sparse_grad2 = torch.sparse.DoubleTensor(i2, v2, size)
        dense_grad = torch.rand(size).double()
        sparse_fn1 = FixedGradientFunction(sparse_grad1)
        sparse_fn2 = FixedGradientFunction(sparse_grad2)
        dense_fn = FixedGradientFunction(dense_grad)

        # sparse first
        x = torch.randn(size, requires_grad=True)
        (sparse_fn1(x) + dense_fn(x) + sparse_fn2(x)).sum().backward()
        self.assertEqual(x.grad, dense_grad + sparse_grad1 + sparse_grad2)
        # dense first
        x = torch.randn(size, requires_grad=True)
        (dense_fn(x) + sparse_fn1(x) + sparse_fn2(x)).sum().backward()
        self.assertEqual(x.grad, dense_grad + sparse_grad1 + sparse_grad2)
        # sparse only
        x = torch.randn(size, requires_grad=True)
        (sparse_fn1(x) + sparse_fn2(x)).sum().backward()
        self.assertEqual(x.grad, sparse_grad1 + sparse_grad2)

    def test_sparse_mm_backward(self):
        size = (3, 3)
        sparse = torch.sparse_coo_tensor(size, requires_grad=True)
        dense = torch.randn(size, requires_grad=True)

        z = sparse.mm(dense)
        with self.assertRaisesRegex(RuntimeError,
                                    "calculating the gradient of a sparse Tensor argument to mm is not supported."):
            z.sum().backward()

        z = dense.addmm(sparse, dense)
        with self.assertRaisesRegex(RuntimeError,
                                    "calculating the gradient of a sparse Tensor argument to mm is not supported."):
            z.sum().backward()

    # NOTE: flaky on ROCm CI
    @skipIfRocm
    def test_sparse_ctor_getter_backward(self):
        # See NOTE [ Sparse: autograd and API ] on the expected behavior of this test
        def test(size, sparse_dim, nnz, device):
            v_size = [nnz] + list(size[sparse_dim:])
            i = torch.rand(sparse_dim, nnz)
            i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i))
            i = i.to(torch.long)

            inp = torch.randn(v_size, requires_grad=True)
            other = self.genSparseTensor(size, sparse_dim, nnz, is_uncoalesced=True)[0]
            other = other.to(device)

            def fn(v):
                x = torch.sparse_coo_tensor(i, v, size, device=device)
                y = (x + other).coalesce()
                yv = y.values()
                new_v = yv.tanh()
                z = torch.sparse_coo_tensor(y.indices(), new_v, y.size())
                return z.coalesce().values()

            gradcheck(fn, (inp,))
            # FIXME: make gradgradcheck work.
            # gradgradcheck(fn, (inp,))

            # assert that _values is non-differentiable
            with self.assertRaisesRegex(RuntimeError, "does not have a grad_fn"):
                other.detach().requires_grad_()._values().backward(torch.ones_like(other._values()))

        devices = ['cpu']

        if torch.cuda.is_available():
            devices.append('cuda')

        for empty_i, empty_v, empty_nnz in product([True, False], repeat=3):
            sparse_size = [] if empty_i else [2, 1]
            dense_size = [1, 0, 2] if empty_v else [1, 2]
            nnz = 0 if empty_nnz else 5
            for device in devices:
                test(sparse_size + dense_size, len(sparse_size), nnz, device)

    def test_multi_backward(self):
        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5, 5, requires_grad=True)

        q = torch.randn(5, 5, requires_grad=True)

        a = torch.randn(5, 5, requires_grad=True)
        b = torch.randn(5, 5, requires_grad=True)

        q2 = q * 2
        z = x + y + q2
        c = a * b + q2
        grad_z = torch.randn(5, 5)
        grad_c = torch.randn(5, 5)
        torch.autograd.backward([z, c], [grad_z, grad_c])

        self.assertEqual(x.grad.data, grad_z)
        self.assertEqual(y.grad.data, grad_z)
        self.assertEqual(a.grad.data, grad_c * b.data)
        self.assertEqual(b.grad.data, grad_c * a.data)
        self.assertEqual(q.grad.data, (grad_c + grad_z) * 2)

    def test_multi_backward_no_grad(self):
        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5, 5, requires_grad=False)

        z = x + y
        q = y * 2

        # NB: we currently raise an exception if any arguments to backwards
        # have requires_grad=False and don't have a grad_fn. We may want to
        # relax that check to a warning.
        def call_backwards():
            torch.autograd.backward([z, q], [torch.ones(5, 5), torch.ones(5, 5)])
        self.assertRaises(RuntimeError, call_backwards)

    def test_dependent_backward(self):
        x = torch.randn(10, requires_grad=True)
        y = x ** 2
        z = y ** 3

        go_y = torch.randn(10)
        go_z = torch.randn(10)
        torch.autograd.backward([y, z], [go_y, go_z])

        xd = x.data
        self.assertEqual(x.grad.data, 2 * xd * go_y + 6 * xd.pow(5) * go_z)

    def test_save_output_nr(self):
        x = torch.randn(10, requires_grad=True)

        class MultiOutputFn(Function):
            @staticmethod
            def forward(ctx, x):
                return x[:5], x[5:]

            @staticmethod
            def backward(ctx, *grad):
                return torch.cat(grad)

        a, b = MultiOutputFn.apply(x)
        self.assertEqual(b.output_nr, 1)

        class TestFn(Function):
            @staticmethod
            def forward(ctx, b):
                ctx.save_for_backward(b)
                return b * 2

            @staticmethod
            def backward(ctx, grad_b):
                b, = ctx.saved_tensors
                self.assertEqual(b.output_nr, 1)

        TestFn.apply(b).sum().backward()

    def test_free_deep_graph(self):
        def scope():
            depth = 150000
            x = torch.randn(1, requires_grad=True)
            y = x.clone()

            # build a "chain" computation graph
            for _ in range(depth):
                y = y + y * 0.000001

            # graph deletion occurs when the above locals go out of scope.
            # In this case `del y` will trigger it but it's easier to leave
            # it to Python to delete the locals.

        # Should not stack overflow
        scope()

    def test_free_deep_graph_complicated(self):
        def scope():
            depth = 100000
            randchoice = torch.randint(2, [depth, 2])
            x = torch.randn(1, requires_grad=True)
            y = x.clone()

            # Hold the two previous values
            prev_values = [None, None]

            # Build a "chain with skip connections" graph
            for _ in range(depth):
                prev_tensors = [tensor for tensor in prev_values[:-1]
                                if tensor is not None]
                prev_values.append(y)
                prev_values.pop(0)

                # Definitely pick one tensor to add
                y += y * 0.000001

                # Possibly add other tensors
                nprev = len(prev_tensors)
                if nprev == 2:
                    y += randchoice[depth].mul(torch.cat(prev_tensors)).sum()

            # graph deletion occurs when the above locals go out of scope.

        # Should not stack overflow
        scope()

    def test_free_deep_graph_pyfunction(self):
        class MyOp(Function):
            @staticmethod
            def forward(ctx, tensor1, tensor2):
                return tensor1 + tensor2

            @staticmethod
            def backward(ctx, grad_output):
                return grad_output, grad_output

        def scope():
            depth = 150000
            x = torch.randn(1, requires_grad=True)
            y = x.clone()

            # build deeply nested computation graph
            for _ in range(depth):
                y = MyOp.apply(y, y)

            # graph deletion occurs when the above locals go out of scope.

        # Should not stack overflow
        scope()

    @unittest.skipIf(not TEST_CUDA, "need CUDA memory stats")
    def test_free_unneeded_tensor(self):
        x = torch.randn(2, 3, 10, 10, device='cuda', requires_grad=True)
        m = torch.randn(1, 3, 1, 1, device='cuda')

        z = x.sum()
        base_mem = torch.cuda.memory_allocated()
        z = ((x + 2) * m).sum()
        end_mem = torch.cuda.memory_allocated()

        # In the end the memory usage should remain equal, because neither of
        # (x + 2) and ((x + 2) * m) should be kept alive for backward, while the
        # previous allocation of z had the same size as the current one.
        self.assertEqual(base_mem, end_mem)

    def test_no_unnecessary_save(self):
        # If we kept x in the derivative Function of x * 2 we would
        # get an error in the backward that would complain that we've
        # modified x, which was needed for gradient computation.
        # Since we should elide unnecessary saves, this test should pass.
        mu = torch.ones(1, requires_grad=True)
        x = torch.empty(1)
        loss = 0
        for i in range(3):
            x.detach_()
            x.copy_(mu + i)
            loss += (x * torch.tensor([float(i)])).sum()
        loss.backward()

    def test_no_grad(self):
        x = torch.ones(5, 5, requires_grad=True)
        y = Variable(torch.ones(5, 5) * 4)
        with torch.no_grad():
            w = x + y

        @torch.no_grad()
        def adder(x, y):
            return x + y

        z = adder(x, y)

        self.assertFalse(w.requires_grad)
        self.assertRaises(RuntimeError, lambda: w.backward(torch.ones(5, 5)))
        self.assertIsNone(w.grad_fn)
        self.assertFalse(z.requires_grad)
        self.assertRaises(RuntimeError, lambda: z.backward(torch.ones(5, 5)))
        self.assertIsNone(z.grad_fn)

        # test nested decorator and with-statement on no_grad
        with torch.no_grad():
            self.assertFalse(torch.is_grad_enabled())
            w = adder(x, y)
            self.assertFalse(torch.is_grad_enabled())

    def test_no_grad_python_function(self):
        """Python Functions should respect grad mode."""
        x = torch.ones(5, 5, requires_grad=True)

        class MyOp(Function):
            @staticmethod
            def forward(self, x):
                return x + 1

            @staticmethod
            def backward(self, dy):
                return dy

        with torch.no_grad():
            y = MyOp.apply(x)
        self.assertFalse(y.requires_grad)

    def test_indexing(self):
        x = torch.arange(1., 17).view(4, 4)
        y = Variable(x, requires_grad=True)

        def compare(x, y, idx, indexed_tensor, indexed_var):
            indexed_var_t = indexed_var.data
            if not isinstance(indexed_tensor, torch.Tensor):
                indexed_var_t = indexed_var_t[0]
            self.assertEqual(indexed_tensor, indexed_var_t)

            indexed_var.sum().backward()
            expected_grad = torch.Tensor(x.size()).fill_(0)
            expected_grad[idx] = 1
            self.assertEqual(y.grad.data, expected_grad)

        def check_index(x, y, idx):
            if y.grad is not None:
                y.grad.data.zero_()
            indexed_tensor = x[idx]
            indexed_var = y[idx]
            compare(x, y, idx, indexed_tensor, indexed_var)

        check_index(x, y, 1)
        check_index(x, y, (1, 1))
        check_index(x, y, slice(1, None))
        check_index(x, y, slice(None, 2))
        check_index(x, y, (slice(None, 2), 2))
        check_index(x, y, (slice(1, 2), 2))
        check_index(x, y, (1, slice(2, None)))
        check_index(x, y, (slice(None, None), slice(2, None)))
        check_index(x, y, torch.LongTensor([0, 2]))
        check_index(x, y, torch.rand(4, 4).bernoulli().byte())
        check_index(x, y, (Ellipsis, slice(2, None)))
        check_index(x, y, ([0], [0]))
        check_index(x, y, ([1, 2, 3], [0]))
        check_index(x, y, ([1, 2], [2, 1]))
        check_index(x, y, ([[1, 2], [3, 0]], [[0, 1], [2, 3]]))
        check_index(x, y, ([slice(None), [2, 3]]))
        check_index(x, y, ([[2, 3], slice(None)]))

        # advanced indexing, with less dim, or ellipsis
        check_index(x, y, ([0]))
        check_index(x, y, ([0], ))

        x = torch.arange(1., 49).view(4, 3, 4)
        y = Variable(x, requires_grad=True)

        check_index(x, y, (slice(None), [0], [0]))
        check_index(x, y, ([0], [0], slice(None)))
        check_index(x, y, (slice(None), [0, 1, 2], [0]))
        check_index(x, y, ([0, 1, 2], [0], slice(None)))
        check_index(x, y, (slice(None), [1, 2], [2, 1]))
        check_index(x, y, ([1, 2], [2, 1], slice(None)))
        check_index(x, y, (slice(None), [[1, 2], [2, 0]], [[0, 1], [2, 3]]))
        check_index(x, y, ([[1, 2], [3, 0]], [[0, 1], [2, 2]], slice(None)))
        check_index(x, y, (slice(None), slice(None), [2, 1]))
        check_index(x, y, (slice(None), [2, 1], slice(None)))
        check_index(x, y, ([2, 1], slice(None), slice(None)))

        # advanced indexing, with less dim, or ellipsis
        check_index(x, y, ([0], ))
        check_index(x, y, ([0], slice(None)))
        check_index(x, y, ([0], Ellipsis))
        check_index(x, y, ([1, 2], [0, 1]))
        check_index(x, y, ([1, 2], [0, 1], Ellipsis))
        check_index(x, y, (Ellipsis, [1, 2], [0, 1]))

        # advanced indexing, with a tensor wrapped in a variable
        z = torch.LongTensor([0, 1])
        zv = Variable(z, requires_grad=False)
        seq = [z, Ellipsis]
        seqv = [zv, Ellipsis]

        if y.grad is not None:
            y.grad.data.zero_()
        indexed_tensor = x[seq]
        indexed_var = y[seqv]
        compare(x, y, seq, indexed_tensor, indexed_var)

    def test_indexing_duplicates(self):
        x = torch.arange(1., 17).view(4, 4)
        y = Variable(x, requires_grad=True)

        idx = torch.LongTensor([1, 1, 3, 2, 1, 2])
        y[idx].sum().backward()
        expected_grad = torch.zeros(4, 4)
        for i in idx:
            expected_grad[i] += 1
        self.assertEqual(y.grad.data, expected_grad)

        # with advanced indexing
        x = torch.arange(1., 17).view(4, 4)
        y = Variable(x, requires_grad=True)

        idx = [[1, 1, 3, 2, 1, 2], [0]]
        y[idx].sum().backward()
        expected_grad = torch.zeros(4, 4)
        for i in idx[0]:
            for j in idx[1]:
                expected_grad[i][j] += 1

        self.assertEqual(y.grad.data, expected_grad)

        x = torch.arange(1., 17).view(4, 4)
        y = Variable(x, requires_grad=True)
        idx = [[[1, 2], [0, 0]], [[0, 1], [1, 1]]]
        y[idx].sum().backward()
        expected_grad = torch.Tensor([[0, 2, 0, 0],
                                      [1, 0, 0, 0],
                                      [0, 1, 0, 0],
                                      [0, 0, 0, 0]])
        self.assertEqual(y.grad.data, expected_grad)

        x = torch.arange(1., 65).view(4, 4, 4)
        y = Variable(x, requires_grad=True)

        idx = [[1, 1, 1], slice(None), slice(None)]
        y[idx].sum().backward()
        expected_grad = torch.Tensor(4, 4, 4).zero_()
        expected_grad[1].fill_(3)
        self.assertEqual(y.grad.data, expected_grad)

    def test_volatile_deprecated(self):
        v = torch.autograd.torch.randn(3, 3)
        with warnings.catch_warnings(record=True) as w:
            self.assertFalse(v.volatile)
        self.assertIn('volatile', str(w[0].message))

    def test_saved_variables_deprecated(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, tensor1, tensor2):
                ctx.save_for_backward(tensor1, tensor2)
                return tensor1 + tensor2

            @staticmethod
            def backward(ctx, grad_output):
                var1, var2 = ctx.saved_variables
                return (grad_output, grad_output)

        with warnings.catch_warnings(record=True) as warns:
            warnings.simplefilter("always")
            x = torch.randn((3, 3), requires_grad=True)
            y = torch.randn((3, 3), requires_grad=True)
            model = MyFunction()
            model.apply(x, y).sum().backward()

            has_deprecated = map(lambda warn:
                                 'deprecated' in str(warn) and
                                 'saved_variables' in str(warn),
                                 warns)
            has_deprecated = reduce(lambda x, y: x or y, has_deprecated)
            self.assertTrue(has_deprecated)

    def test_requires_grad(self):
        x = torch.randn(5, 5)
        y = torch.randn(5, 5)
        z = torch.randn(5, 5, requires_grad=True)
        a = x + y
        self.assertFalse(a.requires_grad)
        b = a + z
        self.assertTrue(b.requires_grad)

        def error():
            raise RuntimeError
        # Make sure backward isn't called on these
        a._backward_hooks = OrderedDict()
        x._backward_hooks = OrderedDict()
        y._backward_hooks = OrderedDict()
        a._backward_hooks['test'] = error
        x._backward_hooks['test'] = error
        y._backward_hooks['test'] = error
        b.backward(torch.ones(5, 5))

    def test_requires_grad_(self):
        x = torch.randn(5, 5)
        y = torch.randn(5, 5, requires_grad=True)
        self.assertIs(x, x.requires_grad_())
        self.assertTrue(x.requires_grad)
        self.assertIs(y, y.requires_grad_())
        self.assertTrue(y.requires_grad)
        self.assertIs(x, x.requires_grad_(True))
        self.assertTrue(x.requires_grad)
        self.assertIs(y, y.requires_grad_(True))
        self.assertTrue(y.requires_grad)
        z = x * y
        self.assertRaises(RuntimeError, lambda: z.requires_grad_(False))
        self.assertIs(z, z.requires_grad_())
        self.assertTrue(z.requires_grad)
        self.assertIs(z, z.requires_grad_(True))
        self.assertTrue(z.requires_grad)

        self.assertIs(x, x.requires_grad_(False))
        self.assertFalse(x.requires_grad)
        self.assertIs(y, y.requires_grad_(False))
        self.assertFalse(y.requires_grad)

    def test_requires_grad_inplace(self):
        a = torch.randn(5, 5)
        b = torch.randn(5, 5, requires_grad=True)
        a += b
        self.assertTrue(a.requires_grad)

        # non-leaf Variable
        a = torch.randn(5, 5) + 0
        b = torch.randn(5, 5, requires_grad=True)
        a += b
        self.assertTrue(a.requires_grad)

    def test_no_requires_grad_inplace(self):
        # basic case, should be able to modify inplace while requires_grad is False
        a = torch.randn(2, 3)
        a.add_(5)
        a.requires_grad = True
        a.sum().backward()
        self.assertEqual(a.grad.data, torch.ones(2, 3))

        # same but with a view
        a = torch.randn(2, 3)
        b = a[:]
        b.add_(5)
        a.requires_grad = True
        a.sum().backward()
        self.assertEqual(a.grad.data, torch.ones(2, 3))

        # should fail if requires_grad = True when we modify inplace
        a = torch.randn(2, 3)
        b = a[:]
        a.requires_grad = True
        with self.assertRaises(RuntimeError):
            a.add_(5)
        with self.assertRaises(RuntimeError):
            b.add_(5)

    def test_requires_grad_factory(self):
        x = torch.randn(2, 3)
        fns = [torch.ones_like, torch.testing.randn_like]
        dtypes = [torch.float32, torch.float64]
        for fn in fns:
            for requires_grad in [True, False]:
                for dtype in dtypes:
                    for use_cuda in [True, False]:
                        if not use_cuda:
                            output = fn(x, dtype=dtype, requires_grad=requires_grad)
                            self.assertEqual(requires_grad, output.requires_grad)
                            self.assertIs(dtype, output.dtype)
                        elif torch.cuda.is_available() and torch.cuda.device_count() > 1:
                            output = fn(x, dtype=dtype, device=1, requires_grad=requires_grad)
                            self.assertEqual(requires_grad, output.requires_grad)
                            self.assertIs(dtype, output.dtype)
                            self.assertEqual(1, output.get_device())

    def test_attribute_deletion(self):
        x = torch.randn((5, 5), requires_grad=True)
        del x.grad
        self.assertIsNone(x.grad)
        with self.assertRaises(RuntimeError):
            del x.data
        with self.assertRaises(TypeError):
            x.data = None
        with self.assertRaises(RuntimeError):
            del x.requires_grad
        with self.assertRaises(RuntimeError):
            del x._grad_fn
        with self.assertRaises(RuntimeError):
            del x._backward_hooks

    def test_grad_assignment(self):
        x = torch.randn(5, 5)

        with self.assertRaises(RuntimeError):
            x.grad = torch.randn(2, 2)
        with self.assertRaises(RuntimeError):
            x.grad = Variable(torch.randn(5, 5).long())
        with self.assertRaises(RuntimeError):
            x.grad = x

        if not torch.cuda.is_available():
            raise unittest.SkipTest("CUDA not available")
        with self.assertRaises(RuntimeError):
            x.grad = Variable(torch.randn(5, 5).cuda())
        x = x.cuda().half()
        x.grad = torch.zeros_like(x)  # would raise an error unless sparse type is properly handled

        if torch.cuda.device_count() < 2:
            raise unittest.SkipTest("At least 2 CUDA devices needed")
        x = Variable(torch.randn(5, 5).cuda(0))
        with self.assertRaises(RuntimeError):
            x.grad = Variable(torch.randn(5, 5).cuda(1))

    def test_duplicate_backward_root(self):
        a = torch.randn(5, 5, requires_grad=True)
        b = torch.randn(5, 5, requires_grad=True)

        x = a * b
        grad_output = torch.randn_like(x)
        torch.autograd.backward([x, x], [grad_output, grad_output])

        self.assertEqual(a.grad.data, b.data * grad_output * 2)
        self.assertEqual(b.grad.data, a.data * grad_output * 2)

    def test_backward_no_grad(self):
        a = torch.randn(5, 5, requires_grad=True)
        b = a + 2
        with self.assertRaises(RuntimeError):
            torch.autograd.backward([b], [None])

    def test_next_functions(self):
        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5, 5, requires_grad=True)

        a = x + y
        self.assertIsNotNone(a.grad_fn)
        next_functions = a.grad_fn.next_functions
        self.assertEqual(len(next_functions), 2)
        self.assertIsInstance(next_functions[0][0], torch._C._functions.AccumulateGrad)
        self.assertEqual(next_functions[0][1], 0)
        self.assertIsInstance(next_functions[1][0], torch._C._functions.AccumulateGrad)
        self.assertEqual(next_functions[1][1], 0)

        b = a + 5
        next_functions = b.grad_fn.next_functions
        self.assertEqual(len(next_functions), 2)
        self.assertIs(next_functions[0][0], a.grad_fn)
        self.assertIs(next_functions[1][0], None)

    def test_inplace(self):
        x = torch.ones(5, 5, requires_grad=True)
        y = Variable(torch.ones(5, 5) * 4, requires_grad=True)

        z = x * y
        q = z + y
        w = z * y
        z.add_(2)
        # Add doesn't need it's inputs to do backward, so it shouldn't raise
        q.backward(torch.ones(5, 5), retain_graph=True)
        # Mul saves both inputs in forward, so it should raise
        self.assertRaises(RuntimeError, lambda: w.backward(torch.ones(5, 5)))

        z = x * y
        q = z * y
        r = z + y
        w = z.add_(y)
        # w is a the last expression, so this should succeed
        w.backward(torch.ones(5, 5), retain_graph=True)
        # r doesn't use the modified value in backward, so it should succeed
        r.backward(torch.ones(5, 5), retain_graph=True)
        # q uses dirty z, so it should raise
        self.assertRaises(RuntimeError, lambda: q.backward(torch.ones(5, 5)))

        x.grad.data.zero_()
        m = x / 2
        z = m + y / 8
        q = z * y
        r = z + y
        prev_version = z._version
        w = z.exp_()
        self.assertNotEqual(z._version, prev_version)
        r.backward(torch.ones(5, 5), retain_graph=True)
        self.assertEqual(x.grad.data, torch.ones(5, 5) / 2)
        w.backward(torch.ones(5, 5), retain_graph=True)
        self.assertEqual(x.grad.data, torch.Tensor(5, 5).fill_((1 + math.e) / 2))
        self.assertRaises(RuntimeError, lambda: q.backward(torch.ones(5, 5)))

        leaf = torch.ones(5, 5, requires_grad=True)
        x = leaf.clone()
        x.add_(10)
        self.assertEqual(x.data, torch.ones(5, 5) * 11)
        # x should be still usable
        y = x + 2
        y.backward(torch.ones(5, 5))
        self.assertEqual(leaf.grad.data, torch.ones(5, 5))
        z = x * y
        x.add_(2)
        self.assertRaises(RuntimeError, lambda: z.backward(torch.ones(5, 5)))

    def test_mark_non_differentiable(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, input):
                output = input > 0
                ctx.mark_non_differentiable(output)
                return output

            @staticmethod
            def backward(ctx, grad_output):
                return (grad_output * 0).type(torch.DoubleTensor)

        x = torch.randn(5, 5, requires_grad=True)
        mask = MyFunction.apply(x)
        self.assertFalse(mask.requires_grad)
        y = x.masked_fill(mask, 0)
        y.sum().backward()

    def test_mark_non_differentiable_mixed(self):
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, input):
                a = input + 1
                b = input + 2
                ctx.mark_non_differentiable(a)
                return a, b

            @staticmethod
            def backward(ctx, grad_a, grad_b):
                self.assertTrue((grad_a == 0).all())
                self.assertTrue((grad_b == 1).all())
                return grad_b

        x = torch.randn(5, 5, requires_grad=True)
        a, b = MyFunction.apply(x)
        self.assertFalse(a.requires_grad)
        self.assertTrue(b.requires_grad)
        b.sum().backward()
        self.assertEqual(x.grad.data, torch.ones(5, 5))

    def test_mark_non_differentiable_none(self):
        # This used to segfault because MyFunction would send back null
        # gradients to MulBackward, which is implemented in C++. C++
        # implemented functions expect incoming  grad_ouptuts to be non-null.
        class MyFunction(Function):
            @staticmethod
            def forward(ctx, input):
                output = input.clone()
                ctx.mark_non_differentiable(output)
                return output

            @staticmethod
            def backward(ctx, grad_output):
                return None

        x = torch.randn(5, 5, requires_grad=True)
        r = MyFunction.apply(x * x)
        (r * x).sum().backward()

    def test_return_duplicate(self):
        class DoubleDuplicate(Function):
            @staticmethod
            def forward(ctx, x):
                output = x * 2
                return output, output

            @staticmethod
            def backward(ctx, grad1, grad2):
                return grad1 * 2 + grad2 * 2

        def fn(x):
            a, b = DoubleDuplicate.apply(x)
            self.assertIs(a, b)
            return a + b

        x = torch.randn(5, 5, requires_grad=True)
        gradcheck(fn, [x])
        gradgradcheck(fn, [x])

    def test_return_duplicate_inplace(self):
        class DoubleInplace(Function):
            @staticmethod
            def forward(ctx, x):
                x.mul_(2)
                ctx.mark_dirty(x)
                return x, x

            @staticmethod
            def backward(ctx, grad1, grad2):
                return grad1 * 2 + grad2 * 2

        def inplace_fn(x):
            a, b = DoubleInplace.apply(x.clone())
            self.assertIs(a, b)
            return a + b

        x = torch.randn(5, 5, requires_grad=True)
        gradcheck(inplace_fn, [x])
        gradgradcheck(inplace_fn, [x])

        # Can't modify leaf variables in-place
        self.assertRaises(RuntimeError, lambda: InplaceFunction.apply(x))
        # Functions which modify views in-place must return only one output
        self.assertRaises(RuntimeError, lambda: InplaceFunction.apply(x.clone()[0]))

    @suppress_warnings
    def test_resize(self):
        x = torch.ones(2, 3)
        self.assertTrue(x.resize(3, 2).size() == (3, 2))

    def _test_setitem(self, size, index):
        x = torch.ones(*size, requires_grad=True)
        y = x + 2
        y_version = y._version
        y[index] = 2
        self.assertNotEqual(y._version, y_version)
        y.backward(torch.ones(*size))
        expected_grad = torch.ones(*size)
        expected_grad[index] = 0
        self.assertEqual(x.grad, expected_grad)

    def _test_setitem_tensor(self, size, index):
        x = torch.ones(*size, requires_grad=True)
        y = x + 2
        y_version = y._version
        value = x.new(x[index].size()).fill_(7)
        value.requires_grad = True
        y[index] = value
        self.assertNotEqual(y._version, y_version)
        y.backward(torch.ones(*size))
        expected_grad_input = torch.ones(*size)
        expected_grad_input[index] = 0
        self.assertEqual(x.grad, expected_grad_input)
        self.assertEqual(value.grad, torch.ones_like(value))

        # case when x broadcasts to as y[1]
        x = torch.randn(4, requires_grad=True)
        y = torch.zeros(2, 3, 4)
        y[1] = x
        y.backward(torch.randn(2, 3, 4))
        self.assertEqual(x.size(), x.grad.size())

    def test_setitem(self):
        self._test_setitem((5, 5), 1)
        self._test_setitem((5,), 1)
        self._test_setitem((1,), 0)
        self._test_setitem((10,), [[0, 4, 2]])
        self._test_setitem((5, 5), [[0, 4], [2, 2]])
        self._test_setitem((5, 5, 5), [slice(None), slice(None), [1, 3]])
        self._test_setitem((5, 5, 5), [slice(None), [1, 3], slice(None)])
        self._test_setitem((5, 5, 5), [[1, 3], slice(None), slice(None)])
        self._test_setitem((5, 5, 5), [slice(None), [2, 4], [1, 3]])
        self._test_setitem((5, 5, 5), [[1, 3], [2, 4], slice(None)])
        self._test_setitem_tensor((5, 5), 3)
        self._test_setitem_tensor((5, 5), [[0, 1], [1, 0]])
        self._test_setitem_tensor((5,), 3)
        self._test_setitem_tensor((5,), Variable(torch.LongTensor([3]), requires_grad=False).sum())
        self._test_setitem_tensor((5,), [[0, 1, 2, 3]])
        self._test_setitem_tensor((5, 5, 5), [slice(None), slice(None), [1, 3]])
        self._test_setitem_tensor((5, 5, 5), [slice(None), [1, 3], slice(None)])
        self._test_setitem_tensor((5, 5, 5), [[1, 3], slice(None), slice(None)])
        self._test_setitem_tensor((5, 5, 5), [slice(None), [2, 4], [1, 3]])
        self._test_setitem_tensor((5, 5, 5), [[1, 3], [2, 4], slice(None)])
        self._test_setitem_tensor((5, 5, 5), [Variable(torch.LongTensor([1,
                                              3]), requires_grad=False), [2, 4], slice(None)])

    def test_setitem_mask(self):
        mask = torch.ByteTensor(5, 5).bernoulli_()
        self._test_setitem((5, 5), Variable(mask))
        self._test_setitem((5,), Variable(mask[0]))
        self._test_setitem((1,), Variable(mask[0, 0:1]))
        self._test_setitem_tensor((5, 5), Variable(mask))
        self._test_setitem_tensor((5,), Variable(mask[0]))

    def test_select_sum(self):
        # both select and sum return Scalars in ATen; ensure they work together.
        x = torch.randn(10, requires_grad=True)

        def func(x):
            return x.select(0, 1).sum()

        gradcheck(func, [x])
        gradgradcheck(func, [x])

    def test_stack(self):
        x = torch.randn(10, 10, requires_grad=True)
        y = torch.randn(10, 10, requires_grad=True)
        z = torch.randn(10, 10, requires_grad=True)
        stacked = torch.stack([x, y, z], 0)
        grad = torch.randn(3, 10, 10)
        stacked.backward(grad)
        self.assertEqual(x.grad.data, grad[0])
        self.assertEqual(y.grad.data, grad[1])
        self.assertEqual(z.grad.data, grad[2])

    def test_unbind(self):
        stacked = torch.randn(3, 10, 10, requires_grad=True)
        x, y, z = stacked.unbind()
        grad = torch.randn(3, 10, 10)
        torch.autograd.backward([x, y, z], grad.unbind())
        self.assertEqual(stacked.grad.data, grad)
        # check that it works with only one gradient provided (#9977)
        for i in range(3):
            stacked = torch.randn(3, 10, 10, requires_grad=True)
            outs = stacked.unbind()
            gi = grad.unbind()[i]
            g, = torch.autograd.grad(outs[i], stacked, gi)
            g_expected = torch.stack([gi if j == i else torch.zeros_like(gi)
                                      for j in range(3)], dim=0)
            self.assertEqual(g, g_expected)

    def test_put(self):
        root = torch.randn(4, 5, requires_grad=True)
        values = torch.randn(6, requires_grad=True)
        idx = Variable(torch.LongTensor([1, 2, 3, -1, -2, -3]))

        def func(root, values):
            x = root.clone()
            x.put_(idx, values)
            return x

        gradcheck(func, [root, values])
        gradgradcheck(func, [root, values])

    def test_put_accumulate(self):
        root = torch.randn(4, 5, requires_grad=True)
        values = torch.randn(6, requires_grad=True)
        idx = Variable(torch.LongTensor([1, 2, 3, 1, 2, 3]))

        def func(root, values):
            x = root.clone()
            x.put_(idx, values, accumulate=True)
            return x

        gradcheck(func, [root, values])
        gradgradcheck(func, [root, values])

    def test_fill(self):
        root = torch.randn(4, 5, requires_grad=True)

        def func(root):
            x = root.clone()
            x.fill_(2)
            return x

        gradcheck(func, [root])
        gradgradcheck(func, [root])

    def test_unused_output(self):
        x = torch.randn(10, 10, requires_grad=True)
        outputs = x.chunk(5)
        o = outputs[2]
        o = o * 4 + 2
        o.sum().backward()
        expected_grad = torch.zeros(10, 10)
        expected_grad[4:6] = 4
        self.assertEqual(x.grad.data, expected_grad)

        x.grad.data.zero_()
        grad_output = torch.randn(2, 10)
        outputs = x.chunk(5)
        outputs[0].backward(grad_output)
        expected_grad = torch.zeros(10, 10)
        expected_grad[:2] = grad_output
        self.assertEqual(x.grad.data, expected_grad)

    @skipIfRocm
    def test_ctc_loss(self):
        batch_size = 64
        num_labels = 101
        target_length = 15
        gradcheck_input_size = 10

        # device, input_length
        tests = [('cpu', 150, False),
                 ('cpu', 150, True)]
        if torch.cuda.is_available():
            tests += [('cuda', 50, False),
                      ('cuda', 150, False),
                      ('cuda', 50, True),
                      ('cuda', 150, True)]

        for device, input_length, vary_lengths in tests:
            targets = torch.randint(1, num_labels, (batch_size, target_length),
                                    device=device, dtype=torch.long)
            x = torch.randn(gradcheck_input_size, device=device, requires_grad=True)
            tile_factors = torch.randn(input_length * batch_size * num_labels // gradcheck_input_size + 1,
                                       device=device)
            input_lengths = [(torch.randint(input_length // 2, input_length + 1, ()).item()
                              if vary_lengths or i == 0 else input_length) for i in range(batch_size)]
            target_lengths = [(torch.randint(target_length // 2, target_length + 1, ()).item()
                               if vary_lengths or i == 0 else target_length) for i in range(batch_size)]

            def ctc_after_softmax(x):
                x_full = ((x[:, None] * tile_factors[None, :]).view(-1)[:input_length * batch_size * num_labels]
                          .view(input_length, batch_size, num_labels))
                log_probs = torch.log_softmax(x_full, 2)
                return torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths)

            gradcheck(ctc_after_softmax, [x])

    def _test_sparse_gather(self, size_x, size_ind, dim):
        x = torch.randn(size_x, requires_grad=True)
        if len(size_ind) > 0 and len(size_x) > 0:
            ind = torch.randint(x.size(dim), size_ind)
        else:
            ind = torch.zeros(size_ind, dtype=torch.int64)
        out = torch.gather(x, dim, ind, sparse_grad=False)
        grad = torch.rand_like(out)
        out.backward(grad)
        grad_dense = x.grad.clone()
        x.grad = None
        out = torch.gather(x, dim, ind, sparse_grad=True)
        out.backward(grad)
        self.assertEqual(grad_dense, x.grad.to_dense())

    def test_sparse_gather_dim0(self):
        self._test_sparse_gather((10, 10), (5, 10), 0)

    def test_sparse_gather_dim1(self):
        self._test_sparse_gather((10, 10, 5), (10, 5, 5), 1)

    def test_sparse_gather_dim_neg(self):
        self._test_sparse_gather((10, 10, 5), (10, 10, 2), -1)

    def test_sparse_gather_ind_scalar(self):
        self._test_sparse_gather((10,), (), 0)

    def test_sparse_gather_x_scalar(self):
        self._test_sparse_gather((), (2,), 0)

    def test_sparse_gather_both_scalar(self):
        self._test_sparse_gather((), (), 0)

    def test_gc_in_destructor(self):
        """
        Previously, if a Function destructor triggered a garbage collection,
        the Variable's tp_dealloc handler would get called twice leading to a
        segfault.
        """
        class CollectOnDelete(Function):

            def __del__(self):
                gc.collect()

        for _ in range(10):
            Variable(torch.randn(10, 10), _grad_fn=CollectOnDelete())

    @unittest.skipIf(torch.cuda.device_count() < 2, "no multi-GPU")
    @skipIfRocm
    def test_unused_output_gpu(self):
        from torch.nn.parallel._functions import Broadcast
        x = Variable(torch.randn(5, 5).float().cuda(), requires_grad=True)
        outputs = Broadcast.apply(list(range(torch.cuda.device_count())), x)
        y = outputs[-1] * 2
        y.sum().backward()
        self.assertEqual(x.grad.data, torch.ones(5, 5) * 2)

    @unittest.skipIf(torch.cuda.device_count() < 2, "no multi-GPU")
    def test_backward_device(self):
        # check that current device matches the variable's device
        device = [None]

        class Identity(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                return x.clone()

            @staticmethod
            def backward(ctx, grad_output):
                device[0] = torch.cuda.current_device()
                return grad_output.clone()

        v = Variable(torch.randn(1).cuda(1), requires_grad=True)
        Identity.apply(v).backward()
        self.assertEqual(device[0], 1)

    @unittest.skipIf(torch.cuda.device_count() < 2, "no multi-GPU")
    @skipIfRocm
    def test_inputbuffer_add_multigpu(self):
        input = torch.randn(1).cuda(0).requires_grad_()
        output = input.cuda(1) + input.cuda(1)
        output.backward()

    def test_detach(self):
        x = torch.randn(10, 10, requires_grad=True)
        y = x + 2
        y = y.detach()
        z = y * 4 + 2
        self.assertFalse(y.requires_grad)
        self.assertFalse(z.requires_grad)

        x = torch.randn(10, 10, requires_grad=True)
        y = x * 2
        y = y.detach()
        self.assertFalse(y.requires_grad)
        self.assertIsNone(y.grad_fn)
        z = x + y
        z.sum().backward()
        # This is an incorrect gradient, but we assume that's what the user
        # wanted. detach() is an advanced option.
        self.assertEqual(x.grad.data, torch.ones(10, 10))

        # in-place detach
        x = torch.randn(10, 10, requires_grad=True)
        y = torch.randn(10, 10, requires_grad=True)
        a = x * 2
        (y + a).sum().backward(retain_graph=True)
        a.detach_()
        self.assertFalse(a.requires_grad)
        (y + a).sum().backward()  # this won't backprop to x
        self.assertEqual(x.grad.data, torch.ones(10, 10) * 2)
        self.assertEqual(y.grad.data, torch.ones(10, 10) * 2)

        # in-place deatch on a view raises an exception
        view = x.narrow(0, 1, 4)
        self.assertRaisesRegex(RuntimeError, 'view', lambda: view.detach_())

    def test_detach_base(self):
        "detaching base does not detach view"
        x = torch.randn(10, 10, requires_grad=True)
        view = x.narrow(0, 1, 4)
        x.detach_()
        self.assertFalse(x.requires_grad)
        self.assertTrue(view.requires_grad)
        self.assertIsNotNone(view.grad_fn)
        self.assertIs(view._base, x)

    def _test_type_conversion_backward(self, t, ):
        fvar = Variable(t(torch.randn(5, 5).float()), requires_grad=True)
        fvar.double().sum().backward()
        self.assertEqual(fvar.grad, torch.ones_like(fvar))
        self.assertEqual(type(fvar.grad.data), type(fvar.data))
        dvar = Variable(t(torch.randn(5, 5).double()), requires_grad=True)
        dvar.float().sum().backward()
        self.assertEqual(dvar.grad, torch.ones_like(dvar))
        self.assertEqual(type(dvar.grad.data), type(dvar.data))

    def test_type_conversions(self):
        x = torch.randn(5, 5)
        self.assertIsInstance(x.float(), torch.FloatTensor)
        self.assertIsInstance(x.int(), torch.IntTensor)
        if torch.cuda.is_available():
            self.assertIsInstance(x.float().cuda(), torch.cuda.FloatTensor)
            self.assertIsInstance(x.int().cuda(), torch.cuda.IntTensor)
            self.assertIsInstance(x.int().cuda().cpu(), torch.IntTensor)
            if torch.cuda.device_count() >= 2:
                x2 = x.float().cuda(1)
                self.assertIsInstance(x2, torch.cuda.FloatTensor)
                self.assertIs(x2.get_device(), 1)
                x2 = x.float().cuda()
                self.assertIsInstance(x2.data, torch.cuda.FloatTensor)
                self.assertIs(x2.get_device(), 0)
                x2 = x2.cuda(1)
                self.assertIsInstance(x2, torch.cuda.FloatTensor)
                self.assertIs(x2.get_device(), 1)
                y = Variable(torch.randn(5).cuda(1), requires_grad=True)
                y.cpu().sum().backward()
                self.assertIs(y.grad.get_device(), 1)
                self.assertIs(y.long().data.get_device(), 1)

        for t in [torch.DoubleTensor, torch.FloatTensor, torch.IntTensor, torch.ByteTensor]:
            for y_var in (True, False):
                y = torch.randint(5, (5, 5), dtype=t.dtype)
                y = Variable(y) if y_var else y
                self.assertIsInstance(x.type(t), t)
                self.assertIsInstance(x.type_as(y), t)
                # TODO: t.dtype should work
                t_dtype = t().dtype
                self.assertIsInstance(x.type(t_dtype), t)
                self.assertIs(t_dtype, x.type(t_dtype).dtype)
                self.assertEqual(y.data_ptr(), y.type(t).data_ptr())
                if torch.cuda.is_available():
                    for x_cuda in (True, False):
                        for y_cuda in (True, False):
                            x_c = x.cuda() if x_cuda else x
                            y_c = y.cuda() if y_cuda else y
                            _, y_type = y_c.type().rsplit('.', 1)
                            y_typestr = ('torch.cuda.' if y_cuda else 'torch.') + y_type
                            self.assertEqual(y_c.type(), x_c.type(y_typestr).type())
                            self.assertIs(y_c.dtype, x_c.type(y_c.dtype).dtype)
                            self.assertEqual(y_c.data_ptr(), y_c.cuda().data_ptr() if y_cuda else y_c.data_ptr())

        self._test_type_conversion_backward(lambda x: x)
        if torch.cuda.is_available():
            self._test_type_conversion_backward(lambda x: x.cuda())
            if torch.cuda.device_count() >= 2:
                # one of these has to be the non-default device
                self._test_type_conversion_backward(lambda x: x.cuda(0))
                self._test_type_conversion_backward(lambda x: x.cuda(1))

    def _test_pyscalar_conversions(self, t, integral_conv):
        # integral -> integral
        l = t(torch.zeros(1, 1, 1, dtype=torch.long))
        pyscalar = -12345
        l[0] = pyscalar
        self.assertEqual(integral_conv(l), pyscalar)

        # floating point -> floating point
        f = Variable(t(torch.randn(1, 1)))
        pyscalar = -12345.1
        f[0] = pyscalar
        self.assertEqual(float(f), pyscalar)
        f[0] = nan
        self.assertTrue(math.isnan(float(f)))
        f[0] = inf
        self.assertEqual(float(f), inf, allow_inf=True)
        f[0] = -inf
        self.assertEqual(float(f), -inf, allow_inf=True)

        # integral -> floating point
        # check we can convert something that loses precision
        pyscalar = 1234567890123456789
        self.assertNotEqual(pyscalar, integral_conv(float(pyscalar)))
        l[0] = pyscalar
        self.assertEqual(float(l), float(pyscalar))

        # floating point -> integral
        f[0] = nan
        self.assertRaises(ValueError, lambda: integral_conv(f[0]))
        f[0] = inf
        self.assertRaises(OverflowError, lambda: integral_conv(f[0]))
        f[0] = -inf
        self.assertRaises(OverflowError, lambda: integral_conv(f[0]))
        f[0] = sys.float_info.max
        self.assertEqual(integral_conv(f), sys.float_info.max)

        # bool, nonzero
        def test_nonzero(tensor, value, expected):
            tensor[0] = value
            self.assertEqual(expected, bool(tensor))
            self.assertEqual(expected, True if tensor else False)

        test_nonzero(l, 0, False)
        test_nonzero(l, -2, True)
        test_nonzero(f, 0.0, False)
        test_nonzero(f, sys.float_info.min, True)
        test_nonzero(f, nan, bool(nan))
        test_nonzero(f, inf, bool(inf))
        test_nonzero(f, -inf, bool(-inf))

    def test_pyscalar_conversions(self):
        self._test_pyscalar_conversions(lambda x: x, lambda x: int(x))
        if sys.version_info[0] == 2:
            self._test_pyscalar_conversions(lambda x: x, lambda x: long(x))
        if torch.cuda.is_available():
            self._test_pyscalar_conversions(lambda x: x.cuda(), lambda x: int(x))
            if sys.version_info[0] == 2:
                self._test_pyscalar_conversions(lambda x: x.cuda(), lambda x: long(x))

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_pin_memory(self):
        x = torch.randn(2, 2, requires_grad=True)
        self.assertEqual(x, x.pin_memory())
        self.assertIsNot(x, x.pin_memory())
        self.assertTrue(x.pin_memory().requires_grad)
        gradcheck(lambda x: x.pin_memory(), [x])
        gradgradcheck(lambda x: x.pin_memory(), [x])

    def test_isolated_node(self):
        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5, 5, requires_grad=True)

        a = x + y
        b = torch.max(a, 1, True)[1].repeat(1, 5).double()
        o = (b + a).sum()
        o.backward()

    def test_shape(self):
        x = torch.randn(3, 4)
        self.assertEqual(2, len(x.shape))
        self.assertEqual(x.shape[0], 3)
        self.assertEqual(x.shape[1], 4)

    def test_numpy_requires_grad(self):
        x = torch.randn(2, 2, requires_grad=True)
        self.assertRaisesRegex(RuntimeError, 'requires grad', lambda: x.numpy())

    def test_return_leaf(self):
        class Identity(Function):

            def forward(self, a, b):
                return a, a + b

            def backward(self, grad_a, grad_b):
                return grad_a + grad_b, grad_b

        hook_called = [False]
        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5, 5, requires_grad=True)

        q, p = Identity()(x, y)

        # Make sure hooks only receive grad from usage of q, not x.
        def hook(grad):
            hook_called[0] = True
            self.assertEqual(grad.data, torch.ones(5, 5))

        q.register_hook(hook)
        (q + p + x).sum().backward()
        self.assertEqual(x.grad.data, torch.ones(5, 5) * 3)
        self.assertEqual(y.grad.data, torch.ones(5, 5))
        self.assertTrue(hook_called[0])

    def test_return_leaf_inplace(self):
        class Inplace(InplaceFunction):

            def forward(self, a, b):
                self.mark_dirty(a)
                return a.add_(b), b + 2

            def backward(self, grad_a, grad_b):
                return grad_a, grad_a + grad_b

        x = torch.randn(5, 5)
        y = torch.randn(5, 5, requires_grad=True)

        fn = Inplace(True)
        q, p = fn(x, y)
        self.assertIs(q, x)
        self.assertIs(q.grad_fn, fn)
        self.assertTrue(q.requires_grad)
        q.sum().backward()
        self.assertEqual(y.grad.data, torch.ones(5, 5))

    def test_leaf_assignment(self):
        x = torch.randn(5, 5)
        y = torch.randn(5, requires_grad=True)
        z = torch.randn(5, requires_grad=True)

        x[0] = y
        x[1] = 2 * z
        self.assertTrue(x.requires_grad)
        self.assertIsNot(x.grad_fn, None)
        x.sum().backward()
        self.assertEqual(y.grad.data, torch.ones(5))
        self.assertEqual(z.grad.data, torch.ones(5) * 2)

    def test_no_grad_assignment(self):
        x = torch.randn(5, 5, requires_grad=True)
        y = torch.randn(5)
        with torch.no_grad():
            x[0] = y

        self.assertTrue(x.requires_grad)
        self.assertIsNone(x.grad_fn)

    def test_no_grad_modifies_version(self):
        x = torch.randn(5, requires_grad=True)
        y = torch.randn(5, requires_grad=True)
        z = (x * y).sum()
        with torch.no_grad():
            x *= 2
        self.assertRaisesRegex(RuntimeError, 'modified by an inplace operation',
                               lambda: z.backward())

    def test_no_grad_input(self):
        class MyFunction(Function):
            @staticmethod
            def forward(self, x):
                return x

            @staticmethod
            def backward(self, grad_output):
                return grad_output

        x = torch.randn(5, requires_grad=True)
        with torch.no_grad():
            y = MyFunction.apply(x)

        self.assertTrue(x.requires_grad)
        self.assertIsNone(y.grad_fn)

    def test_backward_copy(self):
        # This tests checks backward engine for a very subtle bug that appreared
        # in one of the initial versions of autograd. Gradients tensors were
        # simply stored in lists while the function waited for all its gradients
        # to be computed. However, sometimes an output was used multiple times,
        # so the gradients needed to be summed. Engine used to keep a need_copy
        # set of tensors that will need a clone upon next addition and removed
        # them from the set as soon as the clone was performed. However, this
        # could lead to incorrect results if the same gradient tensor was
        # buffered in three places in the graph:
        # 1. When accumulating gradients in one of these places it was cloned
        #    and removed from need_copy set.
        # 2. When accumulating in second place, it wasn't in the need_copy set,
        #    so the gradients were simply accumulated in-place (which already
        #    modified the grad in 3rd place)
        # 3. When accumulating in the third place, it wasn't in the need_copy set
        #    as well, so the incoming gradient was summed in-place, yielding
        #    incorrect results in all functions, except the first one.
        x = torch.ones(5, 5, requires_grad=True)
        y = torch.ones(5, 5, requires_grad=True)
        # Simulate that we're in the middle of the graph
        a = x + 2
        b = y + 2
        c = x + 2
        # This op will just return grad_output two times in backward
        add1 = a + b
        add2 = add1 + c
        # Simulate a long branch, so grad_output will get buffered.
        for _ in range(4):
            a = a * 2
            b = b * 2
            c = c * 2
        branch = a + b + c
        out = add2 + branch
        # expected gradients are:
        # for x: 34 (16 from final a, 16 from final c, 2 from add2)
        # for y: 17 (16 from final b, 1 from add2)
        grad_output = torch.ones(5, 5)
        out.backward(grad_output)
        self.assertEqual(x.grad, torch.ones(5, 5) * 34)
        self.assertEqual(y.grad, torch.ones(5, 5) * 17)

    def test_save_none_for_backward(self):
        test_case = self

        class MyFn(Function):

            def forward(self, input):
                self.save_for_backward(None, input, None)
                return input * input

            def backward(self, grad_output):
                n1, input, n2 = self.saved_tensors
                test_case.assertIsNone(n1)
                test_case.assertIsNone(n2)
                return 2 * input * grad_output

        x = torch.randn(5, 5, requires_grad=True)
        y = MyFn()(x)
        y.sum().backward()
        self.assertEqual(x.grad, 2 * x)

    def test_too_many_grads(self):
        class MyFn(Function):

            def forward(self, input):
                return input

            def backward(self, grad_output):
                return grad_output, None, None

        x = torch.randn(5, 5, requires_grad=True)
        y = MyFn()(x)
        y.sum().backward()
        self.assertEqual(x.grad, torch.ones_like(x))

    def test_pickle(self):
        x = torch.randn(10, 10, requires_grad=True)
        y = torch.randn(10, 10, requires_grad=False)

        def assert_strict_equal(var1, var2):
            self.assertEqual(var1.data, var2.data)
            self.assertEqual(var1.requires_grad, var2.requires_grad)

        serialized = [pickle.dumps([x, y], protocol=p) for p in range(3)]
        for dump in serialized:
            xc, yc = pickle.loads(dump)
            assert_strict_equal(xc, x)
            assert_strict_equal(yc, y)

    def test_dep_nograd(self):
        class F1(Function):

            def forward(self, input):
                out = torch.randn(input.size())
                self.mark_non_differentiable(out)
                return input, out

            def backward(self, grad_output, ignored):
                return grad_output

        class F2(Function):

            def forward(self, input, ignored):
                return input

            def backward(self, grad_output):
                return grad_output, None

        x = torch.randn(5, requires_grad=True)
        a, b = F1()(x)
        b = b + 1  # separate F1 from F2 by another op
        self.assertTrue(a.requires_grad)
        self.assertFalse(b.requires_grad)
        c = F2()(a, b)
        c.backward(torch.ones(c.size()))
        self.assertEqual(x.grad.data, torch.ones(x.size()))

    def test_set_grad_enabled(self):
        x = torch.tensor([1.], requires_grad=True)
        with torch.set_grad_enabled(False):
            y = x * 2
        self.assertFalse(y.requires_grad)
        with torch.set_grad_enabled(True):
            y = x * 2
        self.assertTrue(y.requires_grad)
        with torch.set_grad_enabled(False):
            torch.set_grad_enabled(True)
            y = x * 2
        self.assertTrue(y.requires_grad)

    def test_reentrant(self):
        y_data = torch.randn(2, 2)

        class Reenter(Function):
            @staticmethod
            def forward(ctx, x):
                with torch.enable_grad():
                    ctx.x = Variable(x.data, requires_grad=True)
                    ctx.y = Variable(y_data, requires_grad=True)
                    ctx.output_var = ctx.x * ctx.y
                return ctx.output_var.detach()

            @staticmethod
            def backward(ctx, grad_output):
                with torch.enable_grad():
                    ctx.output_var.sum().backward()
                return ctx.x.grad * grad_output

        x = torch.randn(2, 2, requires_grad=True)
        out = Reenter.apply(x)
        out.sum().backward()
        self.assertEqual(x.grad.data, y_data)

    def test_broadcast_tensors(self):
        f_args_variable = (torch.randn(3, requires_grad=True),
                           torch.randn(1, 2, 1, requires_grad=True),
                           torch.randn(1, 1, requires_grad=True),
                           torch.randn(5, 1, 1, requires_grad=True))
        f_args_tensor = deepcopy(unpack_variables(f_args_variable))
        run_functional_checks(self, "test_broadcast_tensors", "broadcast",
                              lambda a, b, c, d: torch.broadcast_tensors(a, b, c, d),
                              True, f_args_variable, f_args_tensor)

    def test_cat(self):
        f_args_variable = (torch.randn(1, S, S, requires_grad=True),
                           torch.randn(2, S, S, requires_grad=True),
                           torch.randn(3, S, S, requires_grad=True),
                           0)
        f_args_tensor = deepcopy(unpack_variables(f_args_variable))
        run_functional_checks(self, "test_cat", "cat",
                              lambda a, b, c, dim: torch.cat((a, b, c), dim),
                              True, f_args_variable, f_args_tensor)

    def test_cat_negdim_1(self):
        f_args_variable = (torch.randn(S, S, 1, requires_grad=True),
                           torch.randn(S, S, 2, requires_grad=True),
                           torch.randn(S, S, 3, requires_grad=True),
                           -1)
        f_args_tensor = deepcopy(unpack_variables(f_args_variable))
        run_functional_checks(self, "test_cat_negdim_1", "cat",
                              lambda a, b, c, dim: torch.cat((a, b, c), dim),
                              True, f_args_variable, f_args_tensor)

    def test_cat_negdim_2(self):
        f_args_variable = (torch.randn(S, 1, S, requires_grad=True),
                           torch.randn(S, 2, S, requires_grad=True),
                           torch.randn(S, 3, S, requires_grad=True),
                           -2)
        f_args_tensor = deepcopy(unpack_variables(f_args_variable))
        run_functional_checks(self, "test_cat_negdim_2", "cat",
                              lambda a, b, c, dim: torch.cat((a, b, c), dim),
                              True, f_args_variable, f_args_tensor)

    def test_cat_empty_legacy(self):
        f_args_variable = (torch.randn(0, requires_grad=True),
                           torch.randn(S, S, requires_grad=True))
        # gradgradcheck doesn't work, probably because legacy size tracking is wrong somewhere,
        # hence False passed below, but gradcheck checked explicitly.
        f_args_tensor = deepcopy(unpack_variables(f_args_variable))
        run_functional_checks(self, "test_cat_empty_legacy", "cat",
                              lambda a, b: torch.cat((a, b)),
                              False, f_args_variable, f_args_tensor)
        self.assertTrue(gradcheck(lambda a, b: torch.cat((a, b)), f_args_variable, eps=1e-6, atol=PRECISION))

    def test_cat_empty(self):
        f_args_variable = (torch.randn(0, S, requires_grad=True),
                           torch.randn(S, S, requires_grad=True))
        f_args_tensor = deepcopy(unpack_variables(f_args_variable))
        run_functional_checks(self, "test_cat_empty", "cat",
                              lambda a, b: torch.cat((a, b)),
                              True, f_args_variable, f_args_tensor)

    def test_cdist(self):
        for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
            f_args_variable = (torch.randn(S, S, requires_grad=True),
                               torch.randn(S, S, requires_grad=True))

            def f(a, b):
                return torch.cdist(a, b, p)

            f_args_tensor = deepcopy(unpack_variables(f_args_variable))
            run_functional_checks(self, "test_cdist", "cdist", f,
                                  True, f_args_variable, f_args_tensor)

    @skipIfNoLapack
    def test_cholesky(self):
        def func(root, upper):
            x = torch.matmul(root, root.transpose(-1, -2)) + 1e-05
            return torch.cholesky(x, upper)

        def run_test(upper, dims):
            root = torch.rand(*dims, requires_grad=True)

            gradcheck(func, [root, upper])
            gradgradcheck(func, [root, upper])

            root = random_symmetric_pd_matrix(dims[-1], *dims[:-2]).requires_grad_()
            chol = root.cholesky().sum().backward()
            self.assertEqual(root.grad, root.grad.transpose(-1, -2))  # Check the gradient is symmetric

        for upper, dims in product([True, False], [(3, 3), (4, 3, 2, 2)]):
            run_test(upper, dims)
            run_test(upper, dims)

    @skipIfNoLapack
    def test_triangular_solve(self):
        def _test_with_size(A_dims, B_dims):
            A = torch.rand(*A_dims).requires_grad_()
            b = torch.rand(*B_dims).requires_grad_()

            for upper, transpose, unitriangular in product((True, False), repeat=3):
                def func(A, b):
                    return torch.triangular_solve(b, A, upper, transpose, unitriangular)

                gradcheck(func, [A, b])
                gradgradcheck(func, [A, b])

        _test_with_size((3, 3), (3, 4))
        _test_with_size((3, 3), (3, 2))
        _test_with_size((2, 3, 3), (2, 3, 4))
        _test_with_size((2, 3, 3), (2, 3, 2))

    @unittest.skipIf(not TEST_MKL, "PyTorch is built without MKL support")
    def test_fft_ifft_rfft_irfft(self):
        def _test_complex(sizes, signal_ndim):
            x = torch.randn(sizes, requires_grad=True, dtype=torch.double)

            for normalized in (True, False):
                def fft(x):
                    return x.fft(signal_ndim, normalized=normalized)

                gradcheck(fft, [x])
                gradgradcheck(fft, [x], gen_non_contig_grad_outputs=True)

                def ifft(fx):
                    return fx.ifft(signal_ndim, normalized=normalized)

                # Use output of fft(x) for inverse fft, due to symmetry requirements
                fx = fft(x).detach()
                fx.requires_grad = True
                gradcheck(ifft, [fx])
                gradgradcheck(ifft, [fx], gen_non_contig_grad_outputs=True)

        def _test_real(sizes, signal_ndim):
            x = torch.randn(sizes, requires_grad=True, dtype=torch.double)
            if x.dim() == signal_ndim:
                start_dim = 0
            else:
                start_dim = 1
            signal_sizes = x.size()[start_dim:start_dim + signal_ndim]

            for normalized, onesided in product((True, False), repeat=2):
                def rfft(x):
                    return x.rfft(signal_ndim, normalized=normalized, onesided=onesided)

                gradcheck(rfft, [x])
                gradgradcheck(rfft, [x], gen_non_contig_grad_outputs=True)

                # Generally speaking, irfft itself won't and can't pass the
                # current gradcheck as it assumes the input follows conjugate
                # symmetry, an requirement that is never true with our point
                # numerical Jacobian estimate. Without input symmtry, irfft's
                # behavior is undefined.
                #
                # Even onesided results can't remove all redundancy. For
                # example, consider the .select(last_signal_dim, 0) slice.
                # It is entirely represented in the onesided results (except
                # for 1D), and will be reflected onto itself!
                #
                # So only 1D onesided irfft should pass grad check as it is
                # guaranteed that the input has no symmetrical values.
                #
                # In other cases, we test a function that first uses rfft to
                # generate a tensor that follows the conjugate symmetry irfft
                # expects, and then feeds it into irfft. Since rfft is already
                # tested above, we thereby verify the correctness of irfft.
                if signal_ndim == 1 and onesided:
                    def irfft(fx):
                        return fx.irfft(signal_ndim, normalized=normalized,
                                        onesided=onesided, signal_sizes=signal_sizes)

                    # Use output of rfft(x) for inverse rfft, due to symmetry requirements
                    fx = rfft(x).detach()
                    fx.requires_grad = True
                    gradcheck(irfft, [fx])
                    gradgradcheck(irfft, [fx], gen_non_contig_grad_outputs=True)
                else:
                    # Test this function: f(x) = ifft(rfft(x) + rfft(z)), where
                    # z is some fixed tensor of same size as x. rfft(z) term is
                    # needed because otherwise f becomes identity.
                    z = torch.randn(sizes, dtype=torch.double)
                    fz = z.rfft(signal_ndim, normalized=normalized, onesided=onesided)

                    def rfft_irfft(x):
                        fx = x.rfft(signal_ndim, normalized=normalized, onesided=onesided)
                        y = fx + fz
                        return y.irfft(signal_ndim, normalized=normalized,
                                       onesided=onesided, signal_sizes=signal_sizes)

                    gradcheck(rfft_irfft, [x])
                    gradgradcheck(rfft_irfft, [x], gen_non_contig_grad_outputs=True)

        _test_real((2, 10), 1)
        _test_real((2, 3, 4), 2)
        _test_real((2, 3, 4, 3), 3)

        _test_complex((2, 2, 10, 2), 1)
        _test_complex((1, 2, 3, 4, 2), 2)
        _test_complex((2, 1, 3, 4, 3, 2), 3)

    def test_gradcheck_fail_when_no_differentiable_outputs_and_num_grad_not_zero(self):
        def autograd_fn(input):
            output = torch.detach(input)
            self.assertFalse(output.requires_grad)
            return output

        f_args_variable = torch.ones(S, S, requires_grad=True)
        self.assertRaisesRegex(RuntimeError, 'Numerical gradient for function expected to be zero',
                               lambda: gradcheck(autograd_fn, f_args_variable, eps=1e-6, atol=PRECISION))

    def test_variable_traverse(self):
        def get_out_and_unrefed_cycle():
            inp = torch.randn(10, requires_grad=True)
            tmp = inp.view(10, 1)
            out = tmp.view(10)

            # Create a reference cycle that contains an
            # intermediary Variable in the graph
            my_list = []
            my_list.append(tmp)
            my_list.append(my_list)

            return out

        out = get_out_and_unrefed_cycle()
        gc.collect()
        # This will segfault if things have been erroneously released
        out.backward(torch.randn(out.size()))

    def test_norm_subgradient(self):
        def run_test(input_size, norm_deg):
            input = torch.zeros(*input_size, requires_grad=True)
            input.norm(norm_deg).backward()
            self.assertEqual(input.grad.data.abs().sum(), 0)

        run_test((10,), 2)
        run_test((10, 10), 2)
        run_test((10,), 3)
        run_test((10,), 1)
        run_test((10,), 1.5)

    def test_pow_zero_tensor_gradient(self):
        def run_test(input_size, exponent):
            input = torch.zeros(*input_size, requires_grad=True)
            input.pow(exponent).sum().backward()
            self.assertEqual(input.grad.data.abs().sum(), 0)

        run_test((10,), torch.zeros(10))
        run_test((10, 10), torch.zeros(10, 10))
        run_test((10,), 0)

    def test_pow_scalar_base(self):
        a = torch.arange(1, 13, dtype=torch.double).view(3, 4).requires_grad_()
        gradcheck(lambda a: torch.pow(2, a), (a,))

    # test for backward in https://github.com/pytorch/pytorch/issues/15511
    def test_pdist_large(self):
        def func(x):
            return torch.pdist(x, p=2)

        devices = ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda']
        for device in devices:
            # shape[0] should be able to be (roughly) arbitrarily large, but the kernel
            # is currently limited to smaller sizes (see issue above); this is just testing
            # a floor.
            shape = (1000, 1)
            x = torch.randn(shape, device=device).requires_grad_()
            output = torch.pdist(x, p=2)
            # just run a single backward, as gradcheck/gradgradcheck is expensive here
            output.sum().backward()

    @skipIfNoLapack
    def test_pinverse(self):
        # Why is pinverse tested this way, and not ordinarily as other linear algebra methods?
        # 1. Pseudo-inverses are not generally continuous, which means that they are not differentiable
        # 2. Derivatives for pseudo-inverses exist typically for constant rank (Golub et al, 1973)
        # 3. This method creates two orthogonal matrices, and a constructs a test case with large
        #    singular values (given by x to the function).
        # 4. This will ensure that small perturbations don't affect the rank of matrix, in which case
        #    a derivative exists.
        # 5. This test exists since pinverse is implemented using SVD, and is hence a backpropable method
        m, n = 5, 10
        U = torch.randn(n, m).qr()[0].t()  # Orthogonal with dimensions m x n
        V = torch.randn(n, m).qr()[0].t()  # Orthogonal with dimensions m x n

        def func(x):
            S = torch.cat([x, torch.zeros(n - m)], 0)
            M = U.mm(torch.diag(S)).mm(V.t())
            return M.pinverse()

        gradcheck(func, [torch.rand(m).add_(1).requires_grad_()])
        gradcheck(func, [torch.rand(m).add_(10).requires_grad_()])
        gradgradcheck(func, [torch.rand(m).add_(1).requires_grad_()])
        gradgradcheck(func, [torch.rand(m).add_(10).requires_grad_()])

    def test_chain_matmul(self):
        def gen_matrices(p):
            matrices = []
            for (pi, pi_1) in zip(p[:-1], p[1:]):
                matrices.append(torch.randn(pi, pi_1).requires_grad_())
            return matrices

        gradcheck(torch.chain_matmul, gen_matrices([5, 10, 15, 5]))
        gradcheck(torch.chain_matmul, gen_matrices([3, 5, 2, 6]))
        gradcheck(torch.chain_matmul, gen_matrices([6, 2, 4, 8, 10]))
        gradgradcheck(torch.chain_matmul, gen_matrices([5, 10, 15, 5]))
        gradgradcheck(torch.chain_matmul, gen_matrices([3, 5, 2, 6]))
        gradgradcheck(torch.chain_matmul, gen_matrices([6, 2, 4, 8, 10]))

    def test_profiler(self):
        x = torch.randn(10, 10)

        with profile() as p:
            y = x * 2 + 4

        last_end = 0
        names = ['mul', 'add']
        self.assertEqual(len(p.function_events), len(names))
        for info, expected_name in zip(p.function_events, names):
            self.assertGreater(info.cpu_interval.start, last_end)
            self.assertEqual(info.name, expected_name)
            last_end = info.cpu_interval.end

    def test_dir(self):
        x = torch.randn(10, 10)
        keys = dir(x)
        self.assertIn('shape', keys)

        for key in keys:
            self.assertTrue(hasattr(x, key))

    def test_as_strided(self):

        def test(x, prepro_fn, size, strides, offset=None):
            x = x.to(torch.double).detach().requires_grad_()

            # Check that forward will **not** resize storage because it may
            # cause NaN in output and fail numerical Jacobian check consequently
            with torch.no_grad():
                y = prepro_fn(x) if prepro_fn is not None else x
                max_offset = sum((si - 1) * st for si, st in zip(size, strides))
                max_offset += offset if offset is not None else y.storage_offset()
                assert max_offset < len(y.storage()), "test case resizes storage"

            def closure(x):
                if prepro_fn is not None:
                    x = prepro_fn(x)
                return x.as_strided(size, strides, offset)

            gradcheck(closure, [x])
            gradgradcheck(closure, [x])

        # test
        test(torch.arange(0, 25), lambda x: x.view(5, 5), [3, 3], [6, 2], 2)

        # test crazy stride at dim with size 1 case
        test(torch.randn(12), None, [1, 2, 1, 5], [0, 5, 100, 1], 2)

        # test expand case
        test(torch.randn(5), None, [3, 3, 3], [0, 1, 0], 2)
        test(torch.randn(5), None, [3, 3, 3], [0, 0, 0], 4)
        test(torch.randn(5), lambda x: x.expand(5, 5), [5, 5], [0, 1], 0)

        # test non-expand overlapping case
        test(torch.randn(35), None, [6, 6], [5, 1], 2)
        test(torch.randn(15), None, [3, 2], [3, 6], 2)

        # test transpose case
        test(torch.randn(3, 4), None, [4, 3], [1, 4])

        # test "getting things outside the input" case
        x = torch.randn(6, 2)
        test(x[3:], None, [3, 2], [2, 1], 0)  # should be all zeros
        self.assertEqual(x[3:].as_strided([3, 2], [2, 1], 0), x[:3])

        # test select on expanded input case
        test(torch.randn(2, 3), lambda x: x.expand(10, 2, 3), [2, 3], [3, 1], 0)

    def _test_where_functional(self, t):
        x = Variable(t(torch.randn(5, 5)), requires_grad=True)
        y = Variable(t(torch.randn(5, 5)), requires_grad=True)
        cond = Variable(t(mask_not_all_zeros((5, 5))), requires_grad=False)

        def where(cond, x, y):
            return torch.where(cond, x, y)

        gradcheck(where, [cond, x, y], raise_exception=True)
        gradgradcheck(where, [cond, x, y], [Variable(t(torch.randn(5, 5)))])

        x = Variable(t(torch.randn(5, 1, 5)), requires_grad=True)
        y = Variable(t(torch.randn(5, 5, 1)), requires_grad=True)
        gradcheck(where, [cond, x, y], raise_exception=True)
        gradgradcheck(where, [cond, x, y], [Variable(t(torch.randn(5, 5, 5)))])

    def test_where_functional(self):
        self._test_where_functional(lambda t: t)

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_where_functional_cuda(self):
        self._test_where_functional(lambda t: t.cuda())

    def _test_lerp_tensor_weights(self, cast):
        def construct_inputs(*shapes):
            start = cast(torch.randn(shapes[0])).requires_grad_()
            end = cast(torch.randn(shapes[1])).requires_grad_()
            weight = cast(torch.randn(shapes[2]))
            return [start, end, weight]

        all_test_shapes = [((3, 3, 3), (3, 3, 3), (3, 3, 3)),  # no broadcasting
                           ((3,), (3, 3, 3), (3, 3, 3)),  # start broadcasting - 1
                           ((3, 3, 3), (3,), (3, 3, 3)),  # end broadcasting - 1
                           ((3, 3, 3), (3, 3, 3), (3,)),  # weight broadcasting - 1
                           ((), (3, 3, 3), (3, 3, 3)),  # start broadcasting - 2
                           ((3, 3, 3), (), (3, 3, 3)),  # end broadcasting - 2
                           ((3, 3, 3), (3, 3, 3), ()),  # weight broadcasting - 2
                           ((3, 3), (3, 3, 3), (3,))]  # all broadcasting

        for shapes in all_test_shapes:
            cur_inputs = construct_inputs(*shapes)
            gradcheck(torch.lerp, cur_inputs)
            gradgradcheck(torch.lerp, cur_inputs)

    def test_lerp_tensor_weights(self):
        self._test_lerp_tensor_weights(lambda t: t)

    def test_reduce_dtype(self):
        def test_reduction(op, has_no_dim):
            x = torch.randn(3, 3, dtype=torch.float, requires_grad=True)

            if has_no_dim:
                grad1, = torch.autograd.grad([op(x)], [x])
                grad2, = torch.autograd.grad([op(x, dtype=torch.double)], [x])
                self.assertEqual(grad1, grad2)
                self.assertEqual(grad2.dtype, torch.float)

            gi = torch.randn(op(x, dim=0).shape, dtype=torch.float)
            grad1, = torch.autograd.grad([op(x, dim=0)], [x], gi)
            grad2, = torch.autograd.grad([op(x, dim=0, dtype=torch.double)], [x], gi.double())
            self.assertEqual(grad1, grad2)
            self.assertEqual(grad2.dtype, torch.float)

        test_reduction(torch.sum, True)
        test_reduction(torch.prod, True)
        test_reduction(torch.cumsum, False)
        test_reduction(torch.cumprod, False)

    def test_inplace_view_backprop_base(self):
        # modify view and back-prop through base
        root = torch.randn(2, 2, requires_grad=True)
        x = root.clone()
        v1 = x.narrow(0, 0, 1)
        v1.mul_(2)
        x.sum().backward()
        self.assertEqual(root.grad.data.tolist(), [[2, 2], [1, 1]])

    def test_inplace_view_backprop_view_of_view(self):
        # modify view and backprop through view-of-view
        root = torch.randn(2, 2, requires_grad=True)
        x = root.clone()
        v1 = x.narrow(0, 0, 1)
        v2 = x.narrow(0, 0, 1)
        v1.mul_(2)
        v2.sum().backward()
        self.assertEqual(root.grad.data.tolist(), [[2, 2], [0, 0]])

    def test_inplace_view_of_view(self):
        # modify view-of-view and backprop through base
        root = torch.randn(2, 2, requires_grad=True)
        x = root.clone()
        v1 = x.narrow(0, 0, 1)
        v2 = v1.narrow(1, 1, 1)
        v2.mul_(2)
        x.sum().backward()
        self.assertEqual(root.grad.data.tolist(), [[1, 2], [1, 1]])

    def test_inplace_view_gradcheck(self):
        # gradcheck modifications to views
        a = torch.randn(4, 4, requires_grad=True)
        b = torch.randn(2, 2, requires_grad=True)

        def func(root, b):
            x = root.clone()
            x.narrow(1, 2, 2).narrow(0, 1, 2).mul_(b)
            x.narrow(1, 0, 2).narrow(0, 1, 2).mul_(b)
            return x

        gradcheck(func, [a, b], raise_exception=True)
        go = torch.randn(a.size(), requires_grad=True)
        gradgradcheck(func, (a, b), (go,))

    def test_inplace_view_makes_base_require_grad(self):
        # in-place modification to view makes base require grad
        a = torch.randn(4, 4, requires_grad=False)
        b = torch.randn(4, 2, requires_grad=True)

        def func(root, b):
            x = root.clone()
            self.assertFalse(x.requires_grad)
            x.narrow(1, 2, 2).mul_(b)
            self.assertTrue(x.requires_grad)
            return x

        gradcheck(func, [a, b], raise_exception=True)
        go = torch.randn(a.size(), requires_grad=True)
        gradgradcheck(func, (a, b), (go,))

    def test_inplace_view_backprop_view(self):
        # modify view and backprop through view
        a = Variable(torch.Tensor([2, 5]), requires_grad=False)
        b = Variable(torch.Tensor([3]), requires_grad=True)
        res = a.narrow(0, 1, 1).mul_(b)
        res.sum().backward()
        self.assertEqual(b.grad.data.tolist(), [5])
        self.assertIsNone(a.grad)

    def test_inplace_view_modify_base(self):
        # Test that an in-place operation on a base that forced it to require
        # grad also forces any previous views to require grad and backprop
        # correctly
        r = torch.ones(1, requires_grad=True)

        def fn(r):
            x = torch.ones(5)
            v = x.select(0, 1)
            self.assertFalse(v.requires_grad)
            self.assertIsNone(v.grad_fn)
            x.add_(r)  # v is now dependent on r due to the in-place op on x
            self.assertTrue(v.requires_grad)
            return v

        gradcheck(fn, [r])
        gradgradcheck(fn, [r])

    def test_inplace_view_python(self):
        # in-place modifications of Python-autograd created view
        a = torch.randn(4, 4, requires_grad=True)
        b = torch.randn(2, 2, requires_grad=True)

        class PyAdd(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, y):
                ctx.mark_dirty(x)
                x.add_(y)
                return x

            @staticmethod
            def backward(ctx, grad):
                return grad, grad

        def func(root, b):
            x = root.clone()
            PyAdd.apply(x.narrow(1, 2, 2).narrow(0, 1, 2), b)
            PyAdd.apply(x.narrow(1, 0, 2).narrow(0, 1, 2), b)
            return x

        gradcheck(func, [a, b], raise_exception=True)
        go = torch.randn(a.size(), requires_grad=True)
        gradgradcheck(func, (a, b), (go,))

    def test_inplace_view_non_contig(self):
        data = torch.ones(2, 3, 2).select(2, 1).t()
        root = Variable(data, requires_grad=True)
        x = root.clone()
        v1 = x.narrow(0, 0, 1)
        v2 = v1.narrow(1, 1, 1)
        v2.mul_(2)
        x.sum().backward()
        self.assertEqual(root.grad.data.tolist(), [[1, 2], [1, 1], [1, 1]])

    def test_inplace_view_saved_output(self):
        # Test an in-place operation on a view in which the in-place op saves
        # its output. Previously, this created a reference cycle.
        dealloc = [0]

        class IncrementOnDelete(object):
            def __del__(self):
                dealloc[0] += 1

        def test():
            root = torch.randn(3, 3, requires_grad=True)
            copy = root.clone()
            copy.grad_fn.register_hook(IncrementOnDelete())
            view = copy.view(9)
            torch.nn.functional.relu(view, inplace=True)

        test()
        self.assertEqual(dealloc[0], 1)

    def test_mul_out(self):
        a = torch.randn(2, 2, requires_grad=True)
        b = torch.randn(2, 2, requires_grad=True)
        x = torch.zeros_like(a)

        # out=... functions don't support automatic differentiation currently
        self.assertRaisesRegex(RuntimeError, 'out=', lambda: torch.mul(a, b, out=x))

        # the inputs can require grad if we're in no_grad() mode
        with torch.no_grad():
            torch.mul(a, b, out=x)
            self.assertEqual(x, a * b)

    def test_mul_out_result_requires_grad(self):
        a = torch.randn(2, 2)
        b = torch.randn(2, 2)
        x = torch.zeros(2, 2, requires_grad=True)
        # we should throw an exception if the output requires grad
        self.assertRaisesRegex(RuntimeError, 'out=', lambda: torch.mul(a, b, out=x))

    def test_diagonal_derivative_requires_grad(self):
        # test that the backward requires grad
        # we do this is because diagonal_backward uses inplace
        # operations and gradgradcheck does not catch whether
        # they works as expected (it will succeed even if
        # the gradient has requires_grad == False
        a = torch.randn(5, 6, requires_grad=True)
        b = torch.diagonal(a)**2
        c = b.sum()
        d, = torch.autograd.grad(c, a, retain_graph=True, create_graph=True)
        self.assertTrue(d.requires_grad)

    @staticmethod
    def _test_set_requires_grad_only_for_floats(self, cuda):
        dtypes = [torch.int64, torch.int32, torch.int16, torch.int8,
                  torch.float, torch.double]
        if cuda:
            dtypes.append(torch.half)

        def f1(dt):
            a = torch.ones(1, dtype=dt, device='cuda' if cuda else 'cpu')
            a.requires_grad_()

        def f2(dt):
            a = torch.ones(1, dtype=dt, device='cuda' if cuda else 'cpu')
            a.requires_grad = True

        def f3(dt):
            torch.ones(1, dtype=dt, device='cuda' if cuda else 'cpu', requires_grad=True)

        for dt in dtypes:
            a = torch.ones(1, dtype=dt, device='cuda' if cuda else 'cpu')
            a.requires_grad = False  # should always work
            a.requires_grad_(False)

            for f in [f1, f2, f3]:
                if dt.is_floating_point:
                    f(dt)
                else:
                    with self.assertRaisesRegex(RuntimeError, 'floating point',
                                                msg="dt: {} device: {}".format(a.dtype, a.device)):
                        f(dt)

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_set_requires_grad_only_for_floats_cuda(self):
        self._test_set_requires_grad_only_for_floats(self, True)

    def test_set_requires_grad_only_for_floats(self):
        self._test_set_requires_grad_only_for_floats(self, False)

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_rnn_backward_to_input_but_not_parameters_cuda(self):
        # this checks whether it is possible to not require
        # weight parameters, but require inputs, see #7722
        dev = torch.device('cuda')
        l = torch.nn.LSTM(2, 3).to(dev)
        for p in l.parameters():
            p.requires_grad = False
        s = torch.randn(1, 1, 2, requires_grad=True, device=dev)
        out, _ = l(s)
        out.sum().backward()
        self.assertFalse(s.grad is None or s.grad.abs().sum().item() == 0)

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_lstmcell_backward_only_one_output_grad(self):
        # checks that undefined gradients doen't hamper the backward
        # see #11872
        dev = torch.device('cuda')
        l = torch.nn.LSTMCell(2, 3).to(dev).double()
        s = torch.randn(1, 2, device=dev, dtype=torch.double, requires_grad=True)
        for i in range(2):
            out = l(s)[i]
            out.sum().backward()
            self.assertFalse(s.grad is None or s.grad.abs().sum().item() == 0)

    def test_anomaly_detect_nan(self):
        size = 10

        class MyFunc(Function):
            @staticmethod
            def forward(ctx, inp1, inp2, fail_0th):
                ctx.fail_0th = fail_0th
                return inp1.sum(0, keepdim=True)

            @staticmethod
            def backward(ctx, gO):
                gI = gO.clone().expand(size)
                gI[0] = 0
                gI[0] /= 0  # Generate a nan
                if ctx.fail_0th:
                    return gI, None, None
                else:
                    return None, gI, None

        inp = torch.rand(size, requires_grad=True)
        out = MyFunc.apply(inp, inp, True)
        out.backward()  # Should not fail

        inp = torch.rand(size, requires_grad=True)
        out = MyFunc.apply(inp, inp, True)
        with self.assertRaisesRegex(RuntimeError, "Function 'MyFuncBackward' returned nan values in its 0th output."):
            with warnings.catch_warnings(record=True) as w:
                with detect_anomaly():
                    out.backward()
            self.assertIn('No forward pass information', str(w[0].message))

        inp = torch.rand(size, requires_grad=True)
        with self.assertRaisesRegex(RuntimeError, "Function 'MyFuncBackward' returned nan values in its 1th output."):
            with warnings.catch_warnings(record=True) as w:
                with detect_anomaly():
                    out = MyFunc.apply(inp, inp, False)
                    out.backward()
            self.assertIn('MyFunc.apply', str(w[0].message))

    @skipIfNoLapack
    def test_symeig_no_eigenvectors(self):
        A = torch.tensor([[1., 2.], [2., 4.]], dtype=torch.float32, requires_grad=True)
        w, v = torch.symeig(A, eigenvectors=False)
        with self.assertRaisesRegex(RuntimeError, 'cannot compute backward'):
            torch.autograd.backward([w, v], [torch.ones_like(w), torch.ones_like(v)])

    @skipIfNoLapack
    def test_svd_no_singularvectors(self):
        A = torch.randn(2, 2, dtype=torch.float32, requires_grad=True)
        u, s, v = torch.svd(A, compute_uv=False)
        with self.assertRaisesRegex(RuntimeError, 'cannot compute backward'):
            torch.autograd.backward([u, s, v], [torch.ones_like(u), torch.ones_like(s), torch.ones_like(v)])

    def test_no_grad_copy(self):
        # create autograd function that saves grad pointer as class static
        class MyFunc(Function):
            static_grad_ptr = None

            @staticmethod
            def forward(ctx, inp1, inp2):
                return inp1 + inp2

            @staticmethod
            def backward(ctx, grad):
                MyFunc.static_grad_ptr = grad.data_ptr()
                return grad, grad

        class NonContGradFunc(Function):
            @staticmethod
            def forward(ctx, inp1):
                ctx.size = inp1.size()
                return torch.tensor([1.])

            @staticmethod
            def backward(ctx, grad):
                return torch.ones(1).expand(ctx.size)

        a = torch.randn(5, 6, requires_grad=True)
        b = torch.randn(5, 6, requires_grad=True)
        # non-contiguous grad should be copied
        NonContGradFunc.apply(MyFunc.apply(a, b)).backward()
        self.assertFalse(a.grad.data_ptr() == MyFunc.static_grad_ptr)
        self.assertFalse(b.grad.data_ptr() == MyFunc.static_grad_ptr)
        # test case that should trigger no copy for one of a,b
        a.grad = b.grad = None
        MyFunc.apply(a, b)[1][0].backward()
        p_g = MyFunc.static_grad_ptr
        p_a = a.grad.data_ptr()
        p_b = b.grad.data_ptr()
        # check a,b uses different grad buffer
        self.assertFalse(p_a == p_b)
        # check one of them is using the computed buffer
        self.assertTrue(p_a == p_g or p_b == p_g)

    def test_gradcheck_single_input(self):
        def f(inp):
            return inp.mul(5)

        gradcheck(f, torch.rand(10, dtype=torch.float64, requires_grad=True))
        gradgradcheck(f, torch.rand(10, dtype=torch.float64, requires_grad=True))

    def test_gradcheck_sparse_input(self):
        def fn(sparse):
            return torch.sparse.sum(sparse)

        gradcheck(fn, torch.rand(10).to_sparse().requires_grad_(True), check_sparse_nnz=True)
        with self.assertRaisesRegex(RuntimeError, 'gradcheck expects all tensor inputs are dense'):
            gradcheck(fn, torch.rand(10).to_sparse().requires_grad_(True), check_sparse_nnz=False)

    @unittest.skipIf(not TEST_CUDA, "Requires cuda for multi device")
    def test_multi_device_reentrant_autograd(self):
        # Output on gpu so that this task will be associated with the gpu thread
        def fn_on_gpu(inp):
            # Artificially increase the priority of the next op to make sure it runs
            # as soon as we reach it before the ops of branch1.
            dummy = inp * 2 * 2 * 2 * 2
            return inp.cuda()

        def parent_on_cpu(inp):
            # Slow branch of ops on gpu so that the work queue for the gpu thread
            # won't empty too quickly. They also have smaller priorities than the
            # ones created by fn_on_gpu
            branch1 = inp.cuda()
            branch1 = branch1 / branch1
            branch1 = branch1 / branch1
            branch1 = branch1 / branch1
            # Perform checkpoint on cpu tensors. So the last op performed in the reentrant
            # autograd is an AccumulateGrad that runs on the cpu thread for the gpu thread.
            # So the cpu thread will notify the gpu thread with an empty FunctionTask.
            branch2 = checkpoint(fn_on_gpu, inp)
            out = branch2 + branch1
            return out

        inp = torch.rand(2, requires_grad=True)
        out = parent_on_cpu(inp)
        # This will segfault if the empty FunctionTask is not handled properly in the
        # gpu thread ReadyQueue
        out.sum().backward()


def index_variable(shape, max_indices):
    if not isinstance(shape, tuple):
        shape = (shape,)
    index = torch.rand(*shape).mul_(max_indices).floor_().long()
    return index


def index_perm_variable(shape, max_indices):
    if not isinstance(shape, tuple):
        shape = (shape,)

    index = torch.randperm(max_indices).narrow(0, 0, reduce(mul, shape)).view(shape)
    return index


def gather_variable(shape, index_dim, max_indices, duplicate=False):
    assert len(shape) == 2
    assert index_dim < 2
    batch_dim = 1 - index_dim
    index = torch.LongTensor(*shape)
    for i in range(shape[index_dim]):
        index.select(index_dim, i).copy_(
            torch.randperm(max_indices)[:shape[batch_dim]])
    if duplicate:
        index.select(batch_dim, 0).copy_(index.select(batch_dim, 1))
    return index


def bernoulli_scalar():
    return torch.tensor(0, dtype=torch.uint8).bernoulli_()


def gradgradcheck_method_precision_override(test_name):
    # these are just empirical observations, we should improve
    gradgradcheck_precision_override = {
        'test_norm': {'atol': 2e-2, 'rtol': 1e-2},
        'test_norm_1_5': {'atol': 1.5e-2, 'rtol': 1e-2},
        'test_norm_3': {'atol': 5e-2, 'rtol': 1e-2},
        'test_dist': {'atol': 5e-2, 'rtol': 1e-2},
        'test_dist_4': {'atol': 8e-2, 'rtol': 1e-2},
    }
    non_broadcasted_test_name = test_name.split("_broadcast")[0]
    override = gradgradcheck_precision_override.get(non_broadcasted_test_name)
    if override:
        if 'broadcast_lhs' in test_name or 'broadcast_rhs' in test_name:
            # errors accumulated across 1 dimension
            override = {'atol': override['atol'] * S, 'rtol': override['atol'] * S}
        elif 'broadcast_all' in test_name:
            # errors accumulated across multiple dimensions
            override = {'atol': override['atol'] * S * S, 'rtol': override['atol'] * S * S}
    return override


def run_grad_and_gradgrad_checks(test_case, name, test_name, apply_method, output_variable,
                                 input_variables, run_gradgradcheck=True):
    test_case.assertTrue(gradcheck(apply_method, input_variables, eps=1e-6, atol=PRECISION))
    if name in EXCLUDE_GRADGRADCHECK or test_name in EXCLUDE_GRADGRADCHECK_BY_TEST_NAME:
        return
    gradgradcheck_precision_override = gradgradcheck_method_precision_override(test_name)
    if gradgradcheck_precision_override is not None:
        atol = gradgradcheck_precision_override['atol']
        rtol = gradgradcheck_precision_override['rtol']
        test_case.assertTrue(gradgradcheck(apply_method, input_variables, None, atol=atol, rtol=rtol,
                                           gen_non_contig_grad_outputs=True))
    else:
        test_case.assertTrue(gradgradcheck(apply_method, input_variables, gen_non_contig_grad_outputs=True))


def run_functional_checks(test_case, test_name, name, apply_fn, run_grad_checks,
                          f_args_variable, f_args_tensor):
    output_variable = apply_fn(*f_args_variable)

    if run_grad_checks:
        run_grad_and_gradgrad_checks(test_case, name, test_name, apply_fn,
                                     output_variable, f_args_variable)

    self_variable = f_args_variable[0]
    if isinstance(output_variable, torch.Tensor) and output_variable.requires_grad and self_variable is not None:
        output_variable.backward(randn_like(output_variable))
        test_case.assertEqual(self_variable.type(), self_variable.grad.type())
        test_case.assertEqual(self_variable.size(), self_variable.grad.size())


def add_test(
        name,
        self_size,
        args,
        variant_name='',
        check_ad=(),  # only used in test_jit
        dim_args_idx=(),
        skipTestIf=(),
        output_process_fn=lambda x: x,
        kwargs=None):
    kwargs = kwargs if kwargs else {}
    basic_test_name = 'test_' + name
    if variant_name != '':
        basic_test_name += '_' + variant_name

    for dim_perm in product([-1, 1], repeat=len(dim_args_idx)):
        test_name = basic_test_name
        new_args = [arg * dim_perm[dim_args_idx.index(i)] if i in dim_args_idx else arg for i, arg in enumerate(args)]
        test_name = basic_test_name + ''.join('_neg' + str(i) for i, idx in enumerate(dim_perm) if idx < 0)
        new_args = tuple(new_args)

        # for-loop bodies don't define scopes, so we have to save the variables
        # we want to close over in some way
        def do_test(self, name=name, self_size=self_size, args=new_args, test_name=test_name,
                    output_process_fn=output_process_fn):
            def check(name):
                is_magic_method = name[:2] == '__' and name[-2:] == '__'
                is_inplace = name[-1] == "_" and not is_magic_method
                self_variable = create_input((self_size,))[0][0]
                # FixMe: run grad checks on inplace self
                if is_inplace:
                    self_variable.requires_grad = False
                # need to record this because methods can change the size (e.g. unsqueeze)
                args_variable, kwargs_variable = create_input(args, requires_grad=not is_inplace, call_kwargs=kwargs)
                self_tensor = deepcopy(self_variable.data)
                args_tensor = deepcopy(unpack_variables(args_variable))
                output_variable = getattr(self_variable, name)(*args_variable, **kwargs_variable)
                if not exclude_tensor_method(name, test_name):
                    output_tensor = getattr(self_tensor, name)(*args_tensor, **kwargs_variable)
                    if not isinstance(output_tensor, torch.Tensor) and not istuple(output_tensor):
                        output_tensor = torch.DoubleTensor((output_tensor,))
                    self.assertEqual(unpack_variables(output_variable), output_tensor)
                    # TODO: check that both have changed after adding all inplace ops

                def fn(*inputs):
                    output = getattr(inputs[0], name)(*inputs[1:], **kwargs)
                    return output_process_fn(output)

                if not is_inplace and name not in EXCLUDE_GRADCHECK:
                    run_grad_and_gradgrad_checks(self, name, test_name, fn,
                                                 output_variable, (self_variable,) + args_variable)

                # functional interface tests
                if hasattr(torch, name) and name not in EXCLUDE_FUNCTIONAL:
                    def fn(*inputs):
                        output = getattr(torch, name)(*inputs)
                        return output_process_fn(output)

                    f_args_variable = (self_variable,) + args_variable
                    f_args_tensor = (self_tensor,) + args_tensor
                    # could run the gradchecks again, but skip since we did it for the methods above.
                    run_functional_checks(self, test_name, name, fn,
                                          False, f_args_variable, f_args_tensor)

                # check for correct type of input.data and input.grad.data
                if not is_inplace:
                    self_variable = create_input((self_size,), requires_grad=True)[0][0]
                    args_variable, kwargs_variable = create_input(args, requires_grad=False, call_kwargs=kwargs)
                    output_variable = getattr(self_variable, name)(*args_variable, **kwargs_variable)
                    if isinstance(output_variable, torch.autograd.Variable):
                        output_variable.backward(randn_like(output_variable))
                        self.assertTrue(type(self_variable.data) == type(self_variable.grad.data))
                        self.assertTrue(self_variable.size() == self_variable.grad.size())

                    # compare grads to inplace grads
                    inplace_name = name + '_'
                    # can't broadcast inplace to left hand side
                    skip_inplace = ('broadcast_lhs' in test_name or
                                    'broadcast_all' in test_name)
                    if hasattr(torch.ones(1), inplace_name) and not skip_inplace:
                        output_variable = getattr(self_variable, name)(*args_variable, **kwargs_variable)
                        if not isinstance(output_variable, tuple):
                            output_variable = (output_variable,)
                        inplace_self_variable = deepcopy(self_variable)
                        inplace_self_variable_copy = tuple(i.clone() if isinstance(i, torch.Tensor) else i
                                                           for i in (inplace_self_variable,))
                        inplace_args_variable = deepcopy(args_variable)
                        inplace_args_variable_copy = tuple(i.clone() if isinstance(i, torch.Tensor) else i
                                                           for i in inplace_args_variable)

                        inplace_output_variable = (
                            getattr(inplace_self_variable_copy[0], inplace_name)(*inplace_args_variable_copy,
                                                                                 **kwargs_variable))
                        if not isinstance(inplace_output_variable, tuple):
                            inplace_output_variable = (inplace_output_variable,)
                        self.assertEqual(inplace_output_variable, output_variable)
                        # Check that gradient is the same
                        for inp_i, i in zip((inplace_self_variable,) + inplace_args_variable,
                                            (self_variable,) + args_variable):
                            if not isinstance(inp_i, torch.Tensor):
                                assert not isinstance(i, torch.Tensor)
                                continue
                            if inp_i.grad is not None:
                                inp_i.grad.data.zero_()
                            if i.grad is not None:
                                i.grad.data.zero_()
                        for io, o in zip(inplace_output_variable, output_variable):
                            grad = randn_like(io).double()
                            io.backward(grad)
                            o.backward(grad)
                        for inp_i, i in zip((inplace_self_variable,) + inplace_args_variable,
                                            (self_variable,) + args_variable):
                            if not isinstance(inp_i, torch.Tensor):
                                continue
                            self.assertEqual(inp_i.grad, i.grad)

            check(name)
            inplace_name = name + '_'
            # can't broadcast inplace to left hand side
            broadcast_skip_inplace = 'broadcast_lhs' in test_name or 'broadcast_all' in test_name
            if hasattr(torch.ones(1), inplace_name) and not broadcast_skip_inplace:
                check(inplace_name)

        assert not hasattr(TestAutograd, test_name), 'Two tests have the same name: ' + test_name

        for skip in skipTestIf:
            do_test = skip(do_test)

        setattr(TestAutograd, test_name, do_test)

for test in method_tests():
    add_test(*test)

if __name__ == '__main__':
    run_tests()