1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
|
#include "caffe2/operators/utility_ops.h"
#include <cmath>
namespace caffe2 {
namespace {
REGISTER_CPU_OPERATOR(WallClockTime, WallClockTimeOp<CPUContext>);
REGISTER_CPU_OPERATOR(Print, PrintOp<CPUContext>);
REGISTER_CPU_OPERATOR(Flatten, FlattenOp<CPUContext>);
REGISTER_CPU_OPERATOR(FlattenToVec, FlattenToVecOp<CPUContext>);
REGISTER_CPU_OPERATOR(Alias, AliasOp<CPUContext>);
REGISTER_CPU_OPERATOR(ResizeLike, ResizeLikeOp<CPUContext>);
REGISTER_CPU_OPERATOR(Sum, SumOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(SumInt, SumOp<int, CPUContext>);
REGISTER_CPU_OPERATOR(WeightedSum, WeightedSumOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
ScatterWeightedSum,
ScatterWeightedSumOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(Max, MaxOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(MaxGradient, MaxGradientOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(ScatterAssign, ScatterAssignOp<float, CPUContext>);
// From whatever the current context, ensure the output is TensorCPU
REGISTER_CPU_OPERATOR(
EnsureCPUOutput,
CopyOp<CPUContext, CPUContext, CPUContext>);
// From CPU, copy it to whatever the current context
REGISTER_CPU_OPERATOR(
CopyFromCPUInput,
CopyOp<CPUContext, CPUContext, CPUContext>);
REGISTER_CPU_OPERATOR(
CopyOnDeviceLike,
CopyOnDeviceLikeOp<CPUContext, CPUContext, CPUContext>);
REGISTER_CPU_OPERATOR(Copy, CopyOp<CPUContext, CPUContext, CPUContext>);
REGISTER_CPU_OPERATOR(Shape, ShapeOp<CPUContext>);
REGISTER_CPU_OPERATOR(LengthsToShape, LengthsToShapeOp<CPUContext>);
REGISTER_CPU_OPERATOR(HasElements, HasElementsOp<CPUContext>);
REGISTER_CPU_OPERATOR(IsEmpty, IsEmptyOp<CPUContext>);
REGISTER_CPU_OPERATOR(Gather, GatherOp<CPUContext>);
REGISTER_CPU_OPERATOR(GatherRanges, GatherRangesOp<CPUContext>);
REGISTER_CPU_OPERATOR(LengthsGather, LengthsGatherOp<CPUContext>);
REGISTER_CPU_OPERATOR(Unique, UniqueOp<CPUContext>);
REGISTER_CPU_OPERATOR(LengthsToSegmentIds, LengthsToSegmentIdsOp<CPUContext>);
REGISTER_CPU_OPERATOR(LengthsToRanges, LengthsToRangesOp<CPUContext>);
REGISTER_CPU_OPERATOR(SegmentIdsToLengths, SegmentIdsToLengthsOp<CPUContext>);
REGISTER_CPU_OPERATOR(SegmentIdsToRanges, SegmentIdsToRangesOp<CPUContext>);
REGISTER_CPU_OPERATOR(Slice, SliceOp<int, CPUContext>);
REGISTER_CPU_OPERATOR(Squeeze, SqueezeOp<CPUContext>);
REGISTER_CPU_OPERATOR(ExpandDims, ExpandDimsOp<CPUContext>);
REGISTER_CPU_OPERATOR(LengthsToWeights, LengthsToWeightsOp<CPUContext>);
REGISTER_CPU_OPERATOR(EnsureDense, EnsureDenseOp<CPUContext>);
REGISTER_CPU_OPERATOR(
AccumulateHistogram,
AccumulateHistogramOp<float, CPUContext>);
OPERATOR_SCHEMA(WallClockTime)
.NumInputs(0)
.NumOutputs(1)
.SetDoc("Time since epoch in nanoseconds.")
.Output(0, "time", "The time in nanoseconds.");
REGISTER_CPU_OPERATOR(UnsafeCoalesce, UnsafeCoalesceOp<CPUContext>);
OPERATOR_SCHEMA(Print)
.NumInputs(1)
.NumOutputs(0)
.SetDoc("Logs shape and contents of input tensor to stderr or to a file.")
.Arg(
"to_file",
"(bool) if 1, saves contents to the root folder of the current "
"workspace, appending the tensor contents to a file named after "
"the blob name. Otherwise, logs to stderr.")
.Input(0, "tensor", "The tensor to print.");
OPERATOR_SCHEMA(LengthsToShape).NumInputs(1).NumOutputs(1);
OPERATOR_SCHEMA(Flatten)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction(
[](const OperatorDef&, const vector<TensorShape>& in) {
vector<TensorShape> out(1);
int total = 1;
std::size_t index = 0;
for (auto d : in[0].dims()) {
// skip the first element
if (index++ == 0) {
continue;
}
total *= d;
}
out[0].set_data_type(in[0].data_type());
out[0].add_dims(in[0].dims(0));
out[0].add_dims(total);
return out;
})
.SetDoc(R"DOC(
Flattens the input tensor into a 2D matrix, keeping the first dimension
unchanged.
)DOC")
.Input(0, "input", "A tensor of rank >= 2.")
.Output(
0,
"output",
"A tensor of rank 2 with the contents of the input tensor, "
"with first dimension equal first dimension of input, and remaining "
"input dimensions flatenned into the inner dimension of the output.");
OPERATOR_SCHEMA(FlattenToVec)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction(
[](const OperatorDef& def, const vector<TensorShape>& in) {
vector<TensorShape> out(1);
int total = 1;
for (auto d : in[0].dims()) {
total *= d;
}
out[0].set_data_type(in[0].data_type());
out[0].add_dims(total);
return out;
})
.SetDoc(R"DOC(
Flattens the input tensor into a 1D vector.
)DOC")
.Input(0, "input", "A tensor of rank >= 1.")
.Output(
0,
"output",
"A tensor of rank 1 with the contents of the input tensor");
OPERATOR_SCHEMA(Alias)
.NumInputs(1)
.NumOutputs(1)
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Makes the output and the input share the same underlying storage.
WARNING: in general, in caffe2's operator interface different tensors should
have different underlying storage, which is the assumption made by
components such as the dependency engine and memory optimization. Thus, in
normal situations you should not use the AliasOp, especially in a normal
forward-backward pass.
The Alias op is provided so one can achieve true asynchrony, such as
Hogwild, in a graph. But make sure you understand all the implications
similar to multi-thread computation before you use it explicitly.
)DOC")
.Input(0, "input", "Input tensor whose storage will be shared.")
.Output(0, "output", "Tensor of same shape as input, sharing its storage.");
OPERATOR_SCHEMA(ResizeLike)
.NumInputs(2)
.NumOutputs(1)
.TensorInferenceFunction(
[](const OperatorDef& def, const vector<TensorShape>& in) {
vector<TensorShape> out(1);
out.push_back(in[1]);
out[0].set_data_type(in[0].data_type());
return out;
})
.SetDoc(R"DOC(
Produces tensor containing data of first input and shape of second input.
)DOC")
.Input(0, "data", "Tensor whose data will be copied into the output.")
.Input(1, "shape_tensor", "Tensor whose shape will be applied to output.")
.Output(0, "output", "Tensor with data of input 0 and shape of input 1.");
OPERATOR_SCHEMA(SumInt)
.NumInputs(1, INT_MAX)
.NumOutputs(1)
.TensorInferenceFunction(
[](const OperatorDef& def, const vector<TensorShape>& in) {
vector<TensorShape> out(1);
out.push_back(in[0]);
out[0].set_data_type(TensorProto::INT32);
return out;
})
.AllowInplace({{0, 0}});
OPERATOR_SCHEMA(Sum)
.NumInputs(1, INT_MAX)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.IdenticalTypeAndShapeOfInput(0)
.SetDoc(R"DOC(
Element-wise sum of each of the input tensors. The first input tensor can be
used in-place as the output tensor, in which case the sum will be done in
place and results will be accumulated in input0. All inputs and outputs must
have the same shape and data type.
)DOC")
.Input(0, "data_0", "First of the input tensors. Can be inplace.")
.Output(0, "sum", "Output tensor. Same dimension as inputs.");
OPERATOR_SCHEMA(WeightedSum)
.NumInputs([](int n) { return (n > 0 && n % 2 == 0); })
.NumOutputs(1)
.AllowInplace({{0, 0}})
.IdenticalTypeAndShapeOfInput(0)
.SetDoc(R"DOC(
Element-wise weighted sum of several data, weight tensor pairs.
Input should be in the form X_0, weight_0, X_1, weight_1, ... where X_i all
have the same shape, and weight_i are size 1 tensors that specifies the weight
of each vector. Note that if one wants to do in-place computation, it could
only be done with X_0 also as the output, but not other X_i.
)DOC")
.Input(0, "data_0", "First of the input tensors.")
.Input(0, "weight_0", "Weight of the first input in the sum.")
.Output(0, "output", "Result containing weighted elem-wise sum of inputs.");
OPERATOR_SCHEMA(ScatterWeightedSum)
.NumInputs([](int n) { return (n > 3 && (n - 3) % 2 == 0); })
.NumOutputs(1)
.EnforceInplace({{0, 0}})
.SetDoc(R"DOC(
Similar to WeightedSum, computes the weighted sum of several tensors, with
the difference that inputs are sliced tensors. The first tensor has to be
in-place and only slices of it on the first dimension as indexed by INDICES
will be updated.
Note: The op pretty much ignores the exact shapes of the input arguments and
cares only about sizes. It's done for performance consideration to avoid
unnecessary reshapes. Only first dimension of X_0 is important, let's call it
N. If M is the total size of X_0 and K is the size of INDICES then X_i is
assumed to be of shape K x (M / N) regardless of the real shape.
Note: Each update in INDICES is applied independently which means that if
duplicated elements are present in INDICES the corresponding slice of X_0
will be scaled multiple times. Manual collapsing of INDICES is required
beforehand if necessary.
Note: Updates are applied sequentially by inputs which might have undesired
consequences if the input tensor is accessed concurrently by different op
(e.g. when doing Hogwild). Other threads might see intermediate results even
on individual slice level, e.g. X_0 scaled by weight_0 but without any
updates applied.
Currently only works on CPU because of access to INDICES.
)DOC")
.Input(0, "X_0", "Tensor to be updated.")
.Input(
1,
"Weight_0",
"Scalar weight for X_0, applied only to slices affected.")
.Input(
2,
"INDICES",
"1-D list of indices on the first dimension of X_0 "
"that need to be updated")
.Input(3, "X_1", "Update slices, with shape len(INDICES) + shape(X_0)[1:]")
.Input(4, "Weight_1", "Scalar weight for X_1 update")
.Output(0, "X_0", "Has to be exactly the same tensor as the input 0")
.EnforceInplace({{0, 0}});
OPERATOR_SCHEMA(Max)
.NumInputs(1, INT_MAX)
.NumOutputs(1)
.IdenticalTypeAndShapeOfInput(0)
.AllowInplace({{0, 0}})
.SetDoc(R"DOC(
Element-wise max of each of the input tensors. The first input tensor can be
used in-place as the output tensor, in which case the max will be done in
place and results will be accumulated in input0. All inputs and outputs must
have the same shape and data type.
)DOC")
.Input(0, "data_0", "First of the input tensors. Can be inplace.")
.Output(0, "max", "Output tensor. Same dimension as inputs.");
OPERATOR_SCHEMA(MaxGradient).NumInputs(3, INT_MAX).NumOutputs(1, INT_MAX);
OPERATOR_SCHEMA(ScatterAssign)
.NumInputs(3)
.NumOutputs(1)
.EnforceInplace({{0, 0}})
.SetDoc(R"DOC(
Update slices of the tensor in-place by overriding current value.
Note: The op pretty much ignores the exact shapes of the input arguments and
cares only about sizes. It's done for performance consideration to avoid
unnecessary reshapes. Only first dimension of X_0 is important, let's call it
N. If M is the total size of X_0 and K is the size of INDICES then X_i is
assumed to be of shape K x (M / N) regardless of the real shape.
Note: Each update in INDICES is applied independently which means that if
duplicated elements are present in INDICES arbitrary one will win.
Currently only works on CPU because of access to INDICES.
)DOC")
.Input(0, "DATA", "Tensor to be updated.")
.Input(
1,
"INDICES",
"1-D list of indices on the first dimension"
"of X_0 that need to be updated")
.Input(
2,
"SLICES",
"Update slices, with shape len(INDICES) + shape(X_0)[1:]")
.Output(0, "DATA", "Has to be exactly the same tensor as the input 0");
OPERATOR_SCHEMA(Copy)
.NumInputs(1)
.NumOutputs(1)
.IdenticalTypeAndShape()
.SetDoc("Copy input tensor into output, potentially across devices.")
.Input(0, "input", "The input tensor.")
.Output(0, "output", "Tensor that will contain a copy of the input.");
OPERATOR_SCHEMA(CopyGPUToCPU)
.NumInputs(1)
.NumOutputs(1)
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Copy tensor for GPU to CPU context. Must be run under GPU device option.
)DOC")
.Input(0, "input", "The input tensor.")
.Output(0, "output", "Tensor that will contain a copy of the input.");
OPERATOR_SCHEMA(CopyCPUToGPU)
.NumInputs(1)
.NumOutputs(1)
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Copy tensor for CPU to GPU context. Must be run under GPU device option.
)DOC")
.Input(0, "input", "The input tensor.")
.Output(0, "output", "Tensor that will contain a copy of the input.");
OPERATOR_SCHEMA(EnsureCPUOutput)
.NumInputs(1)
.NumOutputs(1)
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Take an input tensor in the current Context (GPU or CPU) and create an output
which is always a TensorCPU. This may involves cross-device MemCpy.
)DOC")
.Input(0, "input", "The input CUDA or CPU tensor.")
.Output(0, "output", "TensorCPU that is a copy of the input.");
OPERATOR_SCHEMA(CopyFromCPUInput)
.NumInputs(1)
.NumOutputs(1)
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Take a CPU input tensor and copy it to an output in the current
Context (GPU or CPU). This may involves cross-device MemCpy.
)DOC")
.Input(0, "input", "The input CPU tensor.")
.Output(0, "output", "either a TensorCUDA or a TensorCPU");
OPERATOR_SCHEMA(CopyOnDeviceLike)
.NumInputs(2)
.NumOutputs(1)
.SetDoc("Copy input tensor into output to the specific device.")
.Input(0, "input", "The input tensor.")
.Input(1, "dst", "Tensor, on which device the copy will be performed.")
.Output(0, "output", "Tensor that will contain a copy of the input.");
OPERATOR_SCHEMA(Shape)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction(
[](const OperatorDef& def, const vector<TensorShape>& in) {
vector<TensorShape> out(1);
out[0].add_dims(in[0].dims().size());
out[0].set_data_type(TensorProto::INT32);
return out;
})
.SetDoc("Produce a 1D int64 tensor with the shape of the input tensor.");
OPERATOR_SCHEMA(HasElements)
.NumInputs(1)
.NumOutputs(1)
.SetDoc("Returns true iff the input tensor has size > 0")
.Input(0, "tensor", "Tensor of any type.")
.Output(
0,
"has_elements",
"Scalar bool tensor. True if input is not empty.");
OPERATOR_SCHEMA(IsEmpty)
.NumInputs(1)
.NumOutputs(1)
.SetDoc("Returns true iff the input tensor has size == 0")
.Input(0, "tensor", "Tensor of any type.")
.Output(0, "is_empty", "Scalar bool tensor. True if input is empty.");
OPERATOR_SCHEMA(Gather)
.NumInputs(2)
.NumOutputs(1)
.SetDoc(R"DOC(
Given DATA tensor of rank r >= 1, and INDICES tensor of rank q, gather
entries of the outer-most dimension of DATA indexed by INDICES, and concatenate
them in an output tensor of rank q + (r - 1).
Example:
DATA = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
INDICES = [
[0, 1],
[1, 2],
]
OUTPUT = [
[
[1.0, 1.2],
[2.3, 3.4],
],
[
[2.3, 3.4],
[4.5, 5.7],
],
]
)DOC")
.Input(0, "DATA", "Tensor of rank r >= 1.")
.Input(1, "INDICES", "Tensor of int32/int64 indices, of any rank q.")
.Output(0, "OUTPUT", "Tensor of rank q + (r - 1).");
OPERATOR_SCHEMA(GatherRanges)
.NumInputs(2)
.NumOutputs(2)
.SetDoc(R"DOC(
Given DATA tensor of rank 1, and RANGES tensor of rank 3, gather
corresponding ranges into a 1-D tensor OUTPUT.
RANGES dimentions description:
1: represents list of examples within a batch
2: represents list features
3: two values which are start and length or a range (to be applied on DATA)
Another output LENGTHS represents each example length within OUTPUT
Example:
DATA = [1, 2, 3, 4, 5, 6]
RANGES = [
[
[0, 1],
[2, 2],
],
[
[4, 1],
[5, 1],
]
]
OUTPUT = [1, 3, 4, 5, 6]
LENGTHS = [3, 2]
)DOC")
.Input(0, "DATA", "Tensor of rank 1.")
.Input(
1,
"RANGES",
"Tensor of int32/int64 ranges, of dims (N, M, 2). "
"Where N is number of examples and M is a size of each example. "
"Last dimention represents a range in the format (start, lengths)")
.Output(0, "OUTPUT", "1-D tensor of size sum of range lengths")
.Output(
1,
"LENGTHS",
"1-D tensor of size N with lengths over gathered data"
" for each row in a batch. sum(LENGTHS) == OUTPUT.size()");
OPERATOR_SCHEMA(LengthsGather)
.NumInputs(3)
.NumOutputs(1)
.SetDoc(R"DOC(
Gather items from sparse tensor. Sparse tensor is described by items and
lengths. This operator gathers items corresponding to lengths at the given
indices. This deliberately doesn't return lengths of OUTPUTS so that both lists
and maps can be supported without special cases. If you need lengths tensor for
OUTPUT, use `Gather`.
Example:
```
ITEMS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
LENGTHS = [0, 2, 3, 1, 4]
INDICES = [0, 2, 4]
OUTPUT = [2, 3, 4, 6, 7, 8, 9]
```
)DOC")
.Input(0, "ITEMS", "items tensor")
.Input(1, "LENGTHS", "lengths tensor")
.Input(2, "INDICES", "indices into LENGTHS where items should be gathered")
.Output(0, "OUTPUT", "1-D tensor containing gathered items");
OPERATOR_SCHEMA(Unique)
.NumInputs(1)
.NumOutputs(1, 2)
.SetDoc(R"DOC(
Deduplicates input indices vector and optionally produces reverse remapping.
There's no guarantees on the ordering of the output indices.
)DOC")
.Input(0, "indices", "1D tensor of int32 or int64 indices.")
.Output(0, "unique_indices", "1D tensor of deduped entries.");
OPERATOR_SCHEMA(LengthsToSegmentIds)
.NumInputs(1)
.NumOutputs(1)
.SetDoc(R"DOC(
Given a vector of segment lengths, returns a zero-based, consecutive vector
of segment_ids. For example, [1, 3, 0, 2] will produce [0, 1, 1, 1, 3, 3].
In general, the inverse operation is SegmentIdsToLengths. Notice though that
trailing empty sequence lengths can't be properly recovered from segment ids.
)DOC")
.Input(0, "lengths", "1D tensor of int32 or int64 segment lengths.")
.Output(0, "segment_ids", "1D tensor of length `sum(lengths)`");
OPERATOR_SCHEMA(LengthsToRanges)
.NumInputs(1)
.NumOutputs(1)
.SetDoc(R"DOC(
Given a vector of segment lengths, calculates offsets of each segment and packs
them next to the lengths. For the input vector of length N the output is a Nx2
matrix with (offset, lengths) packaged for each segment.
For example, `[1, 3, 0, 2]` transforms into `[[0, 1], [1, 3], [4, 0], [4, 2]]`.
)DOC")
.Input(0, "lengths", "1D tensor of int32 segment lengths.")
.Output(
0,
"ranges",
"2D tensor of shape len(lengths) X 2 and the same type as `lengths`");
OPERATOR_SCHEMA(SegmentIdsToLengths)
.NumInputs(1, 2)
.NumOutputs(1)
.SetDoc(R"DOC(
Transfers a vector of segment ids to a vector of segment lengths. This operation
supports non-consecutive segment ids. Segments not appearing in the input vector
will have length 0. If the second input is provided, the number of segments =
the size of its first dimension. Otherwise, the number of segments = the last
index in the first input vector + 1.
In general, for consecutive, zero-based segment IDs, this is the inverse
operation of LengthsToSegmentIds, except that a vector of segment IDs
cannot represent empty segments at the end (if the second input is absent).
)DOC")
.Input(0, "segment_ids", "1-D int32_t or int64_t tensor of segment ids")
.Input(
1,
"data (optional)",
"if provided, number of segments = the size of its first dimension")
.Output(0, "lengths", "1-D int64_t tensor of segment lengths");
OPERATOR_SCHEMA(SegmentIdsToRanges)
.NumInputs(1, 2)
.NumOutputs(1)
.SetDoc(R"DOC(
Transfers a vector of segment ids to a vector of segment ranges. This operation
supports non-consecutive segment ids. Segments not appearing in the input vector
will have length 0. If the second input is provided, the number of segments =
the size of its first dimension. Otherwise, the number of segments = the last
index in the first input vector + 1.
)DOC")
.Input(0, "segment_ids", "1-D int32_t or int64_t tensor of segment ids")
.Input(
1,
"data (optional)",
"if provided, number of segments = the size of its first dimension")
.Output(0, "lengths", "1-D int64_t tensor of segment lengths");
OPERATOR_SCHEMA(LengthsToWeights)
.NumInputs(1)
.NumOutputs(1)
.Arg("power", "n of 1/pow(length,n) for normalization")
.SetDoc(R"DOC(
Similar as LengthsToSegmentIds but output vector of segment
weights derived by lengths. i.e 1/pow(length, power)
)DOC")
.Input(0, "lengths", "1-D int32_t or int64_t tensor of lengths")
.Output(0, "a vector of weights", "1-D float tensor of weights by length");
OPERATOR_SCHEMA(Slice)
.NumInputs(3)
.NumOutputs(1)
.SetDoc(R"DOC(
Produces a slice of the input tensor. Currently, only slicing in a single
dimension is supported.
Slices are passed as 2 1D vectors with starting and end indices for each
dimension of the input `data` tensor. End indices are non-inclusive. If
a negative value is passed for any of the start or end indices, it
represent number of elements before the end of that dimension.
Example:
data = [
[1, 2, 3, 4],
[5, 6, 7, 8],
]
starts = [0, 1]
ends = [-1, 3]
result = [
[2, 3],
[6, 7],
]
)DOC")
.Input(0, "data", "Tensor of data to extract slices from.")
.Input(1, "starts", "1D tensor: start-indices for each dimension of data.")
.Input(2, "ends", "1D tensor: end-indices for each dimension of data.")
.Output(0, "output", "Sliced data tensor.");
OPERATOR_SCHEMA(Squeeze)
.NumInputs(1)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.SetDoc(R"DOC(
Remove single-dimensional entries from the shape of a tensor.
Takes a parameter `dims` with a list of dimension to squeeze.
If the same blob is provided in input and output, the operation is copy-free.
This is the exact inverse operation of ExpandDims given the same `dims` arg.
)DOC")
.Input(0, "data", "Tensors with at least max(dims) dimensions.")
.Output(0, "squeezed", "Reshaped tensor with same data as input.");
OPERATOR_SCHEMA(ExpandDims)
.NumInputs(1)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.SetDoc(R"DOC(
Insert single-dimensional entries to the shape of a tensor.
Takes one required argument `dims`, a list of dimensions that will be inserted.
Dimension indices in `dims` are as seen in the output tensor. For example:
Given a tensor such that tensor.Shape() = [3, 4, 5], then
ExpandDims(tensor, dims=[0, 4]).Shape() == [1, 3, 4, 5, 1])
If the same blob is provided in input and output, the operation is copy-free.
)DOC")
.Input(0, "data", "Original tensor")
.Output(0, "expanded", "Reshaped tensor with same data as input.");
SHOULD_NOT_DO_GRADIENT(WallClockTime);
OPERATOR_SCHEMA(UnsafeCoalesce)
.NumInputsOutputs([](int inputs, int outputs) {
return inputs + 1 == outputs;
})
.AllowInplace([](int input, int output) { return input == output; })
.SetDoc(R"DOC(
Coalesce the N inputs into N outputs and a single coalesced output blob.
This allows operations that operate over multiple small kernels (e.g.
biases in a deep CNN) to be coalesced into a single larger operation,
amortizing the kernel launch overhead, synchronization costs for
distributed computation, etc.
The operator:
- computes the total size of the coalesced blob by summing the input sizes
- allocates the coalesced output blob as the total size
- copies the input vectors into the coalesced blob, at the correct offset.
- aliases each Output(i) to- point into the coalesced blob, at the
corresponding offset for Input(i).
This is 'unsafe' as the output vectors are aliased, so use with
caution.
)DOC");
OPERATOR_SCHEMA(EnsureDense)
.NumInputs(1)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.SetDoc(R"DOC(
This operator converts dense or sparse gradients to dense ones.
Therefore, sparse gradient can be back propagated to Operators that consume
dense gradients only (e.g., FCGradient).
The operator's behaviors:
- In forward, simply pass in place or copy input to the output.
- In backward, if the gradient passed-in is sparse gradient, change it to
dense gradient in linear time; otherwise, simply pass the dense gradient.
)DOC")
.Input(0, "input", "Input tensors.")
.Output(0, "output", "Output tensor. Same dimension as inputs.");
OPERATOR_SCHEMA(AccumulateHistogram)
.NumInputs(1)
.NumOutputs(2)
.SetDoc(R"DOC(
This operator calculate thes histogram of values in input tensor.
There're 2 outputs, one for histogram of current input tensor, and another
for histogram of the all input tensors accumulated through history.
The output would contain num_buckets + 2 values. index[1 ... num_buckets]
for values in [lower_bound, upper_bound) interval. And the rest 2 for values
smaller than lower_bound or greater than upper_bound respectively.
)DOC")
.Input(0, "X", "Input tensor.")
.Output(0, "CurHist", "Output histogram of the current tensor.")
.Output(1, "AccHist", "Accumulated histogram of the history tensor.")
.Arg("lower_bound", "the lower bound value")
.Arg("upper_bound", "the upper bound value")
.Arg(
"num_buckets",
"number of buckets to use in [lower_bound, upper_bound)");
class GetEnsureDenseGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
CAFFE_ENFORCE(
GradOut(0).IsSparse() || GradOut(0).IsDense(),
"Input gradient ",
O(0),
" should be either sparse or dense.");
if (GradOut(0).IsDense()) {
SetDense(0, GO(0));
return vector<OperatorDef>();
} else {
return SingleGradientDef(
"SparseToDense",
"",
vector<string>{GO_I(0), GO_V(0), I(0)},
vector<string>{GI(0)});
}
}
};
REGISTER_GRADIENT(EnsureDense, GetEnsureDenseGradient);
SHOULD_NOT_DO_GRADIENT(Print);
SHOULD_NOT_DO_GRADIENT(Shape);
SHOULD_NOT_DO_GRADIENT(HasElements);
SHOULD_NOT_DO_GRADIENT(IsEmpty);
SHOULD_NOT_DO_GRADIENT(LengthsToShape);
SHOULD_NOT_DO_GRADIENT(UnsafeCoalesce);
class GetSqueezeGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"ExpandDims", "", vector<string>{GO(0)}, vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(Squeeze, GetSqueezeGradient);
class GetExpandDimsGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"Squeeze", "", vector<string>{GO(0)}, vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(ExpandDims, GetExpandDimsGradient);
class GetFlattenGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"ResizeLike", "", vector<string>{GO(0), I(0)}, vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(Flatten, GetFlattenGradient);
class GetAliasGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
// We will simply pass-along the gradient. Nothing needs to
// be calculated.
SetDense(0, GO(0));
return vector<OperatorDef>();
}
};
REGISTER_GRADIENT(Alias, GetAliasGradient);
SHOULD_NOT_DO_GRADIENT(ResizeLike);
class GetSumGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
for (auto i = 0; i < def_.input_size(); ++i) {
SetDense(i, GO(0));
}
return vector<OperatorDef>();
}
};
REGISTER_GRADIENT(Sum, GetSumGradient);
// TODO(jiayq): Weighted sum is originally intended to be used in SGD, but in
// theory, its gradient DOES exist. Should we enable the gradient?
SHOULD_NOT_DO_GRADIENT(WeightedSum);
SHOULD_NOT_DO_GRADIENT(ScatterWeightedSum);
SHOULD_NOT_DO_GRADIENT(ScatterAssign);
class GetMaxGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
auto gradInputs = vector<string>();
auto inputs = vector<string>{O(0), GO(0)};
for (int i = 0; i < def_.input_size(); i++) {
gradInputs.push_back(GI(i));
inputs.push_back(I(i));
}
return SingleGradientDef("MaxGradient", "", inputs, gradInputs);
}
};
REGISTER_GRADIENT(Max, GetMaxGradient);
class GetGatherGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
ArgumentHelper argsHelper(def_);
const bool dense_gradient =
argsHelper.GetSingleArgument<bool>("dense_gradient", false);
using Op = GatherOp<CPUContext>;
if (dense_gradient) {
return vector<OperatorDef>{CreateOperatorDef(
"SparseToDense",
"",
vector<string>{I(Op::INDICES), GO(0), I(Op::DATA)},
vector<string>{GI(Op::DATA)})};
} else {
// For now we don't do any reshaping as the consumer of this op would
// probably be ScatterUpdate which is intenionally ignores shapes. We
// might need to revisit it in the future for correctness purposes. The
// right shape for the output woild be to flatten INDICES and collapse
// first X dims of GRAD
SetSparse(Op::DATA, I(Op::INDICES), GO(0));
return vector<OperatorDef>();
}
}
};
REGISTER_GRADIENT(Gather, GetGatherGradient);
struct GetFlattenToVecGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"ResizeLike", "", vector<string>{GO(0), I(0)}, vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(FlattenToVec, GetFlattenToVecGradient);
struct GetCopyGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"CopyOnDeviceLike",
"",
vector<string>{GO(0), I(0)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(Copy, GetCopyGradient);
struct GetGPUToCPUGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
if (g_output_[0].IsDense()) {
return SingleGradientDef(
"CopyCPUToGPU", "", vector<string>{GO(0)}, vector<string>{GI(0)});
} else {
return vector<OperatorDef>{CreateOperatorDef(
"CopyCPUToGPU",
"",
std::vector<string>{GO_I(0)},
std::vector<string>{GI_I(0)}),
CreateOperatorDef(
"CopyCPUToGPU",
"",
std::vector<string>{GO_V(0)},
std::vector<string>{GI_V(0)})};
}
}
};
REGISTER_GRADIENT(CopyGPUToCPU, GetGPUToCPUGradient);
struct GetCPUToGPUGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
if (g_output_[0].IsDense()) {
return SingleGradientDef(
"CopyGPUToCPU", "", vector<string>{GO(0)}, vector<string>{GI(0)});
} else {
return vector<OperatorDef>{CreateOperatorDef(
"CopyGPUToCPU",
"",
std::vector<string>{GO_I(0)},
std::vector<string>{GI_I(0)}),
CreateOperatorDef(
"CopyGPUToCPU",
"",
std::vector<string>{GO_V(0)},
std::vector<string>{GI_V(0)})};
}
}
};
REGISTER_GRADIENT(CopyCPUToGPU, GetCPUToGPUGradient);
SHOULD_NOT_DO_GRADIENT(Unique);
SHOULD_NOT_DO_GRADIENT(LengthsToSegmentIds);
SHOULD_NOT_DO_GRADIENT(SegmentIdsToLengths);
SHOULD_NOT_DO_GRADIENT(SegmentIdsToRanges);
SHOULD_NOT_DO_GRADIENT(SegmentIdsToLengthWeights);
// TODO(azzolini): Add support for slice gradient
SHOULD_NOT_DO_GRADIENT(Slice);
SHOULD_NOT_DO_GRADIENT(GatherRangesOp);
SHOULD_NOT_DO_GRADIENT(LengthsGather);
SHOULD_NOT_DO_GRADIENT(AccumulateHistogram);
} // namespace
template <typename T, class Context>
bool MaxOp<T, Context>::Compute() {
auto& input0 = Input(0);
const int N = input0.size();
T* output_data = Output(0)->template mutable_data<T>();
for (int i = 1; i < InputSize(); i++) {
auto input_data = Input(i).template data<T>();
EigenVectorMap<T> output_vec(output_data, N);
output_vec = output_vec.cwiseMax(ConstEigenVectorMap<T>(input_data, N));
}
return true;
}
template <typename T, class Context>
bool MaxGradientOp<T, Context>::RunOnDevice() {
auto& output = Input(0);
auto& grad_output = Input(1);
const int kInputStartOffset = 2;
const T* data = output.template data<T>();
ConstEigenArrayMap<T> output_array(
output.template data<T>(), 1, output.size());
ConstEigenArrayMap<T> grad_out_array(
grad_output.template data<T>(), 1, grad_output.size());
for (int i = 0; i < OutputSize(); i++) {
auto& input = Input(i + kInputStartOffset);
ConstEigenArrayMap<T> input_array(
input.template data<T>(), 1, input.size());
auto* grad_input = Output(i);
grad_input->ResizeLike(input);
EigenArrayMap<T> grad_in_array(
grad_input->template mutable_data<T>(), 1, grad_input->size());
grad_in_array = grad_out_array *
input_array.cwiseEqual(output_array).template cast<T>();
}
return true;
}
template <>
bool NanCheckOp<CPUContext>::RunOnDevice() {
auto& X = Input(0);
auto* Y = Output(0);
const int D = X.size();
const float* data = X.data<float>();
ConstEigenVectorMap<float> input_data(data, D);
bool all_finite = input_data.allFinite();
if (!all_finite) {
std::cerr << "Tensor contained NaN or inf: [" << this->def().input(0) << "]"
<< std::endl;
for (int j = 0; j < InputSize(); j++) {
std::cerr << "Tensor name: " << this->def().input(j) << std::endl;
std::cerr << "Input tensor:" << std::endl;
tensorPrinter_.Print<float>(Input(j));
std::cerr << "NaN idxs:" << std::endl;
const float* x = Input(j).data<float>();
for (size_t i = 0; i < Input(j).size(); ++i) {
if (std::isnan(x[i]) || std::isinf(x[i])) {
std::cerr << i << " ";
}
}
std::cerr << std::endl;
}
return false;
}
if (&X != Y) {
Y->CopyFrom(X, &context_);
}
return true;
}
REGISTER_CPU_OPERATOR(NanCheck, NanCheckOp<CPUContext>);
REGISTER_GRADIENT(NanCheck, GetNanCheckGradient);
OPERATOR_SCHEMA(NanCheck)
.NumInputs(1, INT_MAX)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.IdenticalTypeAndShapeOfInput(0)
.SetDoc("Identity operator, but checks all values for nan or inf")
.Input(0, "tensor", "Tensor to check for nan/inf")
.Output(
0,
"output",
"Tensor to copy input into if no NaNs or inf."
" Can be in-place");
} // namespace caffe2
|