from __future__ import print_function import sys import os import re import math import shutil import random import tempfile import unittest import traceback import torch import torch.nn as nn import torch.utils.data import torch.cuda import warnings from torch.utils.checkpoint import checkpoint, checkpoint_sequential import torch.hub as hub from torch.autograd._functions.utils import prepare_onnx_paddings from torch.autograd._functions.utils import check_onnx_broadcast from common_utils import IS_WINDOWS, IS_PPC, skipIfRocm, load_tests # load_tests from common_utils is used to automatically filter tests for # sharding on sandcastle. This line silences flake warnings load_tests = load_tests try: import torchvision.models as models HAS_TORCHVISION = True except ImportError: HAS_TORCHVISION = False skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") HAS_CUDA = torch.cuda.is_available() from common_utils import TestCase, run_tests, download_file class RandomDatasetMock(object): def __getitem__(self, index): return torch.tensor([torch.rand(1).item(), random.uniform(0, 1)]) def __len__(self): return 1000 class TestCheckpoint(TestCase): # This runs checkpoint_sequential on each of the nets in # module_lists_to_compare, and compares them against the uncheckpointed model. # To compare, it checks outputs as well as input gradients and parameter gradients def _check_checkpoint_sequential( self, model, module_lists_to_compare, num_chunks, *inputs ): # not checkpointed if not isinstance(inputs, tuple): inputs = (inputs,) out = model(*inputs) out_not_checkpointed = out.data.clone() model.zero_grad() out.sum().backward() grad_not_checkpointed = { name: param.grad.data.clone() for name, param in model.named_parameters() } input_grad_not_checkpointed = [i.grad.data.clone() for i in inputs] for model_to_compare in module_lists_to_compare: # checkpointed model by passing list of modules detached_inputs = [i.detach() for i in inputs] for detached in detached_inputs: detached.requires_grad = True # pass list of modules to checkpoint out = checkpoint_sequential(model_to_compare, num_chunks, *detached_inputs) out_checkpointed = out.data.clone() model.zero_grad() out.sum().backward() grad_checkpointed = { name: param.grad.data.clone() for name, param in model.named_parameters() } input_grad_checkpointed = [d.grad.data.clone() for d in detached_inputs] # compare outputs as well as the gradients of input and parameters self.assertEqual(out_checkpointed, out_not_checkpointed) for i, j in zip(input_grad_not_checkpointed, input_grad_checkpointed): self.assertEqual(i, j) for name in grad_checkpointed: self.assertEqual(grad_checkpointed[name], grad_not_checkpointed[name]) # Test whether checkpoint is being triggered or not. For this, we check # the number of times forward pass happens def test_checkpoint_trigger(self): class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.counter = 0 def forward(self, input_var): self.counter += 1 return input_var # checkpointed modules = [Net() for _ in range(10)] for m in modules: self.assertEqual(m.counter, 0) input_var = torch.randn(3, 4, requires_grad=True) out = checkpoint_sequential(modules, 2, input_var) for m in modules: self.assertEqual(m.counter, 1) out.sum().backward() for m in modules[:(len(modules) // 2)]: self.assertEqual(m.counter, 2) for m in modules[(len(modules) // 2):]: self.assertEqual(m.counter, 1) def test_checkpoint_valid(self): model = nn.Sequential( nn.Linear(100, 50), nn.ReLU(), nn.Linear(50, 20), nn.ReLU(), nn.Linear(20, 5), nn.ReLU() ) input_var = torch.randn(1, 100, requires_grad=True) # checkpointed chunks = 2 modules = list(model.children()) out = checkpoint_sequential(modules, chunks, input_var) with self.assertRaisesRegex(RuntimeError, "Checkpointing is not compatible"): torch.autograd.grad( outputs=[out], grad_outputs=[torch.ones(1, 5)], inputs=[input_var], create_graph=True ) def test_checkpoint(self): model = nn.Sequential( nn.Linear(100, 50), nn.ReLU(), nn.Linear(50, 20), nn.ReLU(), nn.Linear(20, 5), nn.ReLU() ) # Compare uncheckpointed model with its checkpointed counterparts # In addition to running checkpoint_sequential on the nn.Sequential # instance, we also run the function on the list of functions within # the module. self._check_checkpoint_sequential( model, [list(model.children()), model], 2, torch.randn(1, 100, requires_grad=True) ) def test_checkpoint_module_list_multiple_args(self): class ModuleListNet(nn.Module): def __init__(self): super(ModuleListNet, self).__init__() module_list = [ nn.Bilinear(100, 60, 50), nn.ReLU(), nn.Linear(50, 20), nn.ReLU(), nn.Linear(20, 5), nn.ReLU(), ] self.module_list = nn.ModuleList(module_list) def forward(self, *inputs): for layer in self.module_list: if isinstance(inputs, tuple): inputs = layer(*inputs) else: inputs = layer(inputs) return inputs model = ModuleListNet() # Compare uncheckpointed model with its checkpointed counterparts # In addition to running checkpoint_sequential on the nn.ModuleList # instance, we also run the function on the list of functions within # the ModuleList. self._check_checkpoint_sequential( model, [list(model.module_list.children()), model.module_list], 2, torch.randn(1, 100, requires_grad=True), torch.randn(1, 60, requires_grad=True) ) def test_checkpoint_rng_cpu(self): for i in range(5): inp = torch.randn(20000, device='cpu').requires_grad_() phase1 = torch.nn.Dropout() phase2 = torch.nn.Dropout() def run_fn(input): return phase2(input) state = torch.get_rng_state() out = phase1(inp) out = checkpoint(run_fn, out) out.sum().backward() grad_with_checkpointing = inp.grad torch.set_rng_state(state) inp.grad = None out = phase1(inp) out = run_fn(out) out.sum().backward() grad_no_checkpointing = inp.grad self.assertEqual(grad_with_checkpointing, grad_no_checkpointing) @unittest.skipIf(not HAS_CUDA, 'No CUDA') def test_checkpoint_rng_cuda(self): for i in range(5): inp = torch.randn(20000, device='cuda').requires_grad_() phase1 = torch.nn.Dropout() phase2 = torch.nn.Dropout() def run_fn(input): return phase2(input) state = torch.cuda.get_rng_state() out = phase1(inp) out = checkpoint(run_fn, out) out.sum().backward() grad_with_checkpointing = inp.grad torch.cuda.set_rng_state(state) inp.grad = None out = phase1(inp) out = run_fn(out) out.sum().backward() grad_no_checkpointing = inp.grad self.assertEqual(grad_with_checkpointing, grad_no_checkpointing) class TestDataLoader(TestCase): def setUp(self): self.dataset = torch.randn(5, 3, 3, 2) self.batch_size = 3 def test_random_seed(self): def run(): dataloader = torch.utils.data.DataLoader(RandomDatasetMock(), batch_size=2, num_workers=4, shuffle=True) return next(iter(dataloader)) torch.manual_seed(2018) x1 = run() torch.manual_seed(2018) x2 = run() self.assertEqual(x1, x2) def test_single_keep(self): dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, num_workers=0, drop_last=False) dataiter = iter(dataloader) self.assertEqual(len(list(dataiter)), 2) def test_single_drop(self): dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, num_workers=0, drop_last=True) dataiter = iter(dataloader) self.assertEqual(len(list(dataiter)), 1) @unittest.skip("FIXME: Intermittent CUDA out-of-memory error on Windows and time-out under ASAN") def test_multi_keep(self): dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, num_workers=2, drop_last=False) dataiter = iter(dataloader) self.assertEqual(len(list(dataiter)), 2) def test_multi_drop(self): dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, num_workers=2, drop_last=True) dataiter = iter(dataloader) self.assertEqual(len(list(dataiter)), 1) test_dir = os.path.abspath(os.path.dirname(str(__file__))) class TestFFI(TestCase): def test_deprecated(self): with self.assertRaisesRegex(ImportError, "torch.utils.ffi is deprecated. Please use cpp extensions instead."): from torch.utils.ffi import create_extension @unittest.skipIf('SKIP_TEST_BOTTLENECK' in os.environ.keys(), 'SKIP_TEST_BOTTLENECK is set') class TestBottleneck(TestCase): def _run(self, command): """Returns (return-code, stdout, stderr)""" import subprocess from common_utils import PY3 p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) output, err = p.communicate() rc = p.returncode if PY3: output = output.decode("ascii") err = err.decode("ascii") return (rc, output, err) def _run_bottleneck(self, test_file, scriptargs=''): curdir = os.path.dirname(os.path.abspath(__file__)) filepath = '{}/{}'.format(curdir, test_file) if scriptargs != '': scriptargs = ' {}'.format(scriptargs) rc, out, err = self._run( '{} -m torch.utils.bottleneck {}{}'.format(sys.executable, filepath, scriptargs)) return rc, out, err def _check_run_args(self): # Check that this fails due to missing args rc, out, err = self._run_bottleneck('bottleneck/test_args.py') self.assertEqual(rc, 2, None, self._fail_msg('Missing args should error', out + err)) # This should succeed rc, out, err = self._run_bottleneck('bottleneck/test_args.py', '--foo foo --bar bar') self.assertEqual(rc, 0, None, self._fail_msg('Should pass args to script', out + err)) def _fail_msg(self, msg, output): return '{}, output was:\n{}'.format(msg, output) def _check_environment_summary(self, output): results = re.search('Environment Summary', output) self.assertIsNotNone(results, self._fail_msg('Should have Enviroment Summary', output)) # Up to five lines away from the heading, there should be the version number results = re.search(r'Environment Summary.*(\n.*){,5}\nPyTorch \d+\.\d+', output) self.assertIsNotNone(results, self._fail_msg('Should have PyTorch version', output)) def _check_cprof_summary(self, output): results = re.search('cProfile output', output) self.assertIsNotNone(results, self._fail_msg('Should have cProfile output', output)) # This assumes that after the cProfile output section we have # the autograd profiler output results = re.search(r'cProfile output.*(\n.*){6,50}\n.*autograd profiler output', output) self.assertIsNotNone(results, self._fail_msg( 'Distance between cProfile and autograd prof out not in [6, 50] lines', output)) def _check_autograd_summary(self, output): results = re.search('autograd profiler output', output) self.assertIsNotNone(results, self._fail_msg('Should have autograd profiler output', output)) # This assumes that after the autograd profiler output is the end of the # output. results = re.search(r'autograd profiler output.*(\n.*){6,100}', output) self.assertIsNotNone(results, self._fail_msg( 'Distance between autograd prof output and end of output not in [6, 100] lines', output)) def _check_cuda(self, output): if HAS_CUDA: results = re.search('CUDA mode', output) self.assertIsNotNone(results, self._fail_msg('Should tell users CUDA', output)) else: results = re.search('CUDA mode', output) self.assertIsNone(results, self._fail_msg('Should not tell users about CUDA', output)) @unittest.skipIf(HAS_CUDA, 'CPU-only test') def test_bottleneck_cpu_only(self): rc, out, err = self._run_bottleneck('bottleneck/test.py') self.assertEqual(rc, 0, 'Run failed with\n{}'.format(err)) self._check_run_args() self._check_environment_summary(out) self._check_autograd_summary(out) self._check_cprof_summary(out) self._check_cuda(out) @unittest.skipIf(not HAS_CUDA, 'No CUDA') @skipIfRocm def test_bottleneck_cuda(self): rc, out, err = self._run_bottleneck('bottleneck/test_cuda.py') self.assertEqual(rc, 0, 'Run failed with\n{}'.format(err)) self._check_run_args() self._check_environment_summary(out) self._check_autograd_summary(out) self._check_cprof_summary(out) self._check_cuda(out) from torch.utils.collect_env import get_pretty_env_info class TestCollectEnv(TestCase): def test_smoke(self): info_output = get_pretty_env_info() self.assertTrue(info_output.count('\n') >= 17) class TestONNXUtils(TestCase): def test_prepare_onnx_paddings(self): sizes = [2, 3, 4] pad = [1, 2, 3, 4] paddings = prepare_onnx_paddings(len(sizes), pad) self.assertEqual(paddings, [0, 3, 1, 0, 4, 2]) def test_check_onnx_broadcast(self): def try_check_onnx_broadcast(dims1, dims2, expect_broadcast, expect_fail): broadcast = True fail = False try: broadcast = check_onnx_broadcast(dims1, dims2) except ValueError: fail = True self.assertEqual(broadcast, expect_broadcast) self.assertEqual(fail, expect_fail) # Case 1, check the case when len(dims1) < len(dims2) and numel(dims2) > 1 dims1 = [3, 4] dims2 = [2, 3, 4] try_check_onnx_broadcast(dims1, dims2, True, True) # Case 2, check the case when len(dims1) < len(dims2) and numel(dims2) == 1 dims1 = [3, 4] dims2 = [1, 1, 1] try_check_onnx_broadcast(dims1, dims2, True, False) # Case 3, check the case when len(dims1) > len(dims2) and numel(dims2) == 1 dims1 = [1, 1] dims2 = [1] try_check_onnx_broadcast(dims1, dims2, True, False) # Case 4, check the case when len(dims1) > len(dims2) and dims1[x:] == dims2 dims1 = [2, 3, 4] dims2 = [3, 4] try_check_onnx_broadcast(dims1, dims2, True, False) # Case 5, check the case when len(dims1) > len(dims2), but dims1[x:] != dims2 dims1 = [2, 3, 4] dims2 = [1, 4] try_check_onnx_broadcast(dims1, dims2, True, True) # Case 6, check the equal case, no broadcast dims1 = [3, 4] dims2 = [3, 4] try_check_onnx_broadcast(dims1, dims2, False, False) # Case 7, check the case when len(dims1) == len(dims2), but dims1 != dims2 dims1 = [3, 4] dims2 = [1, 4] try_check_onnx_broadcast(dims1, dims2, True, True) # Case 8, check the case when len(dims1) == len(dims2) and numel(s2) == 1 dims1 = [3, 4] dims2 = [1, 1] try_check_onnx_broadcast(dims1, dims2, True, False) class TestHub(TestCase): @classmethod @skipIfNoTorchVision def setUpClass(cls): cls.resnet18_pretrained = models.__dict__['resnet18'](pretrained=True).state_dict() @skipIfNoTorchVision def test_load_from_github(self): hub_model = hub.load( 'pytorch/vision', 'resnet18', pretrained=True) self.assertEqual(self.resnet18_pretrained, hub_model.state_dict()) @skipIfNoTorchVision def test_set_dir(self): temp_dir = tempfile.gettempdir() hub.set_dir(temp_dir) hub_model = hub.load( 'pytorch/vision', 'resnet18', pretrained=True) self.assertEqual(self.resnet18_pretrained, hub_model.state_dict()) assert os.path.exists(temp_dir + '/vision_master') shutil.rmtree(temp_dir + '/vision_master') if __name__ == '__main__': run_tests()