from __future__ import print_function import sys import os import math import shutil import random import tempfile import unittest import traceback import torch import torch.utils.data import torch.cuda import warnings from torch.autograd import Variable from torch.utils.trainer import Trainer from torch.utils.trainer.plugins import * from torch.utils.trainer.plugins.plugin import Plugin from torch.utils.serialization import load_lua from torch.autograd._functions.utils import prepare_onnx_paddings from torch.autograd._functions.utils import check_onnx_broadcast from common import IS_WINDOWS HAS_CUDA = torch.cuda.is_available() from common import TestCase, run_tests, download_file try: import cffi from torch.utils.ffi import compile_extension HAS_CFFI = True except ImportError: HAS_CFFI = False class SimplePlugin(Plugin): def __init__(self, interval): super(SimplePlugin, self).__init__(interval) self.trainer = None self.num_iteration = 0 self.num_epoch = 0 self.num_batch = 0 self.num_update = 0 def register(self, trainer): self.trainer = trainer def iteration(self, *args): self.iteration_args = args self.num_iteration += 1 def epoch(self, *args): self.epoch_args = args self.num_epoch += 1 def batch(self, *args): self.batch_args = args self.num_batch += 1 def update(self, *args): self.update_args = args self.num_update += 1 class ModelMock(object): def __init__(self): self.num_calls = 0 self.output = Variable(torch.ones(1, 1), requires_grad=True) def __call__(self, i): self.num_calls += 1 return self.output * 2 class CriterionMock(object): def __init__(self): self.num_calls = 0 def __call__(self, out, target): self.num_calls += 1 return out class OptimizerMock(object): max_evals = 5 min_evals = 1 def __init__(self): self.num_steps = 0 self.num_evals = 0 def step(self, closure): for i in range(random.randint(self.min_evals, self.max_evals)): loss = closure() self.num_evals += 1 self.num_steps += 1 def zero_grad(self): pass class DatasetMock(object): def __iter__(self): for i in range(10): yield torch.randn(2, 10), torch.randperm(10)[:2] def __len__(self): return 10 class TestDataLoader(TestCase): def setUp(self): self.dataset = torch.randn(5, 3, 3, 2) self.batch_size = 3 def test_single_keep(self): dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, num_workers=0, drop_last=False) dataiter = iter(dataloader) self.assertEqual(len(list(dataiter)), 2) def test_single_drop(self): dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, num_workers=0, drop_last=True) dataiter = iter(dataloader) self.assertEqual(len(list(dataiter)), 1) @unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error") def test_multi_keep(self): dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, num_workers=2, drop_last=False) dataiter = iter(dataloader) self.assertEqual(len(list(dataiter)), 2) @unittest.skipIf(IS_WINDOWS, "FIXME: Intermittent CUDA out-of-memory error") def test_multi_drop(self): dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, num_workers=2, drop_last=True) dataiter = iter(dataloader) self.assertEqual(len(list(dataiter)), 1) class TestTrainer(TestCase): intervals = [ [(1, 'iteration')], [(1, 'epoch')], [(1, 'batch')], [(1, 'update')], [(5, 'iteration')], [(5, 'epoch')], [(5, 'batch')], [(5, 'update')], [(1, 'iteration'), (1, 'epoch')], [(5, 'update'), (1, 'iteration')], [(2, 'epoch'), (1, 'batch')], ] def setUp(self): self.optimizer = OptimizerMock() self.trainer = Trainer(ModelMock(), CriterionMock(), self.optimizer, DatasetMock()) self.num_epochs = 3 self.dataset_size = len(self.trainer.dataset) self.num_iters = self.num_epochs * self.dataset_size def test_register_plugin(self): for interval in self.intervals: simple_plugin = SimplePlugin(interval) self.trainer.register_plugin(simple_plugin) self.assertEqual(simple_plugin.trainer, self.trainer) def test_optimizer_step(self): self.trainer.run(epochs=1) self.assertEqual(self.trainer.optimizer.num_steps, 10) def test_plugin_interval(self): for interval in self.intervals: self.setUp() simple_plugin = SimplePlugin(interval) self.trainer.register_plugin(simple_plugin) self.trainer.run(epochs=self.num_epochs) units = { ('iteration', self.num_iters), ('epoch', self.num_epochs), ('batch', self.num_iters), ('update', self.num_iters) } for unit, num_triggers in units: call_every = None for i, i_unit in interval: if i_unit == unit: call_every = i break if call_every: expected_num_calls = math.floor(num_triggers / call_every) else: expected_num_calls = 0 num_calls = getattr(simple_plugin, 'num_' + unit) self.assertEqual(num_calls, expected_num_calls, 0) def test_model_called(self): self.trainer.run(epochs=self.num_epochs) num_model_calls = self.trainer.model.num_calls num_crit_calls = self.trainer.criterion.num_calls self.assertEqual(num_model_calls, num_crit_calls) for num_calls in [num_model_calls, num_crit_calls]: lower_bound = OptimizerMock.min_evals * self.num_iters upper_bound = OptimizerMock.max_evals * self.num_iters self.assertEqual(num_calls, self.trainer.optimizer.num_evals) self.assertLessEqual(lower_bound, num_calls) self.assertLessEqual(num_calls, upper_bound) def test_model_gradient(self): self.trainer.run(epochs=self.num_epochs) output_var = self.trainer.model.output expected_grad = torch.ones(1, 1) * 2 * self.optimizer.num_evals self.assertEqual(output_var.grad.data, expected_grad) test_dir = os.path.abspath(os.path.dirname(str(__file__))) class TestFFI(TestCase): def setUp(self): self.tmpdir = tempfile.mkdtemp() os.chdir(self.tmpdir) sys.path.append(self.tmpdir) def tearDown(self): shutil.rmtree(self.tmpdir) @unittest.skipIf(not HAS_CFFI, "ffi tests require cffi package") def test_cpu(self): compile_extension( name='test_extensions.cpulib', header=test_dir + '/ffi/src/cpu/lib.h', sources=[ test_dir + '/ffi/src/cpu/lib1.c', test_dir + '/ffi/src/cpu/lib2.c', ], verbose=False, ) from test_extensions import cpulib tensor = torch.ones(2, 2).float() cpulib.good_func(tensor, 2, 1.5) self.assertEqual(tensor, torch.ones(2, 2) * 2 + 1.5) new_tensor = cpulib.new_tensor(4) self.assertEqual(new_tensor, torch.ones(4, 4) * 4) f = cpulib.int_to_float(5) self.assertIs(type(f), float) self.assertRaises(TypeError, lambda: cpulib.good_func(tensor.double(), 2, 1.5)) self.assertRaises(torch.FatalError, lambda: cpulib.bad_func(tensor, 2, 1.5)) @unittest.skipIf(not HAS_CFFI or not HAS_CUDA, "ffi tests require cffi package") def test_gpu(self): compile_extension( name='gpulib', header=test_dir + '/ffi/src/cuda/cudalib.h', sources=[ test_dir + '/ffi/src/cuda/cudalib.c', ], with_cuda=True, verbose=False, ) import gpulib tensor = torch.ones(2, 2).float() gpulib.good_func(tensor, 2, 1.5) self.assertEqual(tensor, torch.ones(2, 2) * 2 + 1.5) ctensor = tensor.cuda().fill_(1) gpulib.cuda_func(ctensor, 2, 1.5) self.assertEqual(ctensor, torch.ones(2, 2) * 2 + 1.5) self.assertRaises(TypeError, lambda: gpulib.cuda_func(tensor, 2, 1.5)) self.assertRaises(TypeError, lambda: gpulib.cuda_func(ctensor.storage(), 2, 1.5)) class TestLuaReader(TestCase): @staticmethod def _module_test(name, test): def do_test(self): module = test['module'] input = test['input'] grad_output = test['grad_output'] if hasattr(self, '_transform_' + name): input = getattr(self, '_transform_' + name)(input) output = module.forward(input) module.zeroGradParameters() grad_input = module.backward(input, grad_output) self.assertEqual(output, test['output']) self.assertEqual(grad_input, test['grad_input']) if module.parameters() is not None: params, d_params = module.parameters() self.assertEqual(params, test['params']) self.assertEqual(d_params, test['d_params']) else: self.assertFalse('params' in test and test['params']) self.assertFalse('params' in test and test['d_params']) return do_test @staticmethod def _criterion_test(name, test): def do_test(self): module = test['module'] input = test['input'] if name == 'L1Cost': target = None else: target = test['target'] if hasattr(self, '_transform_' + name): input, target = getattr(self, '_transform_' + name)(input, target) output = module.forward(input, target) grad_input = module.backward(input, target) self.assertEqual(output, test['loss']) self.assertEqual(grad_input, test['grad_input']) return do_test @classmethod def init(cls): try: path = download_file('https://download.pytorch.org/test_data/legacy_modules.t7') except unittest.SkipTest: return long_size = 8 if sys.platform == 'win32' else None tests = load_lua(path, long_size=long_size) for name, test in tests['modules'].items(): test_name = 'test_' + name.replace('nn.', '') setattr(cls, test_name, cls._module_test(name, test)) for name, test in tests['criterions'].items(): test_name = 'test_' + name.replace('nn.', '') setattr(cls, test_name, cls._criterion_test(name, test)) def _transform_Index(self, input): return [input[0], input[1].sub(1)] def _transform_LookupTable(self, input): return input.sub(1) def _transform_MultiLabelMarginCriterion(self, input, target): return input, target.sub(1) def _transform_ClassNLLCriterion(self, input, target): return input, target.sub(1) def _transform_SpatialClassNLLCriterion(self, input, target): return input, target.sub(1) def _transform_ClassSimplexCriterion(self, input, target): return input, target.sub(1) def _transform_CrossEntropyCriterion(self, input, target): return input, target.sub(1) def _transform_ParallelCriterion(self, input, target): return input, [target[0].sub(1), target[1]] def _transform_MultiCriterion(self, input, target): return input, target.sub(1) def _transform_MultiMarginCriterion(self, input, target): return input, target.sub(1) class TestONNXUtils(TestCase): def test_prepare_onnx_paddings(self): sizes = [2, 3, 4] pad = [1, 2, 3, 4] paddings = prepare_onnx_paddings(len(sizes), pad) self.assertEqual(paddings, [0, 3, 1, 0, 4, 2]) def test_check_onnx_broadcast(self): def try_check_onnx_broadcast(dims1, dims2, expect_broadcast, expect_fail): broadcast = True fail = False try: broadcast = check_onnx_broadcast(dims1, dims2) except ValueError: fail = True self.assertEqual(broadcast, expect_broadcast) self.assertEqual(fail, expect_fail) # Case 1, check the case when len(dims1) < len(dims2) and numel(dims2) > 1 dims1 = [3, 4] dims2 = [2, 3, 4] try_check_onnx_broadcast(dims1, dims2, True, True) # Case 2, check the case when len(dims1) < len(dims2) and numel(dims2) == 1 dims1 = [3, 4] dims2 = [1, 1, 1] try_check_onnx_broadcast(dims1, dims2, True, False) # Case 3, check the case when len(dims1) > len(dims2) and numel(dims2) == 1 dims1 = [1, 1] dims2 = [1] try_check_onnx_broadcast(dims1, dims2, True, False) # Case 4, check the case when len(dims1) > len(dims2) and dims1[x:] == dims2 dims1 = [2, 3, 4] dims2 = [3, 4] try_check_onnx_broadcast(dims1, dims2, True, False) # Case 5, check the case when len(dims1) > len(dims2), but dims1[x:] != dims2 dims1 = [2, 3, 4] dims2 = [1, 4] try_check_onnx_broadcast(dims1, dims2, True, True) # Case 6, check the equal case, no broadcast dims1 = [3, 4] dims2 = [3, 4] try_check_onnx_broadcast(dims1, dims2, False, False) # Case 7, check the case when len(dims1) == len(dims2), but dims1 != dims2 dims1 = [3, 4] dims2 = [1, 4] try_check_onnx_broadcast(dims1, dims2, True, True) # Case 8, check the case when len(dims1) == len(dims2) and numel(s2) == 1 dims1 = [3, 4] dims2 = [1, 1] try_check_onnx_broadcast(dims1, dims2, True, False) TestLuaReader.init() if __name__ == '__main__': run_tests()