import sys import io import os import math import random import operator import copy import shutil import torch import torch.cuda import tempfile import unittest import warnings import pickle import gzip from torch._utils_internal import get_file_path, get_file_path_2 from torch.utils.dlpack import from_dlpack, to_dlpack from torch._utils import _rebuild_tensor from itertools import product, combinations from functools import reduce from torch import multiprocessing as mp from common import TestCase, iter_indices, TEST_NUMPY, TEST_SCIPY, TEST_MKL, \ run_tests, download_file, skipIfNoLapack, suppress_warnings, IS_WINDOWS, PY3 if TEST_NUMPY: import numpy as np if TEST_SCIPY: from scipy import signal SIZE = 100 can_retrieve_source = True with warnings.catch_warnings(record=True) as warns: with tempfile.NamedTemporaryFile() as checkpoint: x = torch.save(torch.nn.Module(), checkpoint) for warn in warns: if "Couldn't retrieve source code" in warn.message.args[0]: can_retrieve_source = False break class FilelikeMock(object): def __init__(self, data, has_fileno=True, has_readinto=False): if has_readinto: setattr(self, 'readinto', self.readinto_opt) if has_fileno: # Python 2's StringIO.StringIO has no fileno attribute. # This is used to test that. setattr(self, 'fileno', self.fileno_opt) self.calls = set([]) self.bytesio = io.BytesIO(data) def trace(fn, name): def result(*args, **kwargs): self.calls.add(name) return fn(*args, **kwargs) return result for attr in ['read', 'readline', 'seek', 'tell', 'write', 'flush']: traced_fn = trace(getattr(self.bytesio, attr), attr) setattr(self, attr, traced_fn) def fileno_opt(self): raise io.UnsupportedOperation('Not a real file') def readinto_opt(self, view): self.calls.add('readinto') return self.bytesio.readinto(view) def was_called(self, name): return name in self.calls class BytesIOContext(io.BytesIO): def __enter__(self): return self def __exit__(self, *args): pass class TestTorch(TestCase): def test_dot(self): types = { 'torch.DoubleTensor': 1e-8, 'torch.FloatTensor': 1e-4, } for tname, _prec in types.items(): v1 = torch.randn(100).type(tname) v2 = torch.randn(100).type(tname) res1 = torch.dot(v1, v2) res2 = 0 for i, j in zip(v1, v2): res2 += i * j self.assertEqual(res1, res2) out = torch.randn(()).type(tname) torch.dot(v1, v2, out=out) self.assertEqual(res1, out) # Test 0-strided for tname, _prec in types.items(): v1 = torch.randn(1).type(tname).expand(100) v2 = torch.randn(100).type(tname) res1 = torch.dot(v1, v2) res2 = 0 for i, j in zip(v1, v2): res2 += i * j self.assertEqual(res1, res2) out = torch.randn(()).type(tname) torch.dot(v1, v2, out=out) self.assertEqual(res1, out) def test_ger(self): types = { 'torch.DoubleTensor': 1e-8, 'torch.FloatTensor': 1e-4, } for tname, _prec in types.items(): v1 = torch.randn(100).type(tname) v2 = torch.randn(100).type(tname) res1 = torch.ger(v1, v2) res2 = torch.zeros(100, 100).type(tname) for i in range(100): for j in range(100): res2[i, j] = v1[i] * v2[j] self.assertEqual(res1, res2) # Test 0-strided for tname, _prec in types.items(): v1 = torch.randn(1).type(tname).expand(100) v2 = torch.randn(100).type(tname) res1 = torch.ger(v1, v2) res2 = torch.zeros(100, 100).type(tname) for i in range(100): for j in range(100): res2[i, j] = v1[i] * v2[j] self.assertEqual(res1, res2) def test_addr(self): types = { 'torch.DoubleTensor': 1e-8, 'torch.FloatTensor': 1e-4, } def run_test(m, v1, v2, m_transform=lambda x: x): m = m_transform(m.clone()) ref = m.clone() torch.addr(m, v1, v2, out=m) for i in range(m.size(0)): for j in range(m.size(1)): ref[i, j] += v1[i] * v2[j] self.assertEqual(m, ref) for tname, _prec in types.items(): for h, w in [(100, 110), (1, 20), (200, 2)]: m = torch.randn(h, w).type(tname) v1 = torch.randn(h).type(tname) v2 = torch.randn(w).type(tname) run_test(m, v1, v2) # test transpose run_test(m, v2, v1, lambda x: x.transpose(0, 1)) # test 0 strided v1 = torch.randn(1).type(tname).expand(h) run_test(m, v1, v2) run_test(m, v2, v1, lambda x: x.transpose(0, 1)) def test_addmv(self): types = { 'torch.DoubleTensor': 1e-8, 'torch.FloatTensor': 1e-4, } for tname, _prec in types.items(): t = torch.randn(10).type(tname) m = torch.randn(10, 100).type(tname) v = torch.randn(100).type(tname) res1 = torch.addmv(t, m, v) res2 = torch.zeros(10).type(tname) res2 += t for i in range(10): for j in range(100): res2[i] += m[i, j] * v[j] self.assertEqual(res1, res2) # Test 0-strided for tname, _prec in types.items(): t = torch.randn(1).type(tname).expand(10) m = torch.randn(10, 1).type(tname).expand(10, 100) v = torch.randn(100).type(tname) res1 = torch.addmv(t, m, v) res2 = torch.zeros(10).type(tname) res2 += t for i in range(10): for j in range(100): res2[i] += m[i, j] * v[j] self.assertEqual(res1, res2) def test_addmm(self): types = { 'torch.DoubleTensor': 1e-8, 'torch.FloatTensor': 1e-4, } for tname, _prec in types.items(): M = torch.randn(10, 25).type(tname) m1 = torch.randn(10, 50).type(tname) m2 = torch.randn(50, 25).type(tname) res1 = torch.addmm(M, m1, m2) res2 = torch.zeros(10, 25).type(tname) res2 += M for i in range(10): for j in range(25): for k in range(50): res2[i, j] += m1[i, k] * m2[k, j] self.assertEqual(res1, res2) # Test 0-strided for tname, _prec in types.items(): M = torch.randn(10, 1).type(tname).expand(10, 25) m1 = torch.randn(10, 1).type(tname).expand(10, 50) m2 = torch.randn(50, 25).type(tname) res1 = torch.addmm(M, m1, m2) res2 = torch.zeros(10, 25).type(tname) res2 += M for i in range(10): for j in range(25): for k in range(50): res2[i, j] += m1[i, k] * m2[k, j] self.assertEqual(res1, res2) def test_allclose(self): x = torch.tensor([1.0, 2.0, 3.0]) y = torch.tensor([1.01, 2.01, 3.01]) self.assertTrue(torch.allclose(x, y, rtol=0, atol=0.02)) self.assertTrue(torch.allclose(x, y, rtol=0.01, atol=0.0)) self.assertFalse(torch.allclose(x, y)) self.assertTrue(torch.allclose(torch.tensor([0.0]), torch.tensor([1e-8]))) x = torch.tensor([2.0, 3.0, float('nan')]) y = torch.tensor([2.01, 3.01, float('nan')]) self.assertFalse(torch.allclose(x, y, rtol=1e-2)) self.assertTrue(torch.allclose(x, y, rtol=1e-2, equal_nan=True)) self.assertFalse(torch.allclose(x, y, rtol=1e-3, equal_nan=True)) inf = torch.tensor([float('inf')]) self.assertTrue(torch.allclose(inf, inf)) self.assertTrue(torch.allclose(-inf, -inf)) self.assertFalse(torch.allclose(inf, -inf)) self.assertFalse(torch.allclose(inf, torch.tensor([1e20]))) self.assertFalse(torch.allclose(-inf, torch.tensor([-1e20]))) def test_linear_algebra_scalar_raises(self): m = torch.randn(5, 5) v = torch.randn(5) s = torch.tensor(7) self.assertRaises(RuntimeError, lambda: torch.mv(m, s)) self.assertRaises(RuntimeError, lambda: torch.addmv(v, m, s)) self.assertRaises(RuntimeError, lambda: torch.ger(v, s)) self.assertRaises(RuntimeError, lambda: torch.ger(s, v)) self.assertRaises(RuntimeError, lambda: torch.addr(m, v, s)) self.assertRaises(RuntimeError, lambda: torch.addr(m, s, v)) def _test_math(self, torchfn, mathfn, input=None): if input is None: input = [] input.append(list(range(-5, 5))) input.append([x + 1e-6 for x in range(-5, 5)]) # Some vectorized implementations don't support large ranges input.append([x + 1e10 for x in range(-5, 5)]) input.append([x - 1e10 for x in range(-5, 5)]) input.append(torch.randn(10).tolist()) input.append((torch.randn(10) + 1e6).tolist()) input.append([math.pi * (x / 2) for x in range(-5, 5)]) def compare_reference(input, dtype): input = torch.tensor(input, dtype=dtype) res1 = torchfn(input.clone()) res2 = input.clone().apply_(lambda x: mathfn(x)) torch.testing.assert_allclose(res1, res2) # compare against the reference math function compare_reference(input, torch.double) compare_reference(input, torch.float) def check_non_contiguous(shape, dtype): contig = torch.randn(shape, dtype=dtype) non_contig = torch.empty(shape + (2,), dtype=dtype)[..., 0] non_contig.copy_(contig) self.assertFalse(non_contig.is_contiguous()) self.assertEqual(torchfn(contig), torchfn(non_contig), 'non-contiguous') # compare application against contiguous vs. non-contiguous check_non_contiguous((5, 7), torch.double) check_non_contiguous((1024,), torch.double) check_non_contiguous((5, 7), torch.float) check_non_contiguous((1024,), torch.float) # If size(dim) == 1, stride(dim) is not defined. # The code needs to be able to handle this def check_contiguous_size1(dtype): contig = torch.randn((5, 100), dtype=dtype) contig = contig[:1, :50] contig2 = torch.empty(contig.size(), dtype=dtype) contig2.copy_(contig) self.assertTrue(contig.is_contiguous()) self.assertTrue(contig2.is_contiguous()) self.assertEqual(torchfn(contig), torchfn(contig2), 'contiguous size1') check_contiguous_size1(torch.double) check_contiguous_size1(torch.float) def check_contiguous_size1_largedim(dtype): contig = torch.randn((5, 2, 3, 1, 4, 5, 3, 2, 1, 2, 3, 4), dtype=dtype) contig = contig[:1, :, :, :, :, :, :, :, :, :, :, :] contig2 = torch.empty(contig.size(), dtype=dtype) contig2.copy_(contig) self.assertTrue(contig.is_contiguous()) self.assertTrue(contig2.is_contiguous()) self.assertEqual(torchfn(contig), torchfn(contig2), 'contiguous size1') check_contiguous_size1_largedim(torch.double) check_contiguous_size1_largedim(torch.float) def check_large(dtype): input = torch.randn(1024, 512, dtype=dtype) actual = torchfn(input) expected = torch.stack([torchfn(slice) for slice in input]) self.assertEqual(actual, expected, 'large') # compare large tensor vs. repeated small applications to expose # possible parallelism bugs. check_large(torch.double) check_large(torch.float) def __test_math_by_name(self, function_name, mathfn, selffn): mathfn = getattr(math, mathfn) if selffn: def torchfn(x): return getattr(x, function_name)() else: torchfn = getattr(torch, function_name) self._test_math(torchfn, mathfn) def _test_math_by_name(self, function_name, test_self=True): if test_self: self.__test_math_by_name(function_name + "_", function_name, True) self.__test_math_by_name(function_name, function_name, False) def test_sin(self): self._test_math_by_name('sin') def test_sinh(self): def sinh(x): try: return math.sinh(x) except OverflowError: return float('inf') if x > 0 else float('-inf') self._test_math(torch.sinh, sinh) def test_lgamma(self): def lgamma(x): if x <= 0 and x == int(x): return float('inf') return math.lgamma(x) self._test_math(torch.lgamma, lgamma) def _digamma_input(self, test_poles=True): input = [] input.append((torch.randn(10).abs() + 1e-4).tolist()) input.append((torch.randn(10).abs() + 1e6).tolist()) zeros = torch.linspace(-9.5, -0.5, 10) input.append(zeros.tolist()) input.append((zeros - 0.49).tolist()) input.append((zeros + 0.49).tolist()) input.append((zeros + (torch.rand(10) * 0.99) - 0.5).tolist()) if test_poles: input.append([-0.999999994, -1.999999994, -2.0000000111, -100.99999994, -1931.99999994, 0.000000111, -0.000000111, 0, -2, -329]) return input @unittest.skipIf(not TEST_SCIPY, "Scipy not found") def test_digamma(self): from scipy.special import digamma # scipy 1.1.0 changed when it returns +/-inf vs. NaN def torch_digamma_without_inf(inp): res = torch.digamma(inp) res[(res == float('-inf')) | (res == float('inf'))] = float('nan') return res def scipy_digamma_without_inf(inp): res = digamma(inp) if np.isscalar(res): return res if np.isfinite(res) else float('nan') res[np.isinf(res)] = float('nan') return res self._test_math(torch_digamma_without_inf, scipy_digamma_without_inf, self._digamma_input()) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") def test_polygamma(self): from scipy.special import polygamma for n in [0, 1]: self._test_math(lambda x: torch.polygamma(n, x), lambda x: polygamma(n, x).item(), self._digamma_input(test_poles=False)) def test_asin(self): self._test_math(torch.asin, lambda x: math.asin(x) if abs(x) <= 1 else float('nan')) def test_cos(self): self._test_math_by_name('cos') def test_cosh(self): def cosh(x): try: return math.cosh(x) except OverflowError: # Return inf on overflow. # See http://en.cppreference.com/w/cpp/numeric/math/cosh return float('inf') self._test_math(torch.cosh, cosh) def test_acos(self): self._test_math(torch.acos, lambda x: math.acos(x) if abs(x) <= 1 else float('nan')) def test_tan(self): self._test_math_by_name('tan') def test_tanh(self): self._test_math_by_name('tanh') def test_atan(self): self._test_math_by_name('atan') def test_log(self): def log(x): if x == 0: return float('-inf') elif x < 0: return float('nan') return math.log(x) self._test_math(torch.log, log) def test_log10(self): def log10(x): if x == 0: return float('-inf') elif x < 0: return float('nan') return math.log10(x) self._test_math(torch.log10, log10) def test_log1p(self): def log1p(x): if x == -1: return float('-inf') elif x < -1: return float('nan') return math.log1p(x) self._test_math(torch.log1p, log1p) def test_log2(self): def log2(x): if x == 0: return float('-inf') elif x < 0: return float('nan') try: return math.log2(x) except AttributeError: return math.log(x, 2) self._test_math(torch.log2, log2) def test_sqrt(self): self._test_math(torch.sqrt, lambda x: math.sqrt(x) if x >= 0 else float('nan')) def test_erf(self): self._test_math_by_name('erf') def test_erfinv(self): def checkType(tensor): inputValues = torch.randn(4, 4, out=tensor()).clamp(-2., 2.) self.assertEqual(tensor(inputValues).erf().erfinv(), tensor(inputValues)) # test inf self.assertTrue(torch.equal(tensor([-1, 1]).erfinv(), tensor([float('-inf'), float('inf')]))) # test nan self.assertEqual(tensor([-2, 2]).erfinv(), tensor([float('nan'), float('nan')])) checkType(torch.FloatTensor) checkType(torch.DoubleTensor) def test_exp(self): def exp(x): try: return math.exp(x) except OverflowError: return float('inf') self._test_math(torch.exp, exp) def test_expm1(self): def expm1(x): try: return math.expm1(x) except OverflowError: return float('inf') self._test_math(torch.expm1, expm1) def test_floor(self): self._test_math_by_name('floor') def test_ceil(self): self._test_math_by_name('ceil') def test_rsqrt(self): def rsqrt(x): if x == 0: return float('inf') elif x < 0: return float('nan') return 1.0 / math.sqrt(x) self._test_math(torch.rsqrt, rsqrt) def test_sigmoid(self): # TODO: why not simulate math.sigmoid like with rsqrt? inputValues = [-1000, -1, 0, 0.5, 1, 2, 1000] expectedOutput = [0.0000, 0.2689, 0.5, 0.6225, 0.7311, 0.8808, 1.000] precision_4dps = 0.0002 def checkType(tensor): self.assertEqual(tensor(inputValues).sigmoid(), tensor(expectedOutput), precision_4dps) checkType(torch.FloatTensor) checkType(torch.DoubleTensor) def test_frac(self): self._test_math(torch.frac, lambda x: math.fmod(x, 1)) def test_trunc(self): self._test_math(torch.trunc, lambda x: x - math.fmod(x, 1)) def test_round(self): self._test_math(torch.round, round) def test_has_storage(self): self.assertIsNotNone(torch.Tensor().storage()) self.assertIsNotNone(torch.Tensor(0).storage()) self.assertIsNotNone(torch.Tensor([]).storage()) self.assertIsNotNone(torch.Tensor().clone().storage()) self.assertIsNotNone(torch.Tensor([0, 0, 0]).nonzero().storage()) self.assertIsNotNone(torch.Tensor().new().storage()) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_has_storage_numpy(self): for dtype in [np.float32, np.float64, np.int64, np.int32, np.int16, np.uint8]: arr = np.array([1], dtype=dtype) self.assertIsNotNone(torch.FloatTensor(arr).storage()) self.assertIsNotNone(torch.DoubleTensor(arr).storage()) self.assertIsNotNone(torch.IntTensor(arr).storage()) self.assertIsNotNone(torch.LongTensor(arr).storage()) self.assertIsNotNone(torch.ByteTensor(arr).storage()) if torch.cuda.is_available(): self.assertIsNotNone(torch.cuda.FloatTensor(arr).storage()) self.assertIsNotNone(torch.cuda.DoubleTensor(arr).storage()) self.assertIsNotNone(torch.cuda.IntTensor(arr).storage()) self.assertIsNotNone(torch.cuda.LongTensor(arr).storage()) self.assertIsNotNone(torch.cuda.ByteTensor(arr).storage()) def _testSelection(self, torchfn, mathfn): # contiguous m1 = torch.randn(100, 100) res1 = torchfn(m1) res2 = m1[0, 0] for i, j in iter_indices(m1): res2 = mathfn(res2, m1[i, j]) self.assertEqual(res1, res2) # non-contiguous m1 = torch.randn(10, 10, 10) m2 = m1[:, 4] res1 = torchfn(m2) res2 = m2[0, 0] for i, j in iter_indices(m2): res2 = mathfn(res2, m2[i][j]) self.assertEqual(res1, res2) # with indices m1 = torch.randn(100, 100) res1val, res1ind = torchfn(m1, 1, False) res2val = m1[:, 0:1].clone().squeeze() res2ind = res1ind.clone().fill_(0) for i, j in iter_indices(m1): if mathfn(res2val[i], m1[i, j]) != res2val[i]: res2val[i] = m1[i, j] res2ind[i] = j maxerr = 0 for i in range(res1val.size(0)): maxerr = max(maxerr, abs(res1val[i] - res2val[i])) self.assertEqual(res1ind[i], res2ind[i]) self.assertLessEqual(abs(maxerr), 1e-5) # NaNs for index in (0, 4, 99): m1 = torch.randn(100) m1[index] = float('nan') res1val, res1ind = torch.max(m1, 0) self.assertTrue(math.isnan(res1val)) self.assertEqual(res1ind, index) res1val = torchfn(m1) self.assertTrue(math.isnan(res1val)) def test_max(self): self._testSelection(torch.max, max) def test_min(self): self._testSelection(torch.min, min) @staticmethod def _test_norm(self, device): # full reduction x = torch.randn(5, device=device) xn = x.cpu().numpy() for p in [0, 1, 2, 3, 4, float('inf')]: res = x.norm(p).item() expected = np.linalg.norm(xn, p) self.assertEqual(res, expected, "full reduction failed for {}-norm".format(p)) # one dimension x = torch.randn(5, 5, device=device) xn = x.cpu().numpy() for p in [0, 1, 2, 3, 4, float('inf')]: res = x.norm(p, 1).cpu().numpy() expected = np.linalg.norm(xn, p, 1) self.assertEqual(res.shape, expected.shape) self.assertTrue(np.allclose(res, expected), "dim reduction failed for {}-norm".format(p)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_norm(self): self._test_norm(self, device='cpu') @unittest.skipIf(not TEST_NUMPY, "Numpy not found") @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') def test_norm_cuda(self): self._test_norm(self, device='cuda') def test_dim_reduction_uint8_overflow(self): example = [[-1, 2, 1], [5, 3, 6]] x = torch.tensor(example, dtype=torch.uint8) self.assertEqual(x.sum(dtype=torch.uint8).item(), 16) self.assertEqual(x.sum(0, dtype=torch.uint8), torch.FloatTensor([4, 5, 7])) self.assertEqual(x.sum(1, dtype=torch.uint8), torch.FloatTensor([2, 14])) y = torch.tensor(example, dtype=torch.uint8) torch.sum(x, 0, out=y) self.assertEqual(x.sum(0, dtype=torch.uint8), y) @staticmethod def _test_dim_reduction(self, cast): example = [[-1, 2, 1], [5, 3, 6]] types = [torch.double, torch.float, torch.int64, torch.int32, torch.int16] # This won't test for 256bit instructions, since we usually # only work on 1 cacheline (1024bit) at a time and these # examples aren't big enough to trigger that. for dtype in types: x = cast(torch.tensor(example, dtype=dtype)) self.assertEqual(x.sum().item(), 16) self.assertEqual(x.sum(0), torch.FloatTensor([4, 5, 7])) self.assertEqual(x.sum(1), torch.FloatTensor([2, 14])) y = cast(torch.tensor(example, dtype=dtype)) torch.sum(x, 0, out=y) self.assertEqual(x.sum(0), y) # Mean not supported for Int types for dtype in types[:2]: x = cast(torch.tensor(example, dtype=dtype)) self.assertEqual(x.mean().item(), 16.0 / 6) self.assertEqual(x.mean(0), torch.FloatTensor([2.0, 2.5, 7.0 / 2])) self.assertEqual(x.mean(1), torch.FloatTensor([2.0 / 3, 14.0 / 3])) for dtype in types: x = cast(torch.tensor(example, dtype=dtype)) self.assertEqual(x.prod().item(), -180) self.assertEqual(x.prod(0), torch.FloatTensor([-5, 6, 6])) self.assertEqual(x.prod(1), torch.FloatTensor([-2, 90])) for dtype in types: x = cast(torch.tensor(example, dtype=dtype)) self.assertEqual(x.max().item(), 6) self.assertEqual(x.max(0), (torch.FloatTensor([5, 3, 6]), torch.FloatTensor([1, 1, 1]))) self.assertEqual(x.max(1), (torch.FloatTensor([2, 6]), torch.FloatTensor([1, 2]))) for dtype in types: x = cast(torch.tensor(example, dtype=dtype)) self.assertEqual(x.min().item(), -1) self.assertEqual(x.min(0), (torch.FloatTensor([-1, 2, 1]), torch.FloatTensor([0, 0, 0]))) self.assertEqual(x.min(1), (torch.FloatTensor([-1, 3]), torch.FloatTensor([0, 1]))) for dtype in types: x = cast(torch.tensor(example, dtype=dtype)) self.assertEqual(x.argmax().item(), 5) self.assertEqual(x.argmax(dim=0), torch.FloatTensor([1, 1, 1])) self.assertEqual(x.argmax(dim=1), torch.FloatTensor([1, 2])) self.assertEqual(x.argmax(dim=0, keepdim=True), torch.FloatTensor([[1, 1, 1]])) # test that non-contiguous tensors work self.assertEqual(x[:, :2].argmax().item(), 2) for dtype in types: x = cast(torch.tensor(example, dtype=dtype)) self.assertEqual(x.argmin().item(), 0) self.assertEqual(x.argmin(dim=0), torch.FloatTensor([0, 0, 0])) self.assertEqual(x.argmin(dim=1), torch.FloatTensor([0, 1])) self.assertEqual(x.argmin(dim=1, keepdim=True), torch.FloatTensor([[0], [1]])) # test that non-contiguous tensors work self.assertEqual(x[:, :2].argmin().item(), 0) dim_red_fns = [ "mean", "median", "mode", "norm", "prod", "std", "sum", "var", "max", "min"] def normfn_attr(t, dim, keepdim=False, out=None): attr = getattr(torch, "norm") return attr(t, 2, dim, keepdim, out=out) for fn_name in dim_red_fns: fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr def fn(x, dim, keepdim=False, out=None): ans = fn_attr(x, dim, keepdim=keepdim, out=out) return ans if not isinstance(ans, tuple) else ans[0] def fn_tuple(x, dim, keepdim=False, out=None): return fn_attr(x, dim, keepdim=keepdim, out=out) def test_multidim(x, dim): self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True)) self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension()) self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension()) # general case x = cast(torch.randn(3, 4, 5)) dim = random.randint(0, 2) test_multidim(x, dim) # check 1-d behavior x = cast(torch.randn(1)) dim = 0 self.assertEqual(fn(x, dim).shape, tuple()) self.assertEqual(fn(x, dim, keepdim=True).shape, (1,)) # check reducing of a singleton dimension dims = [3, 4, 5] singleton_dim = random.randint(0, 2) dims[singleton_dim] = 1 x = cast(torch.randn(dims)) test_multidim(x, singleton_dim) # check reducing with output kwargs if fn_name in ['median', 'mode', 'max', 'min']: y = cast(torch.randn(5, 3)) values = cast(torch.randn(5, 3)) indices = cast(torch.zeros(5, 3).long() - 1) fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1])) values_expected, indices_expected = fn_tuple(y, 1, keepdim=False) self.assertEqual(values[:, 1], values_expected, '{} values with out= kwarg'.format(fn_name)) self.assertEqual(indices[:, 1], indices_expected, '{} indices with out= kwarg'.format(fn_name)) continue x = cast(torch.randn(5, 3)) y = cast(torch.randn(5, 3)) fn(y, 1, keepdim=False, out=x[:, 1]) expected = fn(y, 1, keepdim=False) self.assertEqual(x[:, 1], expected, '{} with out= kwarg'.format(fn_name)) def test_dim_reduction(self): self._test_dim_reduction(self, lambda t: t) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") def test_logsumexp(self): from scipy.special import logsumexp a = torch.randn(5, 4) a[0, 0] = float('inf') a[1, :] = float('-inf') actual = a.logsumexp(1) expected = logsumexp(a.numpy(), 1) self.assertEqual(expected.shape, actual.shape) self.assertTrue(np.allclose(expected, actual.numpy())) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_cpu_parallel(self): # To use parallel branches we'll need to compare on tensors # that are relatively large. Even if this is run on a single # core machine these tests will still give you signal on # the correctness def _run_test(size): for dim in range(len(size) + 1): nv = np.round(np.random.rand(*size)) # 0s and 1s tv = torch.from_numpy(nv) # Parallelisim is only used if numel is # larger than grainsize defined in Parallel.h self.assertTrue(tv.numel() > 32768) if dim == len(size): nvs = nv.sum() tvs = tv.sum() else: nvs = nv.sum(dim) tvs = tv.sum(dim) diff = np.abs(nvs - tvs.numpy()).sum() self.assertEqual(diff, 0) _run_test([2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3]) _run_test([4, 4, 4, 4, 4, 4, 4, 4, 4, 4]) _run_test([1, 32 * 8 * 32 * 8]) _run_test([1, 32770]) def _testCSelection(self, torchfn, mathfn): # Two tensors size = (100, 100) a = torch.rand(*size) b = torch.rand(*size) c = torchfn(a, b) expected_c = torch.zeros(*size) expected_c.map2_(a, b, lambda _, a, b: mathfn(a, b)) self.assertEqual(expected_c, c, 0) def test_max_elementwise(self): self._testCSelection(torch.max, max) def test_min_elementwise(self): self._testCSelection(torch.min, min) def test_lerp(self): def TH_lerp(a, b, weight): return a + weight * (b - a) size = (100, 100) a = torch.rand(*size) b = torch.rand(*size) w = random.random() result = torch.lerp(a, b, w) expected = a.clone() expected.map2_(a, b, lambda _, a, b: TH_lerp(a, b, w)) self.assertEqual(result, expected) def test_all_any(self): def test(size): x = torch.ones(*size).byte() self.assertTrue(x.all()) self.assertTrue(x.any()) x[3] = 0 self.assertFalse(x.all()) self.assertTrue(x.any()) x.zero_() self.assertFalse(x.all()) self.assertFalse(x.any()) x.fill_(2) self.assertTrue(x.all()) self.assertTrue(x.any()) test((10,)) test((5, 5)) def test_all_any_empty(self): x = torch.ByteTensor() self.assertTrue(x.all()) self.assertFalse(x.any()) def test_all_any_with_dim(self): def test(x): r1 = x.prod(dim=0, keepdim=False).byte() r2 = x.all(dim=0, keepdim=False) self.assertEqual(r1.shape, r2.shape) self.assertTrue((r1 == r2).all()) r3 = x.sum(dim=1, keepdim=True).clamp(0, 1).byte() r4 = x.any(dim=1, keepdim=True) self.assertEqual(r3.shape, r4.shape) self.assertTrue((r3 == r4).all()) test(torch.ByteTensor([[0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]])) @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') def test_all_any_empty_cuda(self): x = torch.cuda.ByteTensor() self.assertTrue(x.all()) self.assertFalse(x.any()) def test_mv(self): m1 = torch.randn(100, 100) v1 = torch.randn(100) res1 = torch.mv(m1, v1) res2 = res1.clone().zero_() for i, j in iter_indices(m1): res2[i] += m1[i][j] * v1[j] self.assertEqual(res1, res2) def test_add(self): # [res] torch.add([res,] tensor1, tensor2) m1 = torch.randn(100, 100) v1 = torch.randn(100) # contiguous res1 = torch.add(m1[4], v1) res2 = res1.clone().zero_() for i in range(m1.size(1)): res2[i] = m1[4, i] + v1[i] self.assertEqual(res1, res2) m1 = torch.randn(100, 100) v1 = torch.randn(100) # non-contiguous res1 = torch.add(m1[:, 4], v1) res2 = res1.clone().zero_() for i in range(m1.size(0)): res2[i] = m1[i, 4] + v1[i] self.assertEqual(res1, res2) # [res] torch.add([res,] tensor, value) m1 = torch.randn(10, 10) # contiguous res1 = m1.clone() res1[3].add_(2) res2 = m1.clone() for i in range(m1.size(1)): res2[3, i] = res2[3, i] + 2 self.assertEqual(res1, res2) # non-contiguous m1 = torch.randn(10, 10) res1 = m1.clone() res1[:, 3].add_(2) res2 = m1.clone() for i in range(m1.size(0)): res2[i, 3] = res2[i, 3] + 2 self.assertEqual(res1, res2) # [res] torch.add([res,] tensor1, value, tensor2) def test_csub(self): # with a tensor a = torch.randn(100, 90) b = a.clone().normal_() res_add = torch.add(a, -1, b) res_csub = a.clone() res_csub.sub_(b) self.assertEqual(res_add, res_csub) # with a scalar a = torch.randn(100, 100) scalar = 123.5 res_add = torch.add(a, -scalar) res_csub = a.clone() res_csub.sub_(scalar) self.assertEqual(res_add, res_csub) @staticmethod def _test_neg(self, cast): float_types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor'] int_types = ['torch.IntTensor', 'torch.ShortTensor', 'torch.ByteTensor', 'torch.CharTensor'] for t in float_types + int_types: if t in float_types: a = cast(torch.randn(100, 90).type(t)) else: a = cast(torch.Tensor(100, 90).type(t).random_()) zeros = cast(torch.Tensor().type(t)).resize_as_(a).zero_() if t == 'torch.ByteTensor': res_add = torch.add(zeros, a, alpha=255) else: res_add = torch.add(zeros, a, alpha=-1) res_neg = a.clone() res_neg.neg_() self.assertEqual(res_neg, res_add) # test out of place as well res_neg_out_place = a.clone().neg() self.assertEqual(res_neg_out_place, res_add) # test via __neg__ operator res_neg_op = -a.clone() self.assertEqual(res_neg_op, res_add) def test_neg(self): self._test_neg(self, lambda t: t) def test_reciprocal(self): a = torch.randn(100, 89) res_div = 1 / a res_reciprocal = a.clone() res_reciprocal.reciprocal_() self.assertEqual(res_reciprocal, res_div) def test_mul(self): m1 = torch.randn(10, 10) res1 = m1.clone() res1[:, 3].mul_(2) res2 = m1.clone() for i in range(res1.size(0)): res2[i, 3] = res2[i, 3] * 2 self.assertEqual(res1, res2) def test_div(self): m1 = torch.randn(10, 10) res1 = m1.clone() res1[:, 3].div_(2) res2 = m1.clone() for i in range(m1.size(0)): res2[i, 3] = res2[i, 3] / 2 self.assertEqual(res1, res2) def test_floordiv(self): for dtype in torch.testing.get_all_dtypes(): if dtype is torch.float16: continue x = torch.randn(100).mul(10).to(dtype) y = x // 3 self.assertEqual(y.dtype, x.dtype) z = torch.tensor([math.trunc(v.item() / 3.) for v in x], dtype=y.dtype) self.assertEqual(y, z) def test_rdiv(self): for dtype in torch.testing.get_all_dtypes(): if dtype is torch.float16: continue x = torch.rand(100).add(1).mul(4).to(dtype) y = 30 / x if dtype.is_floating_point: z = torch.tensor([30 / v.item() for v in x], dtype=dtype) else: z = torch.tensor([math.trunc(30. / v.item()) for v in x], dtype=dtype) self.assertEqual(y, z) def test_fmod(self): m1 = torch.Tensor(10, 10).uniform_(-10., 10.) res1 = m1.clone() q = 2.1 res1[:, 3].fmod_(q) res2 = m1.clone() for i in range(m1.size(1)): res2[i, 3] = math.fmod(res2[i, 3], q) self.assertEqual(res1, res2) def test_remainder(self): # Check the Floating point case, both tensor and scalar overloads for use_item in [True, False]: m1 = torch.Tensor(10, 10).uniform_(-10., 10.) res1 = m1.clone() res2 = m1.clone() qs = torch.arange(-5.1, 4.1) # Check the case where the divisor is a simple float for col_idx, q in enumerate(qs): # Reference for i in range(m1.size(0)): res2[i, col_idx] = res2[i, col_idx] % q # To test res1[:, col_idx].remainder_(q if not use_item else q.item()) self.assertEqual(res1, res2) # Check the case where the divisor is a tensor res1 = m1.clone() res1.remainder_(qs.unsqueeze(0).expand_as(res1)) self.assertEqual(res1, res2) # Check the LongTensor case, both tensor and scalar overloads for use_item in [True, False]: long_m1 = torch.LongTensor(10, 10).random_(-10, 10) long_res1 = long_m1.clone() long_res2 = long_m1.clone() long_qs = torch.arange(-5, 5) long_qs[5] = 5 # Can't handle the divisor=0 case for col_idx, long_q in enumerate(long_qs): # Reference for i in range(long_m1.size(0)): long_res2[i, col_idx] = long_res2[i, col_idx] % long_q # To test long_res1[:, col_idx].remainder_(long_q if not use_item else long_q.item()) self.assertEqual(long_res1, long_res2) # Divisor is a tensor case long_res1 = long_m1.clone() long_res1.remainder_(long_qs.unsqueeze(0).expand_as(long_res1)) @staticmethod def _test_remainder_overflow(self, dtype, device): # Check Integer Overflows x = torch.tensor(23500, dtype=dtype, device=device) q = 392486996410368 self.assertEqual(x % q, x) self.assertEqual(-x % q, q - x) self.assertEqual(x % -q, x - q) self.assertEqual(-x % -q, -x) def test_remainder_overflow(self): self._test_remainder_overflow(self, dtype=torch.int64, device='cpu') def test_mm(self): # helper function def matrixmultiply(mat1, mat2): n = mat1.size(0) m = mat1.size(1) p = mat2.size(1) res = torch.zeros(n, p) for i, j in iter_indices(res): res[i, j] = sum(mat1[i, k] * mat2[k, j] for k in range(m)) return res # contiguous case n, m, p = 10, 10, 5 mat1 = torch.randn(n, m) mat2 = torch.randn(m, p) res = torch.mm(mat1, mat2) res2 = matrixmultiply(mat1, mat2) self.assertEqual(res, res2) # non contiguous case 1 n, m, p = 10, 10, 5 mat1 = torch.randn(n, m) mat2 = torch.randn(p, m).t() res = torch.mm(mat1, mat2) res2 = matrixmultiply(mat1, mat2) self.assertEqual(res, res2) # non contiguous case 2 n, m, p = 10, 10, 5 mat1 = torch.randn(m, n).t() mat2 = torch.randn(m, p) res = torch.mm(mat1, mat2) res2 = matrixmultiply(mat1, mat2) self.assertEqual(res, res2) # non contiguous case 3 n, m, p = 10, 10, 5 mat1 = torch.randn(m, n).t() mat2 = torch.randn(p, m).t() res = torch.mm(mat1, mat2) res2 = matrixmultiply(mat1, mat2) self.assertEqual(res, res2) # test with zero stride n, m, p = 10, 10, 5 mat1 = torch.randn(n, m) mat2 = torch.randn(m, 1).expand(m, p) res = torch.mm(mat1, mat2) res2 = matrixmultiply(mat1, mat2) self.assertEqual(res, res2) @staticmethod def _test_btrifact(self, cast): a = torch.FloatTensor((((1.3722, -0.9020), (1.8849, 1.9169)), ((0.7187, -1.1695), (-0.0139, 1.3572)), ((-1.6181, 0.7148), (1.3728, 0.1319)))) a = cast(a) a_LU, pivots = a.btrifact() # test default info # test deprecated info argument info = cast(torch.IntTensor()) with warnings.catch_warnings(record=True): a_LU, pivots = a.btrifact(info=info) self.assertEqual(info.abs().sum(), 0) a_LU_, pivots_, info_ = a.btrifact_with_info() self.assertEqual(a_LU, a_LU_) self.assertEqual(pivots, pivots_) self.assertEqual(info, info_) P, a_L, a_U = torch.btriunpack(a_LU, pivots) a_ = torch.bmm(P, torch.bmm(a_L, a_U)) self.assertEqual(a_, a) @skipIfNoLapack def test_btrifact(self): self._test_btrifact(self, lambda t: t) @staticmethod def _test_btrisolve(self, cast): a = torch.FloatTensor((((1.3722, -0.9020), (1.8849, 1.9169)), ((0.7187, -1.1695), (-0.0139, 1.3572)), ((-1.6181, 0.7148), (1.3728, 0.1319)))) b = torch.FloatTensor(((4.02, 6.19), (-1.56, 4.00), (9.81, -4.09))) a, b = cast(a), cast(b) LU_data, pivots, info = a.btrifact_with_info() self.assertEqual(info.abs().sum(), 0) x = torch.btrisolve(b, LU_data, pivots) b_ = torch.bmm(a, x.unsqueeze(2)).squeeze() self.assertEqual(b_, b) @skipIfNoLapack def test_btrisolve(self): self._test_btrisolve(self, lambda t: t) def test_bmm(self): num_batches = 10 M, N, O = 23, 8, 12 b1 = torch.randn(num_batches, M, N) b2 = torch.randn(num_batches, N, O) res = torch.bmm(b1, b2) for i in range(num_batches): r = torch.mm(b1[i], b2[i]) self.assertEqual(r, res[i]) def test_addbmm(self): # num_batches = 10 # M, N, O = 12, 8, 5 num_batches = 2 M, N, O = 2, 3, 4 b1 = torch.randn(num_batches, M, N) b2 = torch.randn(num_batches, N, O) res = torch.bmm(b1, b2) res2 = torch.Tensor().resize_as_(res[0]).zero_() res2.addbmm_(b1, b2) self.assertEqual(res2, res.sum(0, False)) res2.addbmm_(1, b1, b2) self.assertEqual(res2, res.sum(0, False) * 2) res2.addbmm_(1., .5, b1, b2) self.assertEqual(res2, res.sum(0, False) * 2.5) res3 = torch.addbmm(1, res2, 0, b1, b2) self.assertEqual(res3, res2) res4 = torch.addbmm(1, res2, .5, b1, b2) self.assertEqual(res4, res.sum(0, False) * 3) res5 = torch.addbmm(0, res2, 1, b1, b2) self.assertEqual(res5, res.sum(0, False)) res6 = torch.addbmm(.1, res2, .5, b1, b2) self.assertEqual(res6, res2 * .1 + (res.sum(0) * .5)) def test_baddbmm(self): num_batches = 10 M, N, O = 12, 8, 5 b1 = torch.randn(num_batches, M, N) b2 = torch.randn(num_batches, N, O) res = torch.bmm(b1, b2) res2 = torch.Tensor().resize_as_(res).zero_() res2.baddbmm_(b1, b2) self.assertEqual(res2, res) res2.baddbmm_(1, b1, b2) self.assertEqual(res2, res * 2) res2.baddbmm_(1, .5, b1, b2) self.assertEqual(res2, res * 2.5) res3 = torch.baddbmm(1, res2, 0, b1, b2) self.assertEqual(res3, res2) res4 = torch.baddbmm(1, res2, .5, b1, b2) self.assertEqual(res4, res * 3) res5 = torch.baddbmm(0, res2, 1, b1, b2) self.assertEqual(res5, res) res6 = torch.baddbmm(.1, res2, .5, b1, b2) self.assertEqual(res6, res2 * .1 + res * .5) def test_clamp(self): m1 = torch.rand(100).mul(5).add(-2.5) # uniform in [-2.5, 2.5] # just in case we're extremely lucky. min_val = -1 max_val = 1 m1[1] = min_val m1[2] = max_val res1 = m1.clone() res1.clamp_(min_val, max_val) res2 = m1.clone() for i in iter_indices(res2): res2[i] = max(min_val, min(max_val, res2[i])) self.assertEqual(res1, res2) out = m1.clone() torch.clamp(m1, min=min_val, max=max_val, out=out) self.assertEqual(out, res1) res1 = torch.clamp(m1, min=min_val) res2 = m1.clone() for i in iter_indices(res2): res2[i] = max(min_val, res2[i]) self.assertEqual(res1, res2) torch.clamp(m1, min=min_val, out=out) self.assertEqual(out, res1) res1 = torch.clamp(m1, max=max_val) res2 = m1.clone() for i in iter_indices(res2): res2[i] = min(max_val, res2[i]) self.assertEqual(res1, res2) torch.clamp(m1, max=max_val, out=out) self.assertEqual(out, res1) def test_pow(self): # [res] torch.pow([res,] x) # pow has dedicated implementation for different exponents for exponent in [-2, -1, -0.5, 0.5, 1, 2, 3, 4]: # base - tensor, exponent - number # contiguous m1 = torch.rand(100, 100) + 0.5 res1 = torch.pow(m1[4], exponent) res2 = res1.clone().zero_() for i in range(res2.size(0)): res2[i] = math.pow(m1[4][i], exponent) self.assertEqual(res1, res2) # non-contiguous m1 = torch.rand(100, 100) + 0.5 res1 = torch.pow(m1[:, 4], exponent) res2 = res1.clone().zero_() for i in range(res2.size(0)): res2[i] = math.pow(m1[i, 4], exponent) self.assertEqual(res1, res2) # base - number, exponent - tensor # contiguous m1 = torch.randn(100, 100) res1 = torch.pow(3, m1[4]) res2 = res1.clone().zero_() for i in range(res2.size(0)): res2[i] = math.pow(3, m1[4, i]) self.assertEqual(res1, res2) # non-contiguous m1 = torch.randn(100, 100) res1 = torch.pow(3, m1[:, 4]) res2 = res1.clone().zero_() for i in range(res2.size(0)): res2[i] = math.pow(3, m1[i][4]) self.assertEqual(res1, res2) def test_rpow(self): m = torch.randn(10, 10) self.assertEqual(torch.pow(2, m), 2**m) @staticmethod def _test_int_pow(self, cast): if not TEST_NUMPY: return import numpy as np def check_against_np(tensor, exp): tensor_np = tensor.cpu().numpy() exp_np = exp if isinstance(exp, int) else exp.cpu().numpy() expected = torch.LongTensor(tensor_np ** exp_np).type_as(tensor) self.assertEqual(torch.pow(tensor, exp), expected) self.assertEqual(tensor.pow(exp), torch.pow(tensor, exp)) typecasts = [ lambda x: x.long(), lambda x: x.short(), lambda x: x.byte(), ] if not IS_WINDOWS: typecasts.append(lambda x: x.int()) shape = (11, 5) tensor = cast(torch.LongTensor(shape).random_(-10, 10)) exps = [0, 1, 2, 5, cast(torch.LongTensor(shape).random_(0, 20))] for typecast in typecasts: for exp in exps: t = typecast(tensor) e = exp if isinstance(exp, int) else typecast(exp) check_against_np(t, e) def test_int_pow(self): self._test_int_pow(self, lambda x: x) def _test_cop(self, torchfn, mathfn): def reference_implementation(res2): for i, j in iter_indices(sm1): idx1d = i * sm1.size(0) + j res2[i, j] = mathfn(sm1[i, j], sm2[idx1d]) return res2 # contiguous m1 = torch.randn(10, 10, 10) m2 = torch.randn(10, 10 * 10) sm1 = m1[4] sm2 = m2[4] res1 = torchfn(sm1, sm2.view(10, 10)) res2 = reference_implementation(res1.clone()) self.assertEqual(res1, res2) # non-contiguous m1 = torch.randn(10, 10, 10) m2 = torch.randn(10 * 10, 10 * 10) sm1 = m1[:, 4] sm2 = m2[:, 4] # view as sm1.size() sm2.set_(sm2.storage(), sm2.storage_offset(), sm1.size(), (sm2.stride()[0] * 10, sm2.stride()[0])) res1 = torchfn(sm1, sm2) # reference_implementation assumes 1-d sm2 sm2.set_(sm2.storage(), sm2.storage_offset(), m2[:, 4].size(), m2[:, 4].stride()) res2 = reference_implementation(res1.clone()) self.assertEqual(res1, res2) def test_cdiv(self): self._test_cop(torch.div, lambda x, y: x / y) def test_cfmod(self): self._test_cop(torch.fmod, math.fmod) def test_cremainder(self): self._test_cop(torch.remainder, lambda x, y: x % y) def test_cmul(self): self._test_cop(torch.mul, lambda x, y: x * y) def test_cpow(self): self._test_cop(torch.pow, lambda x, y: float('nan') if x < 0 else math.pow(x, y)) @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') def test_einsum(self): # test cases taken from https://gist.github.com/rockt/15ee013889d65342088e9260a377dc8f x = torch.randn(5) y = torch.randn(7) A = torch.randn(3, 5) B = torch.randn(2, 5) C = torch.randn(2, 3, 5) D = torch.randn(2, 5, 7) E = torch.randn(7, 9) F = torch.randn(2, 3, 5, 7) G = torch.randn(7, 11, 13) H = torch.randn(4, 4) I = torch.randn(3, 4, 4) l = torch.randn(5, 10) r = torch.randn(5, 20) w = torch.randn(30, 10, 20) test_list = [ # -- Vector ("i->", x), # sum ("i,i->", x, x), # dot ("i,i->i", x, x), # vector element-wise mul ("i,j->ij", x, y), # outer # -- Matrix ("ij->ji", A), # transpose ("ij->j", A), # row sum ("ij->i", A), # col sum ("ij,ij->ij", A, A), # matrix element-wise mul ("ij,j->i", A, x), # matrix vector multiplication ("ij,kj->ik", A, B), # matmul ("ij,ab->ijab", A, E), # matrix outer product # -- Tensor ("aij,ajk->aik", C, D), # batch matmul ("ijk,jk->i", C, A), # tensor matrix contraction ("aij,jk->aik", D, E), # tensor matrix contraction ("abcd,dfg->abcfg", F, G), # tensor tensor contraction ("ijk,jk->ik", C, A), # tensor matrix contraction with double indices ("ijk,jk->ij", C, A), # tensor matrix contraction with double indices ("ijk,ik->j", C, B), # non contiguous ("ijk,ik->jk", C, B), # non contiguous with double indices # -- Diagonal ("ii", H), # trace ("ii->i", H), # diagonal # -- Ellipsis ("i...->...", H), ("ki,...k->i...", A.t(), B), ("k...,jk", A.t(), B), ("...ii->...i", I), # batch diagonal # -- Other ("bn,anm,bm->ba", l, w, r), # as torch.bilinear ] for test in test_list: actual = torch.einsum(test[0], test[1:]) expected = np.einsum(test[0], *[t.numpy() for t in test[1:]]) self.assertEqual(expected.shape, actual.shape, test[0]) self.assertTrue(np.allclose(expected, actual.numpy()), test[0]) def do_einsum(*args): return torch.einsum(test[0], args) self.assertTrue(torch.autograd.gradcheck(do_einsum, test[1:])) self.assertTrue(A._version == 0) # check that we do not use inplace ops def test_sum_all(self): def check_sum_all(tensor): pylist = tensor.reshape(-1).tolist() self.assertEqual(tensor.sum(), sum(pylist)) check_sum_all(torch.tensor([1, 2, 3, 4, 5])) check_sum_all(torch.randn(200000)) check_sum_all(torch.randn(2000, 2)[:, 0]) @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') def test_sum_dim(self): def check_sum_dim(tensors, dim): for tensor in tensors: expected = tensor.numpy().sum(dim) actual = tensor.sum(dim) self.assertEqual(expected.shape, actual.shape) if actual.dtype == torch.float: self.assertTrue(np.allclose(expected, actual.numpy(), rtol=1e-03, atol=1e-05)) else: self.assertTrue(np.allclose(expected, actual.numpy())) float_types = [torch.double, torch.float] int_types = [torch.int64, torch.int32, torch.int16] def make_contiguous(shape, dtype): if dtype in float_types: return torch.randn(*shape, dtype=dtype) result = torch.zeros(*shape, dtype=dtype) result.apply_(lambda x: random.randint(-100, 100)) return result def make_non_contiguous(shape, dtype): contig = make_contiguous(shape, dtype) non_contig = torch.empty(shape + (2,), dtype=dtype)[..., 0] non_contig.copy_(contig) self.assertFalse(non_contig.is_contiguous()) return non_contig def make_tensors(*shape): tensors = [] for dtype in float_types + int_types: tensors.append(make_contiguous(shape, dtype)) tensors.append(make_non_contiguous(shape, dtype)) return tensors check_sum_dim(make_tensors(5, 400000), 1) check_sum_dim(make_tensors(3, 5, 7), 0) check_sum_dim(make_tensors(3, 5, 7), 1) check_sum_dim(make_tensors(3, 5, 7), 2) check_sum_dim(make_tensors(100000), -1) check_sum_dim(make_tensors(50, 50, 50), 0) check_sum_dim(make_tensors(50, 50, 50), 1) check_sum_dim(make_tensors(50, 50, 50), 2) check_sum_dim(make_tensors(50, 50, 50), (1, 2)) check_sum_dim(make_tensors(50, 50, 50), (1, -1)) def make_contiguous_slice(size, dtype): contig = make_contiguous((1, size), dtype) non_contig = contig[:1, 1:size - 1] self.assertTrue(non_contig.is_contiguous()) return contig for dtype in float_types + int_types: check_sum_dim(make_contiguous_slice(5, dtype), 0) check_sum_dim(make_contiguous_slice(50, dtype), 0) check_sum_dim(make_contiguous_slice(500, dtype), 0) check_sum_dim(make_contiguous_slice(100000, dtype), 0) def test_sum_out(self): x = torch.rand(100, 100) res1 = torch.sum(x, 1) res2 = torch.Tensor() torch.sum(x, 1, out=res2) self.assertEqual(res1, res2) x = torch.rand(100, 100, 100) res1 = x.sum(2).sum(1) res2 = torch.Tensor() torch.sum(x, (2, 1), out=res2) self.assertEqual(res1, res2) # TODO: these tests only check if it's possible to pass a return value # it'd be good to expand them def test_prod(self): x = torch.rand(100, 100) res1 = torch.prod(x, 1) res2 = torch.Tensor() torch.prod(x, 1, out=res2) self.assertEqual(res1, res2) def test_cumsum(self): x = torch.rand(100, 100) res1 = torch.cumsum(x, 1) res2 = torch.Tensor() torch.cumsum(x, 1, out=res2) self.assertEqual(res1, res2) def test_cumprod(self): x = torch.rand(100, 100) res1 = torch.cumprod(x, 1) res2 = torch.Tensor() torch.cumprod(x, 1, out=res2) self.assertEqual(res1, res2) def _test_reduce_integer_upcast(self, fn, has_out=True): shape = (3, 4, 5) reduced_shape = fn(torch.ones(shape)).shape def _test_out(dtype, other_dtype): out = torch.ones(reduced_shape, dtype=dtype) result = fn(x, out=out) self.assertIs(out.dtype, result.dtype) self.assertEqual(fn(x.type(dtype)), result) result = fn(x, out=out, dtype=dtype) self.assertIs(out.dtype, result.dtype) self.assertEqual(fn(x.type(dtype)), result) # 'out' is favored over dtype, check error self.assertRaises(RuntimeError, lambda: fn(x, out=out, dtype=other_dtype)) for dtype in [dtype for dtype in torch.testing.get_all_dtypes() if dtype != torch.float16]: x = torch.ones(shape, dtype=dtype) expected_dtype = dtype if dtype.is_floating_point else torch.int64 self.assertIs(expected_dtype, fn(x).dtype) self.assertEqual(fn(x.type(expected_dtype)), fn(x)) if dtype.is_floating_point: other_dtype = torch.float32 if dtype == torch.float64 else torch.float64 else: other_dtype = torch.int32 if dtype != torch.int32 else torch.int16 self.assertIs(other_dtype, fn(x, dtype=other_dtype).dtype) self.assertEqual(fn(x.type(other_dtype)), fn(x, dtype=other_dtype)) # test mixed int/float mixed_dtype = torch.int32 if dtype.is_floating_point else torch.float32 self.assertIs(mixed_dtype, fn(x, dtype=mixed_dtype).dtype) self.assertEqual(fn(x.type(mixed_dtype)), fn(x, dtype=mixed_dtype)) if has_out: _test_out(dtype, other_dtype) _test_out(dtype, mixed_dtype) def test_sum_integer_upcast(self): self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, **kwargs), False) self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, 0, **kwargs)) def test_prod_integer_upcast(self): self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, **kwargs), False) self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, 0, **kwargs)) def test_cumsum_integer_upcast(self): self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumsum(x, 0, **kwargs)) def test_cumprod_integer_upcast(self): self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumprod(x, 0, **kwargs)) def test_cross(self): x = torch.rand(100, 3, 100) y = torch.rand(100, 3, 100) res1 = torch.cross(x, y) res2 = torch.Tensor() torch.cross(x, y, out=res2) self.assertEqual(res1, res2) def test_zeros(self): res1 = torch.zeros(100, 100) res2 = torch.Tensor() torch.zeros(100, 100, out=res2) self.assertEqual(res1, res2) def test_zeros_like(self): expected = torch.zeros(100, 100) res1 = torch.zeros_like(expected) self.assertEqual(res1, expected) @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') def test_zeros_like_cuda(self): expected = torch.zeros(100, 100).cuda() res1 = torch.zeros_like(expected) self.assertEqual(res1, expected) @unittest.skipIf(torch.cuda.device_count() < 2, 'only one GPU detected') def test_zeros_like_multiple_device(self): expected = torch.zeros(100, 100).cuda() x = torch.cuda.FloatTensor(100, 100, device=1) output = torch.zeros_like(x) self.assertEqual(output, expected) def test_zeros_out(self): shape = (3, 4) out = torch.zeros(shape) torch.zeros(shape, out=out) # change the dtype, layout, device self.assertRaises(RuntimeError, lambda: torch.zeros(shape, dtype=torch.int64, out=out)) self.assertRaises(RuntimeError, lambda: torch.zeros(shape, layout=torch.sparse_coo, out=out)) if torch.cuda.is_available(): self.assertRaises(RuntimeError, lambda: torch.zeros(shape, device='cuda', out=out)) # leave them the same self.assertEqual(torch.zeros(shape), torch.zeros(shape, dtype=out.dtype, out=out)) self.assertEqual(torch.zeros(shape), torch.zeros(shape, layout=torch.strided, out=out)) self.assertEqual(torch.zeros(shape), torch.zeros(shape, device='cpu', out=out)) def test_histc(self): x = torch.Tensor((2, 4, 2, 2, 5, 4)) y = torch.histc(x, 5, 1, 5) # nbins, min, max z = torch.Tensor((0, 3, 0, 2, 1)) self.assertEqual(y, z) def test_ones(self): res1 = torch.ones(100, 100) res2 = torch.Tensor() torch.ones(100, 100, out=res2) self.assertEqual(res1, res2) def test_ones_like(self): expected = torch.ones(100, 100) res1 = torch.ones_like(expected) self.assertEqual(res1, expected) @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') def test_ones_like_cuda(self): expected = torch.ones(100, 100).cuda() res1 = torch.ones_like(expected) self.assertEqual(res1, expected) @unittest.skipIf(torch.cuda.device_count() < 2, 'only one GPU detected') def test_ones_like_multiple_device(self): expected = torch.ones(100, 100).cuda() x = torch.cuda.FloatTensor(100, 100, device=1) output = torch.ones_like(x) self.assertEqual(output, expected) @staticmethod def _test_dtypes(self, dtypes, layout, device): for dtype in dtypes: if dtype != torch.float16: out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device) self.assertIs(dtype, out.dtype) self.assertIs(layout, out.layout) self.assertEqual(device, out.device) def test_dtypes(self): all_dtypes = torch.testing.get_all_dtypes() self._test_dtypes(self, all_dtypes, torch.strided, torch.device('cpu')) if torch.cuda.is_available(): self._test_dtypes(self, all_dtypes, torch.strided, torch.device('cuda:0')) def test_copy_dtypes(self): all_dtypes = torch.testing.get_all_dtypes() for dtype in all_dtypes: copied_dtype = copy.deepcopy(dtype) self.assertIs(dtype, copied_dtype) def test_device(self): cpu = torch.device('cpu') self.assertEqual('cpu', str(cpu)) self.assertEqual('cpu', cpu.type) self.assertEqual(None, cpu.index) cpu0 = torch.device('cpu:0') self.assertEqual('cpu:0', str(cpu0)) self.assertEqual('cpu', cpu0.type) self.assertEqual(0, cpu0.index) cpu0 = torch.device('cpu', 0) self.assertEqual('cpu:0', str(cpu0)) self.assertEqual('cpu', cpu0.type) self.assertEqual(0, cpu0.index) cuda = torch.device('cuda') self.assertEqual('cuda', str(cuda)) self.assertEqual('cuda', cuda.type) self.assertEqual(None, cuda.index) cuda1 = torch.device('cuda:1') self.assertEqual('cuda:1', str(cuda1)) self.assertEqual('cuda', cuda1.type) self.assertEqual(1, cuda1.index) cuda1 = torch.device('cuda', 1) self.assertEqual('cuda:1', str(cuda1)) self.assertEqual('cuda', cuda1.type) self.assertEqual(1, cuda1.index) self.assertRaises(RuntimeError, lambda: torch.device('cpu:-1')) self.assertRaises(RuntimeError, lambda: torch.device('cpu:1')) self.assertRaises(RuntimeError, lambda: torch.device('cpu', -1)) self.assertRaises(RuntimeError, lambda: torch.device('cpu', 1)) self.assertRaises(RuntimeError, lambda: torch.device('cuda:-1')) self.assertRaises(RuntimeError, lambda: torch.device('cuda', -1)) self.assertRaises(RuntimeError, lambda: torch.device(-1)) self.assertRaises(TypeError, lambda: torch.device('other')) self.assertRaises(TypeError, lambda: torch.device('other:0')) def test_tensor_device(self): def assertEqual(device_str, fn): self.assertEqual(torch.device(device_str), fn().device) self.assertEqual(device_str, str(fn().device)) assertEqual('cpu', lambda: torch.tensor(5)) assertEqual('cpu', lambda: torch.ones((2, 3), dtype=torch.float32, device='cpu')) # NOTE: 'cpu' is the canonical representation of 'cpu:0', but 'cuda:X' is the canonical # representation of cuda devices. assertEqual('cpu', lambda: torch.ones((2, 3), dtype=torch.float32, device='cpu:0')) assertEqual('cpu', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cpu:0')) if TEST_NUMPY: assertEqual('cpu', lambda: torch.tensor(np.random.randn(2, 3), device='cpu')) if torch.cuda.is_available(): assertEqual('cuda:0', lambda: torch.tensor(5).cuda(0)) assertEqual('cuda:0', lambda: torch.tensor(5).cuda('cuda:0')) self.assertRaises(RuntimeError, lambda: torch.tensor(5).cuda('cpu')) self.assertRaises(RuntimeError, lambda: torch.tensor(5).cuda('cpu:0')) assertEqual('cuda:0', lambda: torch.tensor(5, dtype=torch.int64, device=0)) assertEqual('cuda:0', lambda: torch.tensor(5, dtype=torch.int64, device='cuda:0')) assertEqual('cuda:' + str(torch.cuda.current_device()), lambda: torch.tensor(5, dtype=torch.int64, device='cuda')) assertEqual('cuda:0', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:0')) if TEST_NUMPY: assertEqual('cuda:0', lambda: torch.tensor(np.random.randn(2, 3), device='cuda:0')) if torch.cuda.device_count() > 1: assertEqual('cuda:1', lambda: torch.tensor(5).cuda(1)) assertEqual('cuda:1', lambda: torch.tensor(5).cuda('cuda:1')) assertEqual('cuda:1', lambda: torch.tensor(5, dtype=torch.int64, device=1)) assertEqual('cuda:1', lambda: torch.tensor(5, dtype=torch.int64, device='cuda:1')) assertEqual('cuda:1', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:1')) if TEST_NUMPY: assertEqual('cuda:1', lambda: torch.tensor(np.random.randn(2, 3), device='cuda:1')) def test_to(self): a = torch.tensor(5) self.assertEqual(a.device, a.to('cpu').device) self.assertEqual(a.device, a.to('cpu', dtype=torch.float32).device) self.assertIs(torch.float32, a.to('cpu', dtype=torch.float32).dtype) self.assertEqual(a.device, a.to(torch.float32).device) self.assertIs(torch.float32, a.to(dtype=torch.float32).dtype) if torch.cuda.is_available(): for non_blocking in [True, False]: for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']: b = torch.tensor(5., device=cuda) self.assertEqual(b.device, b.to(cuda, non_blocking=non_blocking).device) self.assertEqual(a.device, b.to('cpu', non_blocking=non_blocking).device) self.assertEqual(b.device, a.to(cuda, non_blocking=non_blocking).device) self.assertIs(torch.int32, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).dtype) self.assertEqual(a.device, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).device) self.assertIs(torch.int32, b.to(dtype=torch.int32).dtype) self.assertEqual(b.device, b.to(dtype=torch.int32).device) def test_to_with_tensor(self): a = torch.tensor(5) self.assertEqual(a.device, a.to(a).device) if torch.cuda.is_available(): for non_blocking in [True, False]: for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']: b = torch.tensor(5., device=cuda) self.assertEqual(b.device, b.to(b, non_blocking=non_blocking).device) self.assertEqual(a.device, b.to(a, non_blocking=non_blocking).device) self.assertEqual(b.device, a.to(b, non_blocking=non_blocking).device) @staticmethod def _test_empty_full(self, dtypes, layout, device): shape = torch.Size([2, 3]) def check_value(tensor, dtype, layout, device, value, requires_grad): self.assertEqual(shape, tensor.shape) self.assertIs(dtype, tensor.dtype) self.assertIs(layout, tensor.layout) self.assertEqual(tensor.requires_grad, requires_grad) if tensor.is_cuda and device is not None: self.assertEqual(device, tensor.device) if value is not None: fill = tensor.new(shape).fill_(value) self.assertEqual(tensor, fill) def get_int64_dtype(dtype): module = '.'.join(str(dtype).split('.')[1:-1]) if not module: return torch.int64 return operator.attrgetter(module)(torch).int64 default_dtype = torch.get_default_dtype() check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False) check_value(torch.full(shape, -5), default_dtype, torch.strided, -1, None, False) for dtype in dtypes: for rg in {dtype.is_floating_point, False}: int64_dtype = get_int64_dtype(dtype) v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg) check_value(v, dtype, layout, device, None, rg) out = v.new() check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg), dtype, layout, device, None, rg) check_value(v.new_empty(shape), dtype, layout, device, None, False) check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False), int64_dtype, layout, device, None, False) check_value(torch.empty_like(v), dtype, layout, device, None, False) check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False), int64_dtype, layout, device, None, False) if dtype is not torch.float16 and layout != torch.sparse_coo: fv = 3 v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg) check_value(v, dtype, layout, device, fv, rg) check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False) out = v.new() check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg), dtype, layout, device, fv + 2, rg) check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=False), int64_dtype, layout, device, fv + 3, False) check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False) check_value(torch.full_like(v, fv + 5, dtype=int64_dtype, layout=layout, device=device, requires_grad=False), int64_dtype, layout, device, fv + 5, False) def test_empty_full(self): self._test_empty_full(self, torch.testing.get_all_dtypes(), torch.strided, torch.device('cpu')) if torch.cuda.device_count() > 0: self._test_empty_full(self, torch.testing.get_all_dtypes(), torch.strided, None) self._test_empty_full(self, torch.testing.get_all_dtypes(), torch.strided, torch.device('cuda:0')) def test_dtype_out_match(self): d = torch.autograd.Variable(torch.DoubleTensor(2, 3)) self.assertRaises(RuntimeError, lambda: torch.zeros((2, 3), out=d, dtype=torch.float32)) def test_constructor_dtypes(self): default_type = torch.Tensor().type() self.assertIs(torch.Tensor().dtype, torch.get_default_dtype()) self.assertIs(torch.uint8, torch.ByteTensor.dtype) self.assertIs(torch.float32, torch.FloatTensor.dtype) self.assertIs(torch.float64, torch.DoubleTensor.dtype) torch.set_default_tensor_type('torch.FloatTensor') self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.FloatStorage, torch.Storage) torch.set_default_dtype(torch.float64) self.assertIs(torch.float64, torch.get_default_dtype()) self.assertIs(torch.DoubleStorage, torch.Storage) torch.set_default_tensor_type(torch.FloatTensor) self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.FloatStorage, torch.Storage) if torch.cuda.is_available(): torch.set_default_tensor_type(torch.cuda.FloatTensor) self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.float32, torch.cuda.FloatTensor.dtype) self.assertIs(torch.cuda.FloatStorage, torch.Storage) torch.set_default_dtype(torch.float64) self.assertIs(torch.float64, torch.get_default_dtype()) self.assertIs(torch.cuda.DoubleStorage, torch.Storage) # don't support integral or sparse default types. self.assertRaises(TypeError, lambda: torch.set_default_tensor_type('torch.IntTensor')) self.assertRaises(TypeError, lambda: torch.set_default_dtype(torch.int64)) # don't allow passing dtype to set_default_tensor_type self.assertRaises(TypeError, lambda: torch.set_default_tensor_type(torch.float32)) torch.set_default_tensor_type(default_type) def test_type(self): x = torch.randn(3, 3).double() self.assertEqual(x.type('torch.FloatTensor').dtype, torch.float32) self.assertEqual(x.type(torch.FloatTensor).dtype, torch.float32) self.assertEqual(x.int().type(torch.Tensor).dtype, torch.get_default_dtype()) self.assertEqual(x.type(torch.int32).dtype, torch.int32) def test_tensor_factory(self): expected = torch.Tensor([1, 1]) # test data res1 = torch.tensor([1, 1]) self.assertEqual(res1, expected) res1 = torch.tensor([1, 1], dtype=torch.int) self.assertEqual(res1, expected) self.assertIs(torch.int, res1.dtype) # test copy res2 = torch.tensor(expected) self.assertEqual(res2, expected) res2[1] = 2 self.assertEqual(expected, torch.ones_like(expected)) res2 = torch.tensor(expected, dtype=torch.int) self.assertEqual(res1, expected) self.assertIs(torch.int, res1.dtype) # test copy with numpy if TEST_NUMPY: a = np.array([5.]) res1 = torch.tensor(a) self.assertEqual(5., res1[0].item()) a[0] = 7. self.assertEqual(5., res1[0].item()) def test_tensor_factory_type_inference(self): def test_inference(default_dtype): saved_dtype = torch.get_default_dtype() torch.set_default_dtype(default_dtype) self.assertIs(default_dtype, torch.tensor(()).dtype) self.assertIs(default_dtype, torch.tensor(5.).dtype) self.assertIs(torch.int64, torch.tensor(5).dtype) self.assertIs(torch.uint8, torch.tensor(True).dtype) self.assertIs(torch.int32, torch.tensor(5, dtype=torch.int32).dtype) self.assertIs(default_dtype, torch.tensor(((7, 5), (9, 5.))).dtype) self.assertIs(default_dtype, torch.tensor(((5., 5), (3, 5))).dtype) self.assertIs(torch.int64, torch.tensor(((5, 3), (3, 5))).dtype) if TEST_NUMPY: self.assertIs(torch.float64, torch.tensor(np.array(())).dtype) self.assertIs(torch.float64, torch.tensor(np.array(5.)).dtype) if np.array(5).dtype == np.int64: # np long, which can be 4 bytes (e.g. on windows) self.assertIs(torch.int64, torch.tensor(np.array(5)).dtype) else: self.assertIs(torch.int32, torch.tensor(np.array(5)).dtype) self.assertIs(torch.uint8, torch.tensor(np.array(3, dtype=np.uint8)).dtype) self.assertIs(default_dtype, torch.tensor(((7, np.array(5)), (np.array(9), 5.))).dtype) self.assertIs(torch.float64, torch.tensor(((7, 5), (9, np.array(5.)))).dtype) self.assertIs(torch.int64, torch.tensor(((5, np.array(3)), (np.array(3), 5))).dtype) torch.set_default_dtype(saved_dtype) test_inference(torch.float64) test_inference(torch.float32) @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') def test_tensor_factory_cuda_type_inference(self): saved_type = torch.Tensor().type() torch.set_default_tensor_type(torch.cuda.DoubleTensor) torch.set_default_dtype(torch.float32) self.assertIs(torch.float32, torch.tensor(0.).dtype) self.assertEqual(torch.device('cuda:0'), torch.tensor(0.).device) torch.set_default_dtype(torch.float64) self.assertIs(torch.float64, torch.tensor(0.).dtype) self.assertEqual(torch.device('cuda:0'), torch.tensor(0.).device) torch.set_default_tensor_type(saved_type) @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') def test_tensor_factory_cuda_type(self): saved_type = torch.Tensor().type() torch.set_default_tensor_type(torch.cuda.FloatTensor) x = torch.zeros((5, 5)) self.assertIs(torch.float32, x.dtype) self.assertTrue(x.is_cuda) torch.set_default_tensor_type(torch.cuda.DoubleTensor) x = torch.zeros((5, 5)) self.assertIs(torch.float64, x.dtype) self.assertTrue(x.is_cuda) torch.set_default_tensor_type(saved_type) def test_new_tensor(self): expected = torch.autograd.Variable(torch.ByteTensor([1, 1])) # test data res1 = expected.new_tensor([1, 1]) self.assertEqual(res1, expected) res1 = expected.new_tensor([1, 1], dtype=torch.int) self.assertEqual(res1, expected) self.assertIs(torch.int, res1.dtype) # test copy res2 = expected.new_tensor(expected) self.assertEqual(res2, expected) res2[1] = 2 self.assertEqual(expected, torch.ones_like(expected)) res2 = expected.new_tensor(expected, dtype=torch.int) self.assertEqual(res2, expected) self.assertIs(torch.int, res2.dtype) # test copy with numpy if TEST_NUMPY: a = np.array([5.]) res1 = torch.tensor(a) res1 = res1.new_tensor(a) self.assertEqual(5., res1[0].item()) a[0] = 7. self.assertEqual(5., res1[0].item()) if torch.cuda.device_count() >= 2: expected = expected.cuda(1) res1 = expected.new_tensor([1, 1]) self.assertEqual(res1.get_device(), expected.get_device()) res1 = expected.new_tensor([1, 1], dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res1.get_device(), expected.get_device()) res2 = expected.new_tensor(expected) self.assertEqual(res2.get_device(), expected.get_device()) res2 = expected.new_tensor(expected, dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res2.get_device(), expected.get_device()) res2 = expected.new_tensor(expected, dtype=torch.int, device=0) self.assertIs(torch.int, res1.dtype) self.assertEqual(res2.get_device(), 0) res1 = expected.new_tensor(1) self.assertEqual(res1.get_device(), expected.get_device()) res1 = expected.new_tensor(1, dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res1.get_device(), expected.get_device()) def test_as_tensor(self): # from python data x = [[0, 1], [2, 3]] self.assertEqual(torch.tensor(x), torch.as_tensor(x)) self.assertEqual(torch.tensor(x, dtype=torch.float32), torch.as_tensor(x, dtype=torch.float32)) # from tensor (doesn't copy unless type is different) y = torch.tensor(x) self.assertIs(y, torch.as_tensor(y)) self.assertIsNot(y, torch.as_tensor(y, dtype=torch.float32)) if torch.cuda.is_available(): self.assertIsNot(y, torch.as_tensor(y, device='cuda')) y_cuda = y.to('cuda') self.assertIs(y_cuda, torch.as_tensor(y_cuda)) self.assertIs(y_cuda, torch.as_tensor(y_cuda, device='cuda')) if TEST_NUMPY: # doesn't copy n = np.random.rand(5, 6) n_astensor = torch.as_tensor(n) self.assertEqual(torch.tensor(n), n_astensor) n_astensor[0][0] = 250.7 self.assertEqual(torch.tensor(n), n_astensor) # changing dtype causes copy n = np.random.rand(5, 6).astype(np.float32) n_astensor = torch.as_tensor(n, dtype=torch.float64) self.assertEqual(torch.tensor(n, dtype=torch.float64), n_astensor) n_astensor[0][1] = 250.8 self.assertNotEqual(torch.tensor(n, dtype=torch.float64), n_astensor) # changing device causes copy if torch.cuda.is_available(): n = np.random.randn(5, 6) n_astensor = torch.as_tensor(n, device='cuda') self.assertEqual(torch.tensor(n, device='cuda'), n_astensor) n_astensor[0][2] = 250.9 self.assertNotEqual(torch.tensor(n, device='cuda'), n_astensor) def test_diag(self): x = torch.rand(100, 100) res1 = torch.diag(x) res2 = torch.Tensor() torch.diag(x, out=res2) self.assertEqual(res1, res2) @staticmethod def _test_diagonal(self, dtype, device): x = torch.randn((100, 100), dtype=dtype, device=device) result = torch.diagonal(x) expected = torch.diag(x) self.assertEqual(result, expected) x = torch.randn((100, 100), dtype=dtype, device=device) result = torch.diagonal(x, 17) expected = torch.diag(x, 17) self.assertEqual(result, expected) def test_diagonal(self): self._test_diagonal(self, dtype=torch.float32, device='cpu') @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') def test_diagonal_multidim(self): x = torch.randn(10, 11, 12, 13) xn = x.numpy() for args in [(2, 2, 3), (2,), (-2, 1, 2), (0, -2, -1)]: result = torch.diagonal(x, *args) expected = xn.diagonal(*args) self.assertEqual(expected.shape, result.shape) self.assertTrue(np.allclose(expected, result.numpy())) # test non-continguous xp = x.permute(1, 2, 3, 0) result = torch.diagonal(xp, 0, -2, -1) expected = xp.numpy().diagonal(0, -2, -1) self.assertEqual(expected.shape, result.shape) self.assertTrue(np.allclose(expected, result.numpy())) @staticmethod def _test_diagflat(self, dtype, device): # Basic sanity test x = torch.randn((100,), dtype=dtype, device=device) result = torch.diagflat(x) expected = torch.diag(x) self.assertEqual(result, expected) # Test offset x = torch.randn((100,), dtype=dtype, device=device) result = torch.diagflat(x, 17) expected = torch.diag(x, 17) self.assertEqual(result, expected) # Test where input has more than one dimension x = torch.randn((2, 3, 4), dtype=dtype, device=device) result = torch.diagflat(x) expected = torch.diag(x.contiguous().view(-1)) self.assertEqual(result, expected) # Noncontig input x = torch.randn((2, 3, 4), dtype=dtype, device=device).transpose(2, 0) self.assertFalse(x.is_contiguous()) result = torch.diagflat(x) expected = torch.diag(x.contiguous().view(-1)) self.assertEqual(result, expected) def test_diagflat(self): self._test_diagflat(self, dtype=torch.float32, device='cpu') def test_eye(self): res1 = torch.eye(100, 100) res2 = torch.Tensor() torch.eye(100, 100, out=res2) self.assertEqual(res1, res2) def test_renorm(self): m1 = torch.randn(10, 5) res1 = torch.Tensor() def renorm(matrix, value, dim, max_norm): m1 = matrix.transpose(dim, 0).contiguous() # collapse non-dim dimensions. m2 = m1.clone().resize_(m1.size(0), int(math.floor(m1.nelement() / m1.size(0)))) norms = m2.norm(value, 1, True) # clip new_norms = norms.clone() new_norms[torch.gt(norms, max_norm)] = max_norm new_norms.div_(norms.add_(1e-7)) # renormalize m1.mul_(new_norms.expand_as(m1)) return m1.transpose(dim, 0) # note that the axis fed to torch.renorm is different (2~=1) maxnorm = m1.norm(2, 1).mean() m2 = renorm(m1, 2, 1, maxnorm) m1.renorm_(2, 1, maxnorm) self.assertEqual(m1, m2, 1e-5) self.assertEqual(m1.norm(2, 0), m2.norm(2, 0), 1e-5) m1 = torch.randn(3, 4, 5) m2 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4) maxnorm = m2.norm(2, 0).mean() m2 = renorm(m2, 2, 1, maxnorm) m1.renorm_(2, 1, maxnorm) m3 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4) self.assertEqual(m3, m2) self.assertEqual(m3.norm(2, 0), m2.norm(2, 0)) @staticmethod def _test_renorm_ps(self, device): # full reduction x = torch.randn(5, 5) xn = x.numpy() for p in [1, 2, 3, 4, float('inf')]: res = x.renorm(p, 1, 1) expected = x / x.norm(p, 0, keepdim=True).clamp(min=1) self.assertEqual(res.numpy(), expected.numpy(), "renorm failed for {}-norm".format(p)) def test_renorm_ps(self): self._test_renorm_ps(self, device='cpu') @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') def test_renorm_ps_cuda(self): self._test_renorm_ps(self, device='cuda') @staticmethod def _test_multinomial(self, type): def make_prob_dist(shape, is_contiguous): if is_contiguous: return type(*shape).uniform_() elif len(shape) == 1: return type(*(shape + [5])).uniform_()[:, 2] else: # num dim = 2 new_shape = [2, shape[1], 7, 1, shape[0], 1, 10] prob_dist = type(*new_shape).uniform_() prob_dist = prob_dist.transpose(1, 4) prob_dist = prob_dist[1, :, 5, 0, :, 0, 4] assert not prob_dist.is_contiguous() # sanity check return prob_dist for is_contiguous in (True, False): # with replacement n_row = 3 for n_col in range(4, 5 + 1): prob_dist = make_prob_dist([n_row, n_col], is_contiguous) # indices that shouldn't be sampled (<0 means none) zero_prob_indices = torch.LongTensor(n_row).random_(-2, n_col).tolist() for i, j in enumerate(zero_prob_indices): if j >= 0: prob_dist[i, j] = 0 n_sample = n_col * 3 sample_indices = torch.multinomial(prob_dist, n_sample, True) self.assertEqual(prob_dist.dim(), 2) self.assertEqual(sample_indices.size(1), n_sample) for i in range(n_row): zero_prob_idx = zero_prob_indices[i] if zero_prob_idx < 0: continue for j in range(n_sample): self.assertNotEqual(sample_indices[i, j], zero_prob_idx, "sampled an index with zero probability") # without replacement n_row = 3 for n_col in range(2, 10 + 1, 2): prob_dist = make_prob_dist([n_row, n_col], is_contiguous) # indices that shouldn't be sampled (<0 means none) zero_prob_indices = torch.LongTensor(n_row).random_(-1, n_col).tolist() for i, j in enumerate(zero_prob_indices): if j >= 0: prob_dist[i, j] = 0 n_sample = max(1, n_col - 2) sample_indices = torch.multinomial(prob_dist, n_sample, False) self.assertEqual(prob_dist.dim(), 2) self.assertEqual(sample_indices.size(1), n_sample) for i in range(n_row): row_samples = {} zero_prob_idx = zero_prob_indices[i] for j in range(n_sample): sample_idx = sample_indices[i, j] if zero_prob_idx >= 0: self.assertNotEqual(sample_idx, zero_prob_idx, "sampled an index with zero probability") self.assertNotIn(sample_idx, row_samples, "sampled an index twice") row_samples[sample_idx] = True # vector n_col = 4 prob_dist = make_prob_dist([n_col], is_contiguous).fill_(1) zero_prob_idx = 1 # index that shouldn't be sampled prob_dist[zero_prob_idx] = 0 n_sample = 20 sample_indices = torch.multinomial(prob_dist, n_sample, True) for sample_index in sample_indices: self.assertNotEqual(sample_index, zero_prob_idx, "sampled an index with zero probability") s_dim = sample_indices.dim() self.assertEqual(sample_indices.dim(), 1, "wrong number of dimensions") self.assertEqual(prob_dist.dim(), 1, "wrong number of prob_dist dimensions") self.assertEqual(sample_indices.size(0), n_sample, "wrong number of samples") def test_multinomial(self): self._test_multinomial(self, torch.FloatTensor) def _spawn_method(self, method, arg): try: mp.set_start_method('spawn') except RuntimeError: pass with mp.Pool(1) as pool: self.assertTrue(pool.map(method, [arg])) @staticmethod def _test_multinomial_invalid_probs(probs): try: torch.multinomial(probs.to('cpu'), 1) return False # Should not be reached except RuntimeError as e: return 'invalid multinomial distribution' in str(e) @unittest.skipIf(IS_WINDOWS, 'FIXME: CUDA OOM error on Windows') @unittest.skipIf(not PY3, "spawn start method is not supported in Python 2, \ but we need it for for testing failure case for CPU RNG on Windows") def test_multinomial_invalid_probs(self): test_method = TestTorch._test_multinomial_invalid_probs self._spawn_method(test_method, torch.Tensor([0, -1])) self._spawn_method(test_method, torch.Tensor([0, float('inf')])) self._spawn_method(test_method, torch.Tensor([0, float('-inf')])) self._spawn_method(test_method, torch.Tensor([0, float('nan')])) @suppress_warnings def test_range(self): res1 = torch.range(0, 1) res2 = torch.Tensor() torch.range(0, 1, out=res2) self.assertEqual(res1, res2, 0) # Check range for non-contiguous tensors. x = torch.zeros(2, 3) torch.range(0, 3, out=x.narrow(1, 1, 2)) res2 = torch.Tensor(((0, 0, 1), (0, 2, 3))) self.assertEqual(x, res2, 1e-16) # Check negative res1 = torch.Tensor((1, 0)) res2 = torch.Tensor() torch.range(1, 0, -1, out=res2) self.assertEqual(res1, res2, 0) # Equal bounds res1 = torch.ones(1) res2 = torch.Tensor() torch.range(1, 1, -1, out=res2) self.assertEqual(res1, res2, 0) torch.range(1, 1, 1, out=res2) self.assertEqual(res1, res2, 0) # FloatTensor res1 = torch.range(0.6, 0.9, 0.1, out=torch.FloatTensor()) self.assertEqual(res1.size(0), 4) res1 = torch.range(1, 10, 0.3, out=torch.FloatTensor()) self.assertEqual(res1.size(0), 31) # DoubleTensor res1 = torch.range(0.6, 0.9, 0.1, out=torch.DoubleTensor()) self.assertEqual(res1.size(0), 4) res1 = torch.range(1, 10, 0.3, out=torch.DoubleTensor()) self.assertEqual(res1.size(0), 31) def test_range_warning(self): with warnings.catch_warnings(record=True) as w: torch.range(0, 10) self.assertEqual(len(w), 1) def test_arange(self): res1 = torch.arange(0, 1) res2 = torch.Tensor() torch.arange(0, 1, out=res2) self.assertEqual(res1, res2, 0) # Check arange with only one argument res1 = torch.arange(10) res2 = torch.arange(0, 10) self.assertEqual(res1, res2, 0) # Check arange for non-contiguous tensors. x = torch.zeros(2, 3) torch.arange(0, 4, out=x.narrow(1, 1, 2)) res2 = torch.Tensor(((0, 0, 1), (0, 2, 3))) self.assertEqual(x, res2, 1e-16) # Check negative res1 = torch.Tensor((1, 0)) res2 = torch.Tensor() torch.arange(1, -1, -1, out=res2) self.assertEqual(res1, res2, 0) # Equal bounds res1 = torch.ones(1) res2 = torch.Tensor() torch.arange(1, 0, -1, out=res2) self.assertEqual(res1, res2, 0) torch.arange(1, 2, 1, out=res2) self.assertEqual(res1, res2, 0) # FloatTensor res1 = torch.arange(0.6, 0.89, 0.1, out=torch.FloatTensor()) self.assertEqual(res1, [0.6, 0.7, 0.8]) res1 = torch.arange(1, 10, 0.3, out=torch.FloatTensor()) self.assertEqual(res1.size(0), 30) self.assertEqual(res1[0], 1) self.assertEqual(res1[29], 9.7) # DoubleTensor res1 = torch.arange(0.6, 0.89, 0.1, out=torch.DoubleTensor()) self.assertEqual(res1, [0.6, 0.7, 0.8]) res1 = torch.arange(1, 10, 0.3, out=torch.DoubleTensor()) self.assertEqual(res1.size(0), 30) self.assertEqual(res1[0], 1) self.assertEqual(res1[29], 9.7) # Check that it's exclusive r = torch.arange(0, 5) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 4) self.assertEqual(r.numel(), 5) r = torch.arange(0, 5, 2) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 4) self.assertEqual(r.numel(), 3) r1 = torch.arange(0, 5 + 1e-6) r2 = torch.arange(0, 5) r3 = torch.arange(0, 5 - 1e-6) self.assertEqual(r1[:-1], r2, 0) self.assertEqual(r2, r3, 0) r1 = torch.arange(10, -1 + 1e-6, -1) r2 = torch.arange(10, -1, -1) r3 = torch.arange(10, -1 - 1e-6, -1) self.assertEqual(r1, r2, 0) self.assertEqual(r2, r3[:-1], 0) def test_arange_inference(self): saved_dtype = torch.get_default_dtype() torch.set_default_dtype(torch.float32) # end only self.assertIs(torch.float32, torch.arange(1.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1.)).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64)).dtype) self.assertIs(torch.int64, torch.arange(1).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1)).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1, dtype=torch.int16)).dtype) # start, end, [step] self.assertIs(torch.float32, torch.arange(1., 3).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64), 3).dtype) self.assertIs(torch.float32, torch.arange(1, 3.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1, dtype=torch.int16), torch.tensor(3.)).dtype) self.assertIs(torch.float32, torch.arange(1, 3, 1.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16), torch.tensor(1., dtype=torch.float64)).dtype) self.assertIs(torch.int64, torch.arange(1, 3).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), 3).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16)).dtype) self.assertIs(torch.int64, torch.arange(1, 3, 1).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3), torch.tensor(1, dtype=torch.int16)).dtype) torch.set_default_dtype(saved_dtype) @staticmethod def _select_broadcastable_dims(dims_full=None): # select full dimensionality if dims_full is None: dims_full = [] ndims = random.randint(1, 4) dims_full = [random.randint(1, 8) for _ in range(ndims)] else: ndims = len(dims_full) # select actual dimensions for ops: # larger: full ndims, individual sizes may be reduced # smaller: possibly reduced ndims, sizes may be reduced smaller_ndims = random.randint(1, ndims) dims_small = [] dims_large = [] for i in range(ndims - 1, -1, -1): j = random.randint(1, 3) if j == 1: # no reduced singleton dimension ds = dims_full[i] dl = dims_full[i] elif j == 2: # larger may have reduced singleton dimension ds = dims_full[i] dl = 1 if len(dims_small) < smaller_ndims else dims_full[i] elif j == 3: # smaller may have reduced singleton dimension ds = 1 dl = dims_full[i] dims_large = [dl] + dims_large if len(dims_small) < smaller_ndims: dims_small = [ds] + dims_small return (dims_small, dims_large, dims_full) @staticmethod def _test_broadcast(self, cast): # all functions fns = { "dist", "atan2", "pow", "lerp", "add", "sub", "mul", "div", "fmod", "remainder", "eq", "ge", "gt", "le", "lt", "max", "min", "ne", "addcdiv", "addcmul", "masked_scatter", "masked_select", "masked_fill", "map", "map2", "copy" } # functions with three tensor arguments fns_3_args = {"addcdiv", "addcmul", "map2"} for fn in fns: (dims_small, dims_large, dims_full) = self._select_broadcastable_dims() small = cast(torch.randn(*dims_small).float()) large = cast(torch.randn(*dims_large).float()) small_expanded = small.expand(*dims_full) large_expanded = large.expand(*dims_full) small2 = None small2_expanded = None if fn in fns_3_args: # create another smaller tensor (dims_small2, _, _) = self._select_broadcastable_dims(dims_full) small2 = cast(torch.randn(*dims_small2).float()) small2_expanded = small2.expand(*dims_full) if small.is_cuda and fn in ['map', 'map2']: # map and map2 are not implementd on CUDA tensors continue # TODO: fix masked_scatter and masked_fill broadcasting if hasattr(large_expanded, fn) and fn not in ['masked_scatter', 'masked_fill']: # run through tensor versions of functions # and verify fully expanded inputs give same results expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded} def tensorfn(myfn, t1, t2): if fn == "lerp": return myfn(t1, 0.5) elif fn == "masked_select": return myfn(t1 < 0) elif fn in fns_3_args: return myfn(1, t1, t2) else: return myfn(t1) # test various orders for first, second, third in [(large, small, small2), (small, large, small2), (small2, small, large), (small2, large, small)]: if first is None: break # ignore last iter when small2 is None method_expanded = getattr(expanded[first], fn) method = getattr(first, fn) r1 = tensorfn(method_expanded, expanded[second], expanded[third]) r2 = tensorfn(method, second, third) self.assertEqual(r1, r2) # now for torch. versions of functions if hasattr(torch, fn): fntorch = getattr(torch, fn) expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded} def torchfn(t1, t2, t3): if fn == "lerp": return fntorch(t1, t2, 0.5) elif fn == "masked_select": return fntorch(t1, t2 < 0) elif fn == "masked_scatter": return fntorch(t1, t2 < 0.5, cast(torch.arange(1, t1.nelement() + 1).float())) elif fn == "masked_fill": return fntorch(t1, t2 < 0.5, 1.0) elif fn in fns_3_args: return fntorch(t1, 1.0, t2, t3) else: return fntorch(t1, t2) # test various orders for first, second, third in [(large, small, small2), (small, large, small2), (small2, small, large), (small2, large, small)]: if first is None: break # ignore last iter when small2 is None r1 = torchfn(expanded[first], expanded[second], expanded[third]) r2 = torchfn(first, second, third) self.assertEqual(r1, r2) # now for in place functions # in-place tensor is not broadcastable; test only guaranteed # to work by broadcasting other argument(s) if not hasattr(large_expanded, fn + "_"): continue # need to clone largeExpanded so we can reuse, since functions are in-place large_expanded_clone = large_expanded.clone() def tensorfn_inplace(t0, t1, t2=None): t0_fn = getattr(t0, fn + "_") if fn == "lerp": return t0_fn(t1, 0.5) elif fn == "masked_scatter": return t0_fn(t1 < 0.5, cast(torch.arange(1, t0.nelement() + 1).float())) elif fn == "masked_fill": return t0_fn(t1 < 0.5, 1.0) elif fn == "map": return t0_fn(t1, lambda x, y: x + y) elif fn == "map2": return t0_fn(t1, t2, lambda x, y, z: x + y + z) elif fn in fns_3_args: return t0_fn(1.0, t1, t2) else: return t0_fn(t1) r1 = tensorfn_inplace(large_expanded, small_expanded, small2_expanded) r2 = tensorfn_inplace(large_expanded_clone, small, small2) # in-place pointwise operations don't actually work if the in-place # tensor is 0-strided (numpy has the same issue) if (0 not in large_expanded.stride() and 0 not in large_expanded_clone.stride()): self.assertEqual(r1, r2) def broadcastable(t0, t1, t2=None): try: t1.expand_as(t0) if t2 is not None: t2.expand_as(t0) except RuntimeError: return False return True def _test_in_place_broadcastable(t0, t1, t2=None): if not broadcastable(t0, t1, t2): same_size = t0.numel() == t1.numel() and (t0.numel() == t2.numel() if t2 is not None else True) if not same_size: self.assertRaises(RuntimeError, lambda: tensorfn_inplace(t0, t1, t2)) else: tensorfn_inplace(t0, t1, t2) if fn not in fns_3_args: _test_in_place_broadcastable(small, large_expanded) _test_in_place_broadcastable(small, large) else: _test_in_place_broadcastable(small2, small_expanded, large_expanded) _test_in_place_broadcastable(small2, small, large) def test_broadcast(self): self._test_broadcast(self, lambda t: t) @staticmethod def _test_contiguous(self, cast): x = cast(torch.randn(1, 16, 5, 5)) self.assertTrue(x.is_contiguous()) stride = list(x.stride()) stride[0] = 20 # change the stride in dimension 0. the tensor is still contiguous because size[0] is 1 x.set_(x.storage(), 0, x.size(), stride) self.assertTrue(x.is_contiguous()) def test_contiguous(self): return self._test_contiguous(self, lambda t: t) def test_empty_tensor_props(self): sizes = [(0,)] if torch._C._use_zero_size_dim(): sizes += [(0, 3), (5, 0), (5, 0, 3, 0, 2), (0, 3, 0, 2), (0, 5, 0, 2, 0)] devices = ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda'] for size in sizes: for device in devices: x = torch.empty(tuple(size), device=device) self.assertEqual(size, x.shape) self.assertTrue(x.is_contiguous()) size_ones_instead_of_zeros = (x if x != 0 else 1 for x in size) y = torch.empty(tuple(size_ones_instead_of_zeros), device=device) self.assertEqual(x.stride(), y.stride()) def test_scalars_as_floats(self): "zero-dim variables that don't require grad should bind to scalar arguments" x = torch.tensor(2.) y = torch.tensor(3.) # 3 + (3 * 3) * 2 self.assertEqual(y.addcmul(y, y, value=x), 21) x = torch.tensor(2., requires_grad=True) self.assertRaises(Exception, lambda: y.addcmul(y, y, value=x)) @staticmethod def _test_broadcast_fused_matmul(self, cast): fns = ["baddbmm", "addbmm", "addmm", "addmv", "addr"] for fn in fns: batch_dim = random.randint(1, 8) n_dim = random.randint(1, 8) m_dim = random.randint(1, 8) p_dim = random.randint(1, 8) def dims_full_for_fn(): if fn == "baddbmm": return ([batch_dim, n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim]) elif fn == "addbmm": return ([n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim]) elif fn == "addmm": return ([n_dim, p_dim], [n_dim, m_dim], [m_dim, p_dim]) elif fn == "addmv": return ([n_dim], [n_dim, m_dim], [m_dim]) elif fn == "addr": return ([n_dim, m_dim], [n_dim], [m_dim]) else: raise AssertionError("unknown function") (t0_dims_full, t1_dims, t2_dims) = dims_full_for_fn() (t0_dims_small, _, _) = self._select_broadcastable_dims(t0_dims_full) t0_small = cast(torch.randn(*t0_dims_small).float()) t1 = cast(torch.randn(*t1_dims).float()) t2 = cast(torch.randn(*t2_dims).float()) t0_full = cast(t0_small.expand(*t0_dims_full)) fntorch = getattr(torch, fn) r0 = fntorch(t0_small, t1, t2) r1 = fntorch(t0_full, t1, t2) self.assertEqual(r0, r1) def test_broadcast_fused_matmul(self): self._test_broadcast_fused_matmul(self, lambda t: t) @staticmethod def _test_broadcast_batched_matmul(self, cast): n_dim = random.randint(1, 8) m_dim = random.randint(1, 8) p_dim = random.randint(1, 8) full_batch_dims = [random.randint(1, 3) for i in range(random.randint(1, 3))] (batch_dims_small, _, _) = self._select_broadcastable_dims(full_batch_dims) def verify_batched_matmul(full_lhs, one_dimensional): if not one_dimensional: lhs_dims = [n_dim, m_dim] rhs_dims = [m_dim, p_dim] result_dims = [n_dim, p_dim] else: lhs_dims = [n_dim, m_dim] if full_lhs else [m_dim] rhs_dims = [m_dim, p_dim] if not full_lhs else [m_dim] result_dims = [n_dim] if full_lhs else [p_dim] lhs_mat_dims = lhs_dims if len(lhs_dims) != 1 else [1, m_dim] rhs_mat_dims = rhs_dims if len(rhs_dims) != 1 else [m_dim, 1] full_mat_dims = lhs_mat_dims if full_lhs else rhs_mat_dims dim0_dims = rhs_dims if full_lhs else lhs_dims small_dims = batch_dims_small + (rhs_mat_dims if full_lhs else lhs_mat_dims) small = cast(torch.randn(*(small_dims)).float()) dim0 = cast(torch.randn(*(dim0_dims)).float()) full = cast(torch.randn(*(full_batch_dims + full_mat_dims)).float()) if not one_dimensional: (lhsTensors, rhsTensors) = ((full,), (small, dim0)) if full_lhs else ((small, dim0), (full,)) else: (lhsTensors, rhsTensors) = ((full,), (dim0,)) if full_lhs else ((dim0,), (full,)) def maybe_squeeze_result(l, r, result): if len(lhs_dims) == 1 and l.dim() != 1: return result.squeeze(-2) elif len(rhs_dims) == 1 and r.dim() != 1: return result.squeeze(-1) else: return result for lhs in lhsTensors: lhs_expanded = lhs.expand(*(torch.Size(full_batch_dims) + torch.Size(lhs_mat_dims))) lhs_expanded_matmul_fn = getattr(lhs_expanded, "matmul") for rhs in rhsTensors: rhs_expanded = ((rhs if len(rhs_dims) != 1 else rhs.unsqueeze(-1)). expand(*(torch.Size(full_batch_dims) + torch.Size(rhs_mat_dims)))) truth = maybe_squeeze_result(lhs_expanded, rhs_expanded, lhs_expanded_matmul_fn(rhs_expanded)) for l in (lhs, lhs_expanded): for r in (rhs, rhs_expanded): l_matmul_fn = getattr(l, "matmul") result = maybe_squeeze_result(l, r, l_matmul_fn(r)) self.assertEqual(truth, result) # test torch.matmul function as well torch_result = maybe_squeeze_result(l, r, torch.matmul(l, r)) self.assertEqual(truth, torch_result) # test torch.matmul with out out = torch.zeros_like(torch_result) torch.matmul(l, r, out=out) self.assertEqual(truth, maybe_squeeze_result(l, r, out)) # compare to bmm bmm_result = (torch.bmm(lhs_expanded.contiguous().view(-1, *lhs_mat_dims), rhs_expanded.contiguous().view(-1, *rhs_mat_dims))) self.assertEqual(truth.view(-1, *result_dims), bmm_result.view(-1, *result_dims)) for indices in product((True, False), repeat=2): verify_batched_matmul(*indices) def test_broadcast_batched_matmul(self): self._test_broadcast_batched_matmul(self, lambda t: t) def test_copy_broadcast(self): torch.zeros(5, 6).copy_(torch.zeros(6)) self.assertRaises(RuntimeError, lambda: torch.zeros(5, 6).copy_(torch.zeros(30))) def test_randperm(self): _RNGState = torch.get_rng_state() res1 = torch.randperm(100) res2 = torch.LongTensor() torch.set_rng_state(_RNGState) torch.randperm(100, out=res2) self.assertEqual(res1, res2, 0) # randperm of 0 elements is an empty tensor res1 = torch.randperm(0) res2 = torch.LongTensor(5) torch.randperm(0, out=res2) self.assertEqual(res1.numel(), 0) self.assertEqual(res2.numel(), 0) def test_random(self): # This test is flaky with p<=(2/(ub-lb))^200=6e-36 t = torch.FloatTensor(200) lb = 1 ub = 4 t.fill_(-1) t.random_(lb, ub) self.assertEqual(t.min(), lb) self.assertEqual(t.max(), ub - 1) t.fill_(-1) t.random_(ub) self.assertEqual(t.min(), 0) self.assertEqual(t.max(), ub - 1) @staticmethod def _test_random_neg_values(self, use_cuda=False): signed_types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor', 'torch.IntTensor', 'torch.ShortTensor'] for tname in signed_types: res = torch.rand(SIZE, SIZE).type(tname) if use_cuda: res = res.cuda() res.random_(-10, -1) self.assertLessEqual(res.max().item(), 9) self.assertGreaterEqual(res.min().item(), -10) def test_random_neg_values(self): self._test_random_neg_values(self) def assertIsOrdered(self, order, x, mxx, ixx, task): SIZE = 4 if order == 'descending': def check_order(a, b): return a >= b elif order == 'ascending': def check_order(a, b): return a <= b else: error('unknown order "{}", must be "ascending" or "descending"'.format(order)) are_ordered = True for j, k in product(range(SIZE), range(1, SIZE)): self.assertTrue(check_order(mxx[j][k - 1], mxx[j][k]), 'torch.sort ({}) values unordered for {}'.format(order, task)) seen = set() indicesCorrect = True size = x.size(x.dim() - 1) for k in range(size): seen.clear() for j in range(size): self.assertEqual(x[k][ixx[k][j]], mxx[k][j], 'torch.sort ({}) indices wrong for {}'.format(order, task)) seen.add(ixx[k][j]) self.assertEqual(len(seen), size) def test_sort(self): SIZE = 4 x = torch.rand(SIZE, SIZE) res1val, res1ind = torch.sort(x) # Test use of result tensor res2val = torch.Tensor() res2ind = torch.LongTensor() torch.sort(x, out=(res2val, res2ind)) self.assertEqual(res1val, res2val, 0) self.assertEqual(res1ind, res2ind, 0) # Test sorting of random numbers self.assertIsOrdered('ascending', x, res2val, res2ind, 'random') # Test simple sort self.assertEqual( torch.sort(torch.Tensor((50, 40, 30, 20, 10)))[0], torch.Tensor((10, 20, 30, 40, 50)), 0 ) # Test that we still have proper sorting with duplicate keys x = torch.floor(torch.rand(SIZE, SIZE) * 10) torch.sort(x, out=(res2val, res2ind)) self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with duplicate keys') # DESCENDING SORT x = torch.rand(SIZE, SIZE) res1val, res1ind = torch.sort(x, x.dim() - 1, True) # Test use of result tensor res2val = torch.Tensor() res2ind = torch.LongTensor() torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind)) self.assertEqual(res1val, res2val, 0) self.assertEqual(res1ind, res2ind, 0) # Test sorting of random numbers self.assertIsOrdered('descending', x, res2val, res2ind, 'random') # Test simple sort task self.assertEqual( torch.sort(torch.Tensor((10, 20, 30, 40, 50)), 0, True)[0], torch.Tensor((50, 40, 30, 20, 10)), 0 ) # Test that we still have proper sorting with duplicate keys self.assertIsOrdered('descending', x, res2val, res2ind, 'random with duplicate keys') def test_topk(self): def topKViaSort(t, k, dim, dir): sorted, indices = t.sort(dim, dir) return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k) def compareTensors(t, res1, ind1, res2, ind2, dim): # Values should be exactly equivalent self.assertEqual(res1, res2, 0) # Indices might differ based on the implementation, since there is # no guarantee of the relative order of selection if not ind1.eq(ind2).all(): # To verify that the indices represent equivalent elements, # gather from the input using the topk indices and compare against # the sort indices vals = t.gather(dim, ind2) self.assertEqual(res1, vals, 0) def compare(t, k, dim, dir): topKVal, topKInd = t.topk(k, dim, dir, True) sortKVal, sortKInd = topKViaSort(t, k, dim, dir) compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim) t = torch.rand(random.randint(1, SIZE), random.randint(1, SIZE), random.randint(1, SIZE)) for _kTries in range(3): for _dimTries in range(3): for transpose in (True, False): for dir in (True, False): testTensor = t if transpose: dim1 = random.randrange(t.ndimension()) dim2 = dim1 while dim1 == dim2: dim2 = random.randrange(t.ndimension()) testTensor = t.transpose(dim1, dim2) dim = random.randrange(testTensor.ndimension()) k = random.randint(1, testTensor.size(dim)) compare(testTensor, k, dim, dir) def test_topk_arguments(self): q = torch.randn(10, 2, 10) # Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1) self.assertRaises(TypeError, lambda: q.topk(4, True)) def test_kthvalue(self): SIZE = 50 x = torch.rand(SIZE, SIZE, SIZE) x0 = x.clone() k = random.randint(1, SIZE) res1val, res1ind = torch.kthvalue(x, k, keepdim=False) res2val, res2ind = torch.sort(x) self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0) self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0) # test use of result tensors k = random.randint(1, SIZE) res1val = torch.Tensor() res1ind = torch.LongTensor() torch.kthvalue(x, k, keepdim=False, out=(res1val, res1ind)) res2val, res2ind = torch.sort(x) self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0) self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0) # test non-default dim k = random.randint(1, SIZE) res1val, res1ind = torch.kthvalue(x, k, 0, keepdim=False) res2val, res2ind = torch.sort(x, 0) self.assertEqual(res1val, res2val[k - 1], 0) self.assertEqual(res1ind, res2ind[k - 1], 0) # non-contiguous y = x.narrow(1, 0, 1) y0 = y.contiguous() k = random.randint(1, SIZE) res1val, res1ind = torch.kthvalue(y, k) res2val, res2ind = torch.kthvalue(y0, k) self.assertEqual(res1val, res2val, 0) self.assertEqual(res1ind, res2ind, 0) # check that the input wasn't modified self.assertEqual(x, x0, 0) # simple test case (with repetitions) y = torch.Tensor((3, 5, 4, 1, 1, 5)) self.assertEqual(torch.kthvalue(y, 3)[0], 3, 0) self.assertEqual(torch.kthvalue(y, 2)[0], 1, 0) def test_median(self): for size in (155, 156): x = torch.rand(size, size) x0 = x.clone() nelem = x.nelement() res1val = torch.median(x) res2val, _ = torch.sort(x.view(nelem)) ind = int(math.floor((nelem + 1) / 2) - 1) self.assertEqual(res2val[ind], res1val, 0) res1val, res1ind = torch.median(x, dim=1, keepdim=False) res2val, res2ind = torch.sort(x) ind = int(math.floor((size + 1) / 2) - 1) self.assertEqual(res2val.select(1, ind), res1val, 0) self.assertEqual(res2val.select(1, ind), res1val, 0) # Test use of result tensor res2val = torch.Tensor() res2ind = torch.LongTensor() torch.median(x, dim=-1, keepdim=False, out=(res2val, res2ind)) self.assertEqual(res2val, res1val, 0) self.assertEqual(res2ind, res1ind, 0) # Test non-default dim res1val, res1ind = torch.median(x, 0, keepdim=False) res2val, res2ind = torch.sort(x, 0) self.assertEqual(res1val, res2val[ind], 0) self.assertEqual(res1ind, res2ind[ind], 0) # input unchanged self.assertEqual(x, x0, 0) def test_mode(self): x = torch.arange(1., SIZE * SIZE + 1).clone().resize_(SIZE, SIZE) x[:2] = 1 x[:, :2] = 1 x0 = x.clone() # Pre-calculated results. res1val = torch.Tensor(SIZE).fill_(1) # The indices are the position of the last appearance of the mode element. res1ind = torch.LongTensor(SIZE).fill_(1) res1ind[0] = SIZE - 1 res1ind[1] = SIZE - 1 res2val, res2ind = torch.mode(x, keepdim=False) self.assertEqual(res1val, res2val, 0) self.assertEqual(res1ind, res2ind, 0) # Test use of result tensor res2val = torch.Tensor() res2ind = torch.LongTensor() torch.mode(x, keepdim=False, out=(res2val, res2ind)) self.assertEqual(res1val, res2val, 0) self.assertEqual(res1ind, res2ind, 0) # Test non-default dim res2val, res2ind = torch.mode(x, 0, False) self.assertEqual(res1val, res2val, 0) self.assertEqual(res1ind, res2ind, 0) # input unchanged self.assertEqual(x, x0, 0) def test_tril(self): x = torch.rand(SIZE, SIZE) res1 = torch.tril(x) res2 = torch.Tensor() torch.tril(x, out=res2) self.assertEqual(res1, res2, 0) def test_triu(self): x = torch.rand(SIZE, SIZE) res1 = torch.triu(x) res2 = torch.Tensor() torch.triu(x, out=res2) self.assertEqual(res1, res2, 0) def test_cat(self): SIZE = 10 for dim in range(-3, 3): pos_dim = dim if dim >= 0 else 3 + dim x = torch.rand(13, SIZE, SIZE).transpose(0, pos_dim) y = torch.rand(17, SIZE, SIZE).transpose(0, pos_dim) z = torch.rand(19, SIZE, SIZE).transpose(0, pos_dim) res1 = torch.cat((x, y, z), dim) self.assertEqual(res1.narrow(pos_dim, 0, 13), x, 0) self.assertEqual(res1.narrow(pos_dim, 13, 17), y, 0) self.assertEqual(res1.narrow(pos_dim, 30, 19), z, 0) x = torch.randn(20, SIZE, SIZE) self.assertEqual(torch.cat(torch.split(x, 7)), x) self.assertEqual(torch.cat(torch.chunk(x, 7)), x) y = torch.randn(1, SIZE, SIZE) z = torch.cat([x, y]) self.assertEqual(z.size(), (21, SIZE, SIZE)) self.assertRaises(RuntimeError, lambda: torch.cat([])) def test_cat_bad_input_sizes(self): x = torch.randn(2, 1) y = torch.randn(2, 1, 1) z = torch.randn(2, 1, 1) self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z])) x = torch.randn(2, 1, 2) y = torch.randn(2, 1, 1) z = torch.randn(2, 2, 1) self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z], dim=1)) def test_cat_scalars(self): x = torch.tensor(0) y = torch.tensor(1) with self.assertRaisesRegex(RuntimeError, 'zero-dimensional.*cannot be concatenated'): torch.cat([x, y]) @staticmethod def _test_cat_empty_legacy(self, use_cuda=False): # FIXME: this is legacy behavior and should be removed # when we support empty tensors with arbitrary sizes dtype = torch.float32 device = 'cuda' if use_cuda else 'cpu' x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) empty = torch.randn((0,), dtype=dtype, device=device) res1 = torch.cat([x, empty], dim=1) res2 = torch.cat([empty, x], dim=1) self.assertEqual(res1, res2) conv = torch.nn.Conv2d(3, 3, kernel_size=1).float() if use_cuda: conv = conv.cuda() res1 = torch.cat([conv(x), empty], dim=1) res2 = torch.cat([empty, conv(x)], dim=1) self.assertEqual(res1, res2) res1 = torch.cat([empty, empty], dim=1) self.assertEqual(res1, empty) with self.assertRaisesRegex(RuntimeError, 'expected a non-empty list of Tensors'): torch.cat([], dim=1) def test_cat_empty_legacy(self): self._test_cat_empty_legacy(self) @staticmethod def _test_cat_empty(self, use_cuda=False): if not torch._C._use_zero_size_dim(): return dtype = torch.float32 device = 'cuda' if use_cuda else 'cpu' x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) empty = torch.randn((4, 0, 32, 32), dtype=dtype, device=device) res1 = torch.cat([x, empty], dim=1) res2 = torch.cat([empty, x], dim=1) self.assertEqual(res1, res2) conv = torch.nn.Conv2d(3, 3, kernel_size=1).float() if use_cuda: conv = conv.cuda() res1 = torch.cat([conv(x), empty], dim=1) res2 = torch.cat([empty, conv(x)], dim=1) self.assertEqual(res1, res2) res1 = torch.cat([empty, empty], dim=1) self.assertEqual(res1, empty) # check non-legacy-behavior (sizes don't match) empty = torch.randn((4, 0, 31, 32), dtype=dtype, device=device) self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1)) self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1)) # check non-legacy-behavior (dimensions don't match) empty = torch.randn((4, 0), dtype=dtype, device=device) self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1)) self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1)) def test_cat_empty(self): self._test_cat_empty(self) def test_narrow_empty(self): if not torch._C._use_zero_size_dim(): return devices = ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda'] for device in devices: x = torch.randn(2, 3, 4, device=device) for d in range(x.dim()): y = x.narrow(d, x.size(d), 0) sz = list(x.size()) sz[d] = 0 self.assertEqual(sz, y.size()) def test_stack(self): x = torch.rand(2, 3, 4) y = torch.rand(2, 3, 4) z = torch.rand(2, 3, 4) for dim in range(4): res = torch.stack((x, y, z), dim) res_neg = torch.stack((x, y, z), dim - 4) expected_size = x.size()[:dim] + (3,) + x.size()[dim:] self.assertEqual(res, res_neg) self.assertEqual(res.size(), expected_size) self.assertEqual(res.select(dim, 0), x, 0) self.assertEqual(res.select(dim, 1), y, 0) self.assertEqual(res.select(dim, 2), z, 0) def test_stack_out(self): x = torch.rand(2, 3, 4) y = torch.rand(2, 3, 4) z = torch.rand(2, 3, 4) for dim in range(4): expected_size = x.size()[:dim] + (3,) + x.size()[dim:] res_out = x.new(expected_size) res_neg_out = x.new(expected_size) res_out_dp = res_out.data_ptr() res_out_neg_dp = res_neg_out.data_ptr() torch.stack((x, y, z), dim, out=res_out) torch.stack((x, y, z), dim - 4, out=res_neg_out) self.assertEqual(res_out, res_neg_out) self.assertEqual(res_out.size(), expected_size) self.assertEqual(res_out_dp, res_out.data_ptr()) self.assertEqual(res_out_neg_dp, res_neg_out.data_ptr()) self.assertEqual(res_out.select(dim, 0), x, 0) self.assertEqual(res_out.select(dim, 1), y, 0) self.assertEqual(res_out.select(dim, 2), z, 0) def test_unbind(self): x = torch.rand(2, 3, 4, 5) for dim in range(4): res = torch.unbind(x, dim) self.assertEqual(x.size(dim), len(res)) for i in range(dim): self.assertEqual(x.select(dim, i), res[i]) def test_linspace(self): _from = random.random() to = _from + random.random() res1 = torch.linspace(_from, to, 137) res2 = torch.Tensor() torch.linspace(_from, to, 137, out=res2) self.assertEqual(res1, res2, 0) self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, 1)) self.assertEqual(torch.linspace(0, 0, 1), torch.zeros(1), 0) # Check linspace for generating with start > end. self.assertEqual(torch.linspace(2, 0, 3), torch.Tensor((2, 1, 0)), 0) # Check linspace for non-contiguous tensors. x = torch.zeros(2, 3) y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2)) self.assertEqual(x, torch.Tensor(((0, 0, 1), (0, 2, 3))), 0) def test_logspace(self): _from = random.random() to = _from + random.random() res1 = torch.logspace(_from, to, 137) res2 = torch.Tensor() torch.logspace(_from, to, 137, out=res2) self.assertEqual(res1, res2, 0) self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, 1)) self.assertEqual(torch.logspace(0, 0, 1), torch.ones(1), 0) # Check logspace_ for generating with start > end. self.assertEqual(torch.logspace(1, 0, 2), torch.Tensor((10, 1)), 0) # Check logspace_ for non-contiguous tensors. x = torch.zeros(2, 3) y = torch.logspace(0, 3, 4, out=x.narrow(1, 1, 2)) self.assertEqual(x, torch.Tensor(((0, 1, 10), (0, 100, 1000))), 0) def test_rand(self): torch.manual_seed(123456) res1 = torch.rand(SIZE, SIZE) res2 = torch.Tensor() torch.manual_seed(123456) torch.rand(SIZE, SIZE, out=res2) self.assertEqual(res1, res2) def test_randint(self): torch.manual_seed(123456) res1 = torch.randint(0, 6, (SIZE, SIZE)) res2 = torch.Tensor() torch.manual_seed(123456) torch.randint(0, 6, (SIZE, SIZE), out=res2) torch.manual_seed(123456) res3 = torch.randint(6, (SIZE, SIZE)) res4 = torch.Tensor() torch.manual_seed(123456) torch.randint(6, (SIZE, SIZE), out=res4) self.assertEqual(res1, res2) self.assertEqual(res1, res3) self.assertEqual(res1, res4) self.assertEqual(res2, res3) self.assertEqual(res2, res4) self.assertEqual(res3, res4) res1 = res1.view(-1) high = (res1 < 6).type(torch.LongTensor) low = (res1 >= 0).type(torch.LongTensor) tensorSize = res1.size()[0] assert(tensorSize == high.sum()) assert(tensorSize == low.sum()) def test_randn(self): torch.manual_seed(123456) res1 = torch.randn(SIZE, SIZE) res2 = torch.Tensor() torch.manual_seed(123456) torch.randn(SIZE, SIZE, out=res2) self.assertEqual(res1, res2) def test_slice(self): empty = torch.Tensor() x = torch.arange(0., 16).view(4, 4) self.assertEqual(x[:], x) self.assertEqual(x[:4], x) # start and stop are clamped to the size of dim self.assertEqual(x[:5], x) # if start >= stop then the result is empty self.assertEqual(x[2:1], empty) self.assertEqual(x[2:2], empty) # out of bounds is also empty self.assertEqual(x[10:12], empty) # additional correctness checks self.assertEqual(x[:1].data.tolist(), [[0, 1, 2, 3]]) self.assertEqual(x[:-3].data.tolist(), [[0, 1, 2, 3]]) self.assertEqual(x[:, -2:3].data.tolist(), [[2], [6], [10], [14]]) self.assertEqual(x[0:-1:2].data.tolist(), [[0, 1, 2, 3], [8, 9, 10, 11]]) def test_is_signed(self): self.assertEqual(torch.IntTensor(5).is_signed(), True) self.assertEqual(torch.ByteTensor(5).is_signed(), False) self.assertEqual(torch.CharTensor(5).is_signed(), True) self.assertEqual(torch.FloatTensor(5).is_signed(), True) self.assertEqual(torch.HalfTensor(10).is_signed(), True) @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') def test_is_signed_cuda(self): self.assertEqual(torch.cuda.IntTensor(5).is_signed(), True) self.assertEqual(torch.cuda.ByteTensor(5).is_signed(), False) self.assertEqual(torch.cuda.CharTensor(5).is_signed(), True) self.assertEqual(torch.cuda.FloatTensor(5).is_signed(), True) self.assertEqual(torch.cuda.HalfTensor(10).is_signed(), True) @skipIfNoLapack def test_gesv(self): a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23), (-6.05, -3.30, 5.36, -4.44, 1.08), (-0.45, 2.58, -2.70, 0.27, 9.04), (8.32, 2.71, 4.35, -7.17, 2.14), (-9.67, -5.14, -7.26, 6.08, -6.87))).t() b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03), (-1.56, 4.00, -8.67, 1.75, 2.86), (9.81, -4.09, -4.57, -8.61, 8.99))).t() res1 = torch.gesv(b, a)[0] self.assertLessEqual(b.dist(torch.mm(a, res1)), 1e-12) ta = torch.Tensor() tb = torch.Tensor() res2 = torch.gesv(b, a, out=(tb, ta))[0] res3 = torch.gesv(b, a, out=(b, a))[0] self.assertEqual(res1, tb) self.assertEqual(res1, b) self.assertEqual(res1, res2) self.assertEqual(res1, res3) # test reuse res1 = torch.gesv(b, a)[0] ta = torch.Tensor() tb = torch.Tensor() torch.gesv(b, a, out=(tb, ta))[0] self.assertEqual(res1, tb) torch.gesv(b, a, out=(tb, ta))[0] self.assertEqual(res1, tb) @staticmethod def _test_gesv_batched(self, cast): # test against gesv: one batch A = cast(torch.randn(1, 5, 5)) b = cast(torch.randn(1, 5, 10)) x_exp, LU_exp = torch.gesv(b.squeeze(0), A.squeeze(0)) x, LU = torch.gesv(b, A) self.assertEqual(x, x_exp.unsqueeze(0)) self.assertEqual(LU, LU_exp.unsqueeze(0)) # test against gesv in a loop: four batches A = cast(torch.randn(4, 5, 5)) b = cast(torch.randn(4, 5, 10)) x_exp_list = list() LU_exp_list = list() for i in range(4): x_exp, LU_exp = torch.gesv(b[i], A[i]) x_exp_list.append(x_exp) LU_exp_list.append(LU_exp) x_exp = torch.stack(x_exp_list) LU_exp = torch.stack(LU_exp_list) x, LU = torch.gesv(b, A) self.assertEqual(x, x_exp) self.assertEqual(LU, LU_exp) # basic correctness test A = cast(torch.randn(3, 5, 5)) b = cast(torch.randn(3, 5, 10)) x, LU = torch.gesv(b, A) self.assertEqual(torch.matmul(A, x), b) # Test non-contiguous inputs. if not TEST_NUMPY: return import numpy from numpy.linalg import solve A = cast(torch.randn(2, 2, 2)).permute(1, 0, 2) b = cast(torch.randn(2, 2, 2)).permute(2, 1, 0) x, _ = torch.gesv(b, A) x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())) self.assertEqual(x.data, cast(x_exp)) @skipIfNoLapack def test_gesv_batched(self): self._test_gesv_batched(self, lambda t: t) @staticmethod def _test_gesv_batched_dims(self, cast): if not TEST_NUMPY: return import numpy from numpy.linalg import solve # test against numpy.linalg.solve A = cast(torch.randn(2, 1, 3, 4, 4)) b = cast(torch.randn(2, 1, 3, 4, 6)) x, _ = torch.gesv(b, A) x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())) self.assertEqual(x.data, cast(x_exp)) # test column major format A = cast(torch.randn(2, 1, 3, 4, 4)).transpose(-2, -1) b = cast(torch.randn(2, 1, 3, 6, 4)).transpose(-2, -1) assert not A.is_contiguous() assert not b.is_contiguous() x, _ = torch.gesv(b, A) x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())) self.assertEqual(x.data, cast(x_exp)) # broadcasting b A = cast(torch.randn(2, 1, 3, 4, 4)) b = cast(torch.randn(4, 6)) x, _ = torch.gesv(b, A) x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())) self.assertEqual(x.data, cast(x_exp)) # broadcasting A A = cast(torch.randn(4, 4)) b = cast(torch.randn(2, 1, 3, 4, 2)) x, _ = torch.gesv(b, A) x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())) self.assertEqual(x.data, cast(x_exp)) # broadcasting both A & b A = cast(torch.randn(1, 3, 1, 4, 4)) b = cast(torch.randn(2, 1, 3, 4, 5)) x, _ = torch.gesv(b, A) x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())) self.assertEqual(x.data, cast(x_exp)) @skipIfNoLapack def test_gesv_batched_dims(self): self._test_gesv_batched_dims(self, lambda t: t) @skipIfNoLapack def test_qr(self): # Since the QR decomposition is unique only up to the signs of the rows of # R, we must ensure these are positive before doing the comparison. def canonicalize(q, r): d = r.diag().sign().diag() return torch.mm(q, d), torch.mm(d, r) def canon_and_check(q, r, expected_q, expected_r): q_canon, r_canon = canonicalize(q, r) expected_q_canon, expected_r_canon = canonicalize(expected_q, expected_r) self.assertEqual(q_canon, expected_q_canon) self.assertEqual(r_canon, expected_r_canon) def check_qr(a, expected_q, expected_r): # standard invocation q, r = torch.qr(a) canon_and_check(q, r, expected_q, expected_r) # in-place q, r = torch.Tensor(), torch.Tensor() torch.qr(a, out=(q, r)) canon_and_check(q, r, expected_q, expected_r) # manually calculate qr using geqrf and orgqr m = a.size(0) n = a.size(1) k = min(m, n) result, tau = torch.geqrf(a) self.assertEqual(result.size(0), m) self.assertEqual(result.size(1), n) self.assertEqual(tau.size(0), k) r = torch.triu(result.narrow(0, 0, k)) q = torch.orgqr(result, tau) q, r = q.narrow(1, 0, k), r canon_and_check(q, r, expected_q, expected_r) # check square case a = torch.Tensor(((1, 2, 3), (4, 5, 6), (7, 8, 10))) expected_q = torch.Tensor(( (-1.230914909793328e-01, 9.045340337332914e-01, 4.082482904638621e-01), (-4.923659639173310e-01, 3.015113445777629e-01, -8.164965809277264e-01), (-8.616404368553292e-01, -3.015113445777631e-01, 4.082482904638634e-01))) expected_r = torch.Tensor(( (-8.124038404635959e+00, -9.601136296387955e+00, -1.193987e+01), (0.000000000000000e+00, 9.045340337332926e-01, 1.507557e+00), (0.000000000000000e+00, 0.000000000000000e+00, 4.082483e-01))) check_qr(a, expected_q, expected_r) # check rectangular thin a = torch.Tensor(( (1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 13), )) expected_q = torch.Tensor(( (-0.0776150525706334, -0.833052161400748, 0.3651483716701106), (-0.3104602102825332, -0.4512365874254053, -0.1825741858350556), (-0.5433053679944331, -0.0694210134500621, -0.7302967433402217), (-0.7761505257063329, 0.3123945605252804, 0.5477225575051663) )) expected_r = torch.Tensor(( (-12.8840987267251261, -14.5916298832790581, -17.0753115655393231), (0, -1.0413152017509357, -1.770235842976589), (0, 0, 0.5477225575051664) )) check_qr(a, expected_q, expected_r) # check rectangular fat a = torch.Tensor(( (1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 13) )) expected_q = torch.Tensor(( (-0.0966736489045663, 0.907737593658436, 0.4082482904638653), (-0.4833682445228317, 0.3157348151855452, -0.8164965809277254), (-0.870062840141097, -0.2762679632873518, 0.4082482904638621) )) expected_r = torch.Tensor(( (-1.0344080432788603e+01, -1.1794185166357092e+01, -1.3244289899925587e+01, -1.5564457473635180e+01), (0.0000000000000000e+00, 9.4720444555662542e-01, 1.8944088911132546e+00, 2.5653453733825331e+00), (0.0000000000000000e+00, 0.0000000000000000e+00, 1.5543122344752192e-15, 4.0824829046386757e-01) )) check_qr(a, expected_q, expected_r) # check big matrix a = torch.randn(1000, 1000) q, r = torch.qr(a) a_qr = torch.mm(q, r) self.assertEqual(a, a_qr, prec=1e-3) @skipIfNoLapack def test_ormqr(self): mat1 = torch.randn(10, 10) mat2 = torch.randn(10, 10) q, r = torch.qr(mat1) m, tau = torch.geqrf(mat1) res1 = torch.mm(q, mat2) res2 = torch.ormqr(m, tau, mat2) self.assertEqual(res1, res2) res1 = torch.mm(mat2, q) res2 = torch.ormqr(m, tau, mat2, False) self.assertEqual(res1, res2) res1 = torch.mm(q.t(), mat2) res2 = torch.ormqr(m, tau, mat2, True, True) self.assertEqual(res1, res2) res1 = torch.mm(mat2, q.t()) res2 = torch.ormqr(m, tau, mat2, False, True) self.assertEqual(res1, res2) @staticmethod def _test_trtrs(self, cast): a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23), (-6.05, -3.30, 5.36, -4.44, 1.08), (-0.45, 2.58, -2.70, 0.27, 9.04), (8.32, 2.71, 4.35, -7.17, 2.14), (-9.67, -5.14, -7.26, 6.08, -6.87))).t() b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03), (-1.56, 4.00, -8.67, 1.75, 2.86), (9.81, -4.09, -4.57, -8.61, 8.99))).t() a = cast(a) b = cast(b) U = torch.triu(a) L = torch.tril(a) # solve Ux = b x = torch.trtrs(b, U)[0] self.assertLessEqual(b.dist(torch.mm(U, x)), 1e-12) x = torch.trtrs(b, U, True, False, False)[0] self.assertLessEqual(b.dist(torch.mm(U, x)), 1e-12) # solve Lx = b x = torch.trtrs(b, L, False)[0] self.assertLessEqual(b.dist(torch.mm(L, x)), 1e-12) x = torch.trtrs(b, L, False, False, False)[0] self.assertLessEqual(b.dist(torch.mm(L, x)), 1e-12) # solve U'x = b x = torch.trtrs(b, U, True, True)[0] self.assertLessEqual(b.dist(torch.mm(U.t(), x)), 1e-12) x = torch.trtrs(b, U, True, True, False)[0] self.assertLessEqual(b.dist(torch.mm(U.t(), x)), 1e-12) # solve U'x = b by manual transposition y = torch.trtrs(b, U.t(), False, False)[0] self.assertLessEqual(x.dist(y), 1e-12) # solve L'x = b x = torch.trtrs(b, L, False, True)[0] self.assertLessEqual(b.dist(torch.mm(L.t(), x)), 1e-12) x = torch.trtrs(b, L, False, True, False)[0] self.assertLessEqual(b.dist(torch.mm(L.t(), x)), 1e-12) # solve L'x = b by manual transposition y = torch.trtrs(b, L.t(), True, False)[0] self.assertLessEqual(x.dist(y), 1e-12) # test reuse res1 = torch.trtrs(b, a)[0] ta = cast(torch.Tensor()) tb = cast(torch.Tensor()) torch.trtrs(b, a, out=(tb, ta)) self.assertEqual(res1, tb, 0) tb.zero_() torch.trtrs(b, a, out=(tb, ta)) self.assertEqual(res1, tb, 0) @skipIfNoLapack def test_trtrs(self): self._test_trtrs(self, lambda t: t) @skipIfNoLapack def test_gels(self): def _test_underdetermined(a, b, expectedNorm): m = a.size()[0] n = a.size()[1] assert(m <= n) a_copy = a.clone() b_copy = b.clone() res1 = torch.gels(b, a)[0] self.assertEqual(a, a_copy, 0) self.assertEqual(b, b_copy, 0) self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8) ta = torch.Tensor() tb = torch.Tensor() res2 = torch.gels(b, a, out=(tb, ta))[0] self.assertEqual(a, a_copy, 0) self.assertEqual(b, b_copy, 0) self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8) res3 = torch.gels(b, a, out=(b, a))[0] self.assertEqual((torch.mm(a_copy, b) - b_copy).norm(), expectedNorm, 1e-8) self.assertEqual(res1, tb, 0) self.assertEqual(res1, b, 0) self.assertEqual(res1, res2, 0) self.assertEqual(res1, res3, 0) def _test_overdetermined(a, b, expectedNorm): m = a.size()[0] n = a.size()[1] assert(m > n) def check_norm(a, b, expected_norm, gels_result): # Checks |ax - b| and the residual info from the result n = a.size()[1] # The first n rows is the least square solution. # Rows n to m-1 contain residual information. x = gels_result[:n] resid_info = gels_result[n:] resid_norm = (torch.mm(a, x) - b).norm() self.assertEqual(resid_norm, expectedNorm, 1e-8) self.assertEqual(resid_info.norm(), resid_norm, 1e-8) a_copy = a.clone() b_copy = b.clone() res1 = torch.gels(b, a)[0] self.assertEqual(a, a_copy, 0) self.assertEqual(b, b_copy, 0) check_norm(a, b, expectedNorm, res1) ta = torch.Tensor() tb = torch.Tensor() res2 = torch.gels(b, a, out=(tb, ta))[0] self.assertEqual(a, a_copy, 0) self.assertEqual(b, b_copy, 0) check_norm(a, b, expectedNorm, res2) res3 = torch.gels(b, a, out=(b, a))[0] check_norm(a_copy, b_copy, expectedNorm, res3) self.assertEqual(res1, tb, 0) self.assertEqual(res1, b, 0) self.assertEqual(res1, res2, 0) self.assertEqual(res1, res3, 0) # basic test expectedNorm = 0 a = torch.Tensor(((1.44, -9.96, -7.55, 8.34), (-7.84, -0.28, 3.24, 8.09), (-4.39, -3.24, 6.27, 5.28), (4.53, 3.83, -6.64, 2.06))).t() b = torch.Tensor(((8.58, 8.26, 8.48, -5.28), (9.35, -4.43, -0.70, -0.26))).t() _test_underdetermined(a, b, expectedNorm) # test overderemined expectedNorm = 17.390200628863 a = torch.Tensor(((1.44, -9.96, -7.55, 8.34, 7.08, -5.45), (-7.84, -0.28, 3.24, 8.09, 2.52, -5.70), (-4.39, -3.24, 6.27, 5.28, 0.74, -1.19), (4.53, 3.83, -6.64, 2.06, -2.47, 4.70))).t() b = torch.Tensor(((8.58, 8.26, 8.48, -5.28, 5.72, 8.93), (9.35, -4.43, -0.70, -0.26, -7.36, -2.52))).t() _test_overdetermined(a, b, expectedNorm) # test underdetermined expectedNorm = 0 a = torch.Tensor(((1.44, -9.96, -7.55), (-7.84, -0.28, 3.24), (-4.39, -3.24, 6.27), (4.53, 3.83, -6.64))).t() b = torch.Tensor(((8.58, 8.26, 8.48), (9.35, -4.43, -0.70))).t() _test_underdetermined(a, b, expectedNorm) # test reuse expectedNorm = 0 a = torch.Tensor(((1.44, -9.96, -7.55, 8.34), (-7.84, -0.28, 3.24, 8.09), (-4.39, -3.24, 6.27, 5.28), (4.53, 3.83, -6.64, 2.06))).t() b = torch.Tensor(((8.58, 8.26, 8.48, -5.28), (9.35, -4.43, -0.70, -0.26))).t() ta = torch.Tensor() tb = torch.Tensor() torch.gels(b, a, out=(tb, ta)) self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8) torch.gels(b, a, out=(tb, ta)) self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8) torch.gels(b, a, out=(tb, ta)) self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8) @skipIfNoLapack def test_eig(self): a = torch.Tensor(((1.96, 0.00, 0.00, 0.00, 0.00), (-6.49, 3.80, 0.00, 0.00, 0.00), (-0.47, -6.39, 4.17, 0.00, 0.00), (-7.20, 1.50, -1.51, 5.70, 0.00), (-0.65, -6.34, 2.67, 1.80, -7.10))).t().contiguous() e = torch.eig(a)[0] ee, vv = torch.eig(a, True) te = torch.Tensor() tv = torch.Tensor() eee, vvv = torch.eig(a, True, out=(te, tv)) self.assertEqual(e, ee, 1e-12) self.assertEqual(ee, eee, 1e-12) self.assertEqual(ee, te, 1e-12) self.assertEqual(vv, vvv, 1e-12) self.assertEqual(vv, tv, 1e-12) # test reuse X = torch.randn(4, 4) X = torch.mm(X.t(), X) e, v = torch.zeros(4, 2), torch.zeros(4, 4) torch.eig(X, True, out=(e, v)) Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t()) self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong') self.assertFalse(v.is_contiguous(), 'V is contiguous') torch.eig(X, True, out=(e, v)) Xhat = torch.mm(v, torch.mm(e.select(1, 0).diag(), v.t())) self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong') self.assertFalse(v.is_contiguous(), 'V is contiguous') # test non-contiguous X = torch.randn(4, 4) X = torch.mm(X.t(), X) e = torch.zeros(4, 2, 2)[:, 1] v = torch.zeros(4, 2, 4)[:, 1] self.assertFalse(v.is_contiguous(), 'V is contiguous') self.assertFalse(e.is_contiguous(), 'E is contiguous') torch.eig(X, True, out=(e, v)) Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t()) self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong') @skipIfNoLapack def test_symeig(self): xval = torch.rand(100, 3) cov = torch.mm(xval.t(), xval) rese = torch.zeros(3) resv = torch.zeros(3, 3) # First call to symeig self.assertTrue(resv.is_contiguous(), 'resv is not contiguous') torch.symeig(cov.clone(), True, out=(rese, resv)) ahat = torch.mm(torch.mm(resv, torch.diag(rese)), resv.t()) self.assertEqual(cov, ahat, 1e-8, 'VeV\' wrong') # Second call to symeig self.assertFalse(resv.is_contiguous(), 'resv is contiguous') torch.symeig(cov.clone(), True, out=(rese, resv)) ahat = torch.mm(torch.mm(resv, torch.diag(rese)), resv.t()) self.assertEqual(cov, ahat, 1e-8, 'VeV\' wrong') # test non-contiguous X = torch.rand(5, 5) X = X.t() * X e = torch.zeros(4, 2).select(1, 1) v = torch.zeros(4, 2, 4)[:, 1] self.assertFalse(v.is_contiguous(), 'V is contiguous') self.assertFalse(e.is_contiguous(), 'E is contiguous') torch.symeig(X, True, out=(e, v)) Xhat = torch.mm(torch.mm(v, torch.diag(e)), v.t()) self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong') @skipIfNoLapack def test_svd(self): a = torch.Tensor(((8.79, 6.11, -9.15, 9.57, -3.49, 9.84), (9.93, 6.91, -7.93, 1.64, 4.02, 0.15), (9.83, 5.04, 4.86, 8.83, 9.80, -8.99), (5.45, -0.27, 4.85, 0.74, 10.00, -6.02), (3.16, 7.98, 3.01, 5.80, 4.27, -5.31))).t().clone() u, s, v = torch.svd(a) uu = torch.Tensor() ss = torch.Tensor() vv = torch.Tensor() uuu, sss, vvv = torch.svd(a, out=(uu, ss, vv)) self.assertEqual(u, uu, 0, 'torch.svd') self.assertEqual(u, uuu, 0, 'torch.svd') self.assertEqual(s, ss, 0, 'torch.svd') self.assertEqual(s, sss, 0, 'torch.svd') self.assertEqual(v, vv, 0, 'torch.svd') self.assertEqual(v, vvv, 0, 'torch.svd') # test reuse X = torch.randn(4, 4) U, S, V = torch.svd(X) Xhat = torch.mm(U, torch.mm(S.diag(), V.t())) self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong') self.assertFalse(U.is_contiguous(), 'U is contiguous') torch.svd(X, out=(U, S, V)) Xhat = torch.mm(U, torch.mm(S.diag(), V.t())) self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong') # test non-contiguous X = torch.randn(5, 5) U = torch.zeros(5, 2, 5)[:, 1] S = torch.zeros(5, 2)[:, 1] V = torch.zeros(5, 2, 5)[:, 1] self.assertFalse(U.is_contiguous(), 'U is contiguous') self.assertFalse(S.is_contiguous(), 'S is contiguous') self.assertFalse(V.is_contiguous(), 'V is contiguous') torch.svd(X, out=(U, S, V)) Xhat = torch.mm(U, torch.mm(S.diag(), V.t())) self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong') @staticmethod def _test_signal_window_functions(self, device='cpu'): if not TEST_SCIPY: raise unittest.SkipTest('Scipy not found') def test(name): torch_method = getattr(torch, name + '_window') for size in [1, 2, 5, 10, 50, 100, 1024, 2048]: for periodic in [True, False]: res = torch_method(size, periodic=periodic, device=device) ref = torch.from_numpy(signal.get_window(name, size, fftbins=periodic)) self.assertEqual(res, ref) with self.assertRaisesRegex(RuntimeError, r'not implemented for sparse types'): torch_method(3, layout=torch.sparse_coo) with self.assertRaisesRegex(RuntimeError, r'floating point'): torch_method(3, dtype=torch.long) self.assertTrue(torch_method(3, requires_grad=True).requires_grad) self.assertFalse(torch_method(3).requires_grad) for window in ['hann', 'hamming', 'bartlett', 'blackman']: test(window) def test_signal_window_functions(self): self._test_signal_window_functions(self) @skipIfNoLapack def test_inverse(self): M = torch.randn(5, 5) MI = torch.inverse(M) E = torch.eye(5) self.assertFalse(MI.is_contiguous(), 'MI is contiguous') self.assertEqual(E, torch.mm(M, MI), 1e-8, 'inverse value') self.assertEqual(E, torch.mm(MI, M), 1e-8, 'inverse value') MII = torch.Tensor(5, 5) torch.inverse(M, out=MII) self.assertFalse(MII.is_contiguous(), 'MII is contiguous') self.assertEqual(MII, MI, 0, 'inverse value in-place') # second call, now that MII is transposed torch.inverse(M, out=MII) self.assertFalse(MII.is_contiguous(), 'MII is contiguous') self.assertEqual(MII, MI, 0, 'inverse value in-place') @staticmethod def _test_det_logdet_slogdet(self, conv_fn): def reference_det(M): # naive row reduction M = M.clone() l = M.size(0) multiplier = 1 for i in range(l): if M[i, 0] != 0: if i != 0: M[0], M[i] = M[i], M[0] multiplier = -1 break else: return 0 for i in range(1, l): row = M[i] for j in range(i): row -= row[j] / M[j, j] * M[j] M[i] = row return M.diag().prod() * multiplier def test_single_det(M, target, desc): det = M.det() logdet = M.logdet() sdet, logabsdet = M.slogdet() self.assertEqual(det, target, 1e-7, '{} (det)'.format(desc)) if det.item() < 0: self.assertTrue(logdet.item() != logdet.item(), '{} (logdet negative case)'.format(desc)) self.assertTrue(sdet.item() == -1, '{} (slogdet sign negative case)'.format(desc)) self.assertEqual(logabsdet.exp(), det.abs(), 1e-7, '{} (slogdet logabsdet negative case)'.format(desc)) elif det.item() == 0: self.assertEqual(logdet.exp().item(), 0, 1e-7, '{} (logdet zero case)'.format(desc)) self.assertTrue(sdet.item() == 0, '{} (slogdet sign zero case)'.format(desc)) self.assertEqual(logabsdet.exp().item(), 0, 1e-7, '{} (slogdet logabsdet zero case)'.format(desc)) else: self.assertEqual(logdet.exp(), det, 1e-7, '{} (logdet positive case)'.format(desc)) self.assertTrue(sdet.item() == 1, '{} (slogdet sign positive case)'.format(desc)) self.assertEqual(logabsdet.exp(), det, 1e-7, '{} (slogdet logabsdet positive case)'.format(desc)) eye = conv_fn(torch.eye(5)) test_single_det(eye, torch.tensor(1, dtype=eye.dtype), 'identity') def test(M): assert M.size(0) >= 5, 'this helper fn assumes M to be at least 5x5' M = conv_fn(M) M_det = M.det() ref_M_det = reference_det(M) test_single_det(M, ref_M_det, 'basic') if abs(ref_M_det.item()) >= 1e-10: # skip singular test_single_det(M, M.inverse().det().pow_(-1), 'inverse') test_single_det(M, M.t().det(), 'transpose') for x in [0, 2, 4]: for scale in [-2, -0.1, 0, 10]: target = M_det * scale # dim 0 M_clone = M.clone() M_clone[:, x] *= scale test_single_det(M_clone, target, 'scale a row') # dim 1 M_clone = M.clone() M_clone[x, :] *= scale test_single_det(M_clone, target, 'scale a column') for x1, x2 in [(0, 3), (4, 1), (3, 2)]: assert x1 != x2, 'x1 and x2 needs to be different for this test' target = M_det.clone().zero_() # dim 0 M_clone = M.clone() M_clone[:, x2] = M_clone[:, x1] test_single_det(M_clone, target, 'two rows are same') # dim 1 M_clone = M.clone() M_clone[x2, :] = M_clone[x1, :] test_single_det(M_clone, target, 'two columns are same') for scale1, scale2 in [(0.3, -1), (0, 2), (10, 0.1)]: target = -M_det * scale1 * scale2 # dim 0 M_clone = M.clone() t = M_clone[:, x1] * scale1 M_clone[:, x1] += M_clone[:, x2] * scale2 M_clone[:, x2] = t test_single_det(M_clone, target, 'exchanging rows') # dim 1 M_clone = M.clone() t = M_clone[x1, :] * scale1 M_clone[x1, :] += M_clone[x2, :] * scale2 M_clone[x2, :] = t test_single_det(M_clone, target, 'exchanging columns') def get_random_mat_scale(n): # For matrices with values i.i.d. with 0 mean, unit variance, and # subexponential tail, we have: # E[log det(A^2)] \approx log((n-1)!) # # Notice: # log Var[det(A)] = log E[det(A^2)] >= E[log det(A^2)] # # So: # stddev[det(A)] >= sqrt( (n-1)! ) # # We use this as an intuitive guideline to scale random generated # matrices so our closeness tests can work more robustly: # scale by sqrt( (n-1)! )^(-1/n) = ( (n-1)! )^(-1/(2n)) # # source: https://arxiv.org/pdf/1112.0752.pdf return math.factorial(n - 1) ** (-1.0 / (2 * n)) for n in [5, 10, 25]: scale = get_random_mat_scale(n) test(torch.randn(n, n) * scale) r = torch.randn(n, n) * scale # symmetric psd test(r.mm(r.t())) # symmetric pd r = torch.randn(n, n) * scale test(r.mm(r.t()) + torch.eye(n) * 1e-6) # symmetric r = torch.randn(n, n) * scale for i in range(n): for j in range(i): r[i, j] = r[j, i] test(r) # non-contiguous test((torch.randn(n, n, n + 1) * scale)[:, 2, 1:]) # det = 0 r = torch.randn(n, n) * scale u, s, v = r.svd() if reference_det(u) < 0: u = -u if reference_det(v) < 0: v = -v s[0] *= -1 s[-1] = 0 test(u.mm(s.diag()).mm(v)) @skipIfNoLapack def test_det_logdet_slogdet(self): self._test_det_logdet_slogdet(self, lambda x: x) @staticmethod def _test_fft_ifft_rfft_irfft(self, device='cpu'): def _test_complex(sizes, signal_ndim, prepro_fn=lambda x: x): x = prepro_fn(torch.randn(*sizes, device=device)) for normalized in (True, False): res = x.fft(signal_ndim, normalized=normalized) rec = res.ifft(signal_ndim, normalized=normalized) self.assertEqual(x, rec, 1e-8, 'fft and ifft') res = x.ifft(signal_ndim, normalized=normalized) rec = res.fft(signal_ndim, normalized=normalized) self.assertEqual(x, rec, 1e-8, 'ifft and fft') def _test_real(sizes, signal_ndim, prepro_fn=lambda x: x): x = prepro_fn(torch.randn(*sizes, device=device)) signal_numel = 1 signal_sizes = x.size()[-signal_ndim:] for normalized, onesided in product((True, False), repeat=2): res = x.rfft(signal_ndim, normalized=normalized, onesided=onesided) if not onesided: # check Hermitian symmetry def test_one_sample(res, test_num=10): idxs_per_dim = [torch.LongTensor(test_num).random_(s).tolist() for s in signal_sizes] for idx in zip(*idxs_per_dim): reflected_idx = tuple((s - i) % s for i, s in zip(idx, res.size())) idx_val = res.__getitem__(idx) reflected_val = res.__getitem__(reflected_idx) self.assertEqual(idx_val[0], reflected_val[0], 'rfft hermitian symmetry on real part') self.assertEqual(idx_val[1], -reflected_val[1], 'rfft hermitian symmetry on imaginary part') if len(sizes) == signal_ndim: test_one_sample(res) else: output_non_batch_shape = res.size()[-(signal_ndim + 1):] flatten_batch_res = res.view(-1, *output_non_batch_shape) nb = flatten_batch_res.size(0) test_idxs = torch.LongTensor(min(nb, 4)).random_(nb) for test_idx in test_idxs.tolist(): test_one_sample(flatten_batch_res[test_idx]) # compare with C2C xc = torch.stack([x, torch.zeros_like(x)], -1) xc_res = xc.fft(signal_ndim, normalized=normalized) self.assertEqual(res, xc_res) test_input_signal_sizes = [signal_sizes] rec = res.irfft(signal_ndim, normalized=normalized, onesided=onesided, signal_sizes=signal_sizes) self.assertEqual(x, rec, 1e-8, 'rfft and irfft') if not onesided: # check that we can use C2C ifft rec = res.ifft(signal_ndim, normalized=normalized) self.assertEqual(x, rec.select(-1, 0), 1e-8, 'twosided rfft and ifft real') self.assertEqual(rec.select(-1, 1).data.abs().mean(), 0, 1e-8, 'twosided rfft and ifft imaginary') # contiguous case _test_real((100,), 1) _test_real((10, 1, 10, 100), 1) _test_real((100, 100), 2) _test_real((2, 2, 5, 80, 60), 2) _test_real((50, 40, 70), 3) _test_real((30, 1, 50, 25, 20), 3) _test_complex((100, 2), 1) _test_complex((100, 100, 2), 1) _test_complex((100, 100, 2), 2) _test_complex((1, 20, 80, 60, 2), 2) _test_complex((50, 40, 70, 2), 3) _test_complex((6, 5, 50, 25, 20, 2), 3) # non-contiguous case _test_real((165,), 1, lambda x: x.narrow(0, 25, 100)) # input is not aligned to complex type _test_real((100, 100, 3), 1, lambda x: x[:, :, 0]) _test_real((100, 100), 2, lambda x: x.t()) _test_real((20, 100, 10, 10), 2, lambda x: x.view(20, 100, 100)[:, :60]) _test_real((65, 80, 115), 3, lambda x: x[10:60, 13:53, 10:80]) _test_real((30, 20, 50, 25), 3, lambda x: x.transpose(1, 2).transpose(2, 3)) _test_complex((2, 100), 1, lambda x: x.t()) _test_complex((100, 2), 1, lambda x: x.expand(100, 100, 2)) _test_complex((300, 200, 3), 2, lambda x: x[:100, :100, 1:]) # input is not aligned to complex type _test_complex((20, 90, 110, 2), 2, lambda x: x[:, 5:85].narrow(2, 5, 100)) _test_complex((40, 60, 3, 80, 2), 3, lambda x: x.transpose(2, 0).select(0, 2)[5:55, :, 10:]) _test_complex((30, 55, 50, 22, 2), 3, lambda x: x[:, 3:53, 15:40, 1:21]) # non-contiguous with strides not representable as aligned with complex type _test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [3, 2, 1])) _test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [4, 2, 2])) _test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [4, 3, 1])) _test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [3, 3, 1])) _test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [4, 2, 2])) _test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [4, 3, 1])) @unittest.skipIf(not TEST_MKL, "PyTorch is built without MKL support") def test_fft_ifft_rfft_irfft(self): self._test_fft_ifft_rfft_irfft(self) @staticmethod def _test_stft(self, device='cpu'): def naive_stft(x, frame_length, hop, fft_size=None, normalized=False, onesided=True, window=None, pad_end=0): if fft_size is None: fft_size = frame_length x = x.clone() if window is None: window = x.new_ones(frame_length) else: window = window.clone() input_1d = x.dim() == 1 if input_1d: x = x.view(1, -1) batch = x.size(0) if pad_end > 0: x_pad = x.new(batch, pad_end).fill_(0) x = torch.cat([x, x_pad], 1) length = x.size(1) if TEST_NUMPY and TEST_SCIPY: sp_result = signal.stft( x, nperseg=frame_length, noverlap=frame_length - hop, window=window, nfft=fft_size, return_onesided=onesided, boundary=None, padded=False, )[2].transpose((0, 2, 1)) * np.abs(window.sum().item()) result = torch.Tensor(np.stack([sp_result.real, sp_result.imag], -1)) else: if onesided: return_size = int(fft_size / 2) + 1 else: return_size = fft_size result = x.new(batch, int((length - frame_length) / float(hop)) + 1, return_size, 2) for w in range(return_size): # freq radians = torch.arange(float(frame_length)) * w * 2 * math.pi / fft_size radians = radians.type_as(x) re_kernel = radians.cos().mul_(window) im_kernel = -radians.sin().mul_(window) for b in range(batch): for i, t in enumerate(range(0, length - frame_length + 1, hop)): seg = x[b, t:(t + frame_length)] re = seg.dot(re_kernel) im = seg.dot(im_kernel) result[b, i, w, 0] = re result[b, i, w, 1] = im if normalized: result /= frame_length ** 0.5 if input_1d: result = result[0] return result def _test(sizes, frame_length, hop, fft_size=None, normalized=False, onesided=True, window_sizes=None, pad_end=0, expected_error=None): x = torch.randn(*sizes, device=device) if window_sizes is not None: window = torch.randn(*window_sizes, device=device) else: window = None if expected_error is None: result = x.stft(frame_length, hop, fft_size, normalized, onesided, window, pad_end) ref_result = naive_stft(x, frame_length, hop, fft_size, normalized, onesided, window, pad_end) self.assertEqual(result.data, ref_result, 7e-6, 'stft result') else: self.assertRaises(expected_error, lambda: x.stft(frame_length, hop, fft_size, normalized, onesided, window, pad_end)) _test((2, 5), 4, 2, pad_end=1) _test((4, 150), 90, 45, pad_end=0) _test((10,), 7, 2, pad_end=0) _test((10, 4000), 1024, 512, pad_end=0) _test((2, 5), 4, 2, window_sizes=(4,), pad_end=1) _test((4, 150), 90, 45, window_sizes=(90,), pad_end=0) _test((10,), 7, 2, window_sizes=(7,), pad_end=0) _test((10, 4000), 1024, 512, window_sizes=(1024,), pad_end=0) _test((2, 5), 4, 2, fft_size=5, window_sizes=(4,), pad_end=1) _test((4, 150), 90, 45, fft_size=100, window_sizes=(90,), pad_end=0) _test((10,), 7, 2, fft_size=33, window_sizes=(7,), pad_end=0) _test((10, 4000), 1024, 512, fft_size=1500, window_sizes=(1024,), pad_end=0) _test((2, 5), 4, 2, fft_size=5, onesided=False, window_sizes=(4,), pad_end=1) _test((4, 150), 90, 45, fft_size=100, onesided=False, window_sizes=(90,), pad_end=0) _test((10,), 7, 2, fft_size=33, onesided=False, window_sizes=(7,), pad_end=0) _test((10, 4000), 1024, 512, fft_size=1500, onesided=False, window_sizes=(1024,), pad_end=0) _test((2, 5), 4, 2, fft_size=5, normalized=True, onesided=False, window_sizes=(4,), pad_end=1) _test((4, 150), 90, 45, fft_size=100, normalized=True, onesided=False, window_sizes=(90,), pad_end=0) _test((10,), 7, 2, fft_size=33, normalized=True, onesided=False, window_sizes=(7,), pad_end=0) _test((10, 4000), 1024, 512, fft_size=1500, normalized=True, onesided=False, window_sizes=(1024,), pad_end=0) _test((10, 4, 2), 1, 1, expected_error=RuntimeError) _test((10,), 11, 1, expected_error=RuntimeError) _test((10,), 0, 1, pad_end=4, expected_error=RuntimeError) _test((10,), 15, 1, pad_end=4, expected_error=RuntimeError) _test((10,), 5, -4, expected_error=RuntimeError) _test((10,), 5, 4, window_sizes=(11,), expected_error=RuntimeError) _test((10,), 5, 4, window_sizes=(1, 1), expected_error=RuntimeError) def test_stft(self): self._test_stft(self) @unittest.skip("Not implemented yet") def test_conv2(self): x = torch.rand(math.floor(torch.uniform(50, 100)), math.floor(torch.uniform(50, 100))) k = torch.rand(math.floor(torch.uniform(10, 20)), math.floor(torch.uniform(10, 20))) imvc = torch.conv2(x, k) imvc2 = torch.conv2(x, k, 'V') imfc = torch.conv2(x, k, 'F') ki = k.clone() ks = k.storage() kis = ki.storage() for i in range(ks.size() - 1, 0, -1): kis[ks.size() - i + 1] = ks[i] # for i=ks.size(), 1, -1 do kis[ks.size()-i+1]=ks[i] end imvx = torch.xcorr2(x, ki) imvx2 = torch.xcorr2(x, ki, 'V') imfx = torch.xcorr2(x, ki, 'F') self.assertEqual(imvc, imvc2, 0, 'torch.conv2') self.assertEqual(imvc, imvx, 0, 'torch.conv2') self.assertEqual(imvc, imvx2, 0, 'torch.conv2') self.assertEqual(imfc, imfx, 0, 'torch.conv2') self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr2(x, x)[0][0]), 1e-10, 'torch.conv2') xx = torch.Tensor(2, x.size(1), x.size(2)) xx[1].copy_(x) xx[2].copy_(x) kk = torch.Tensor(2, k.size(1), k.size(2)) kk[1].copy_(k) kk[2].copy_(k) immvc = torch.conv2(xx, kk) immvc2 = torch.conv2(xx, kk, 'V') immfc = torch.conv2(xx, kk, 'F') self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv2') self.assertEqual(immvc[0], imvc, 0, 'torch.conv2') self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv2') self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv2') self.assertEqual(immfc[0], imfc, 0, 'torch.conv2') @unittest.skip("Not implemented yet") def test_conv3(self): x = torch.rand(math.floor(torch.uniform(20, 40)), math.floor(torch.uniform(20, 40)), math.floor(torch.uniform(20, 40))) k = torch.rand(math.floor(torch.uniform(5, 10)), math.floor(torch.uniform(5, 10)), math.floor(torch.uniform(5, 10))) imvc = torch.conv3(x, k) imvc2 = torch.conv3(x, k, 'V') imfc = torch.conv3(x, k, 'F') ki = k.clone() ks = k.storage() kis = ki.storage() for i in range(ks.size() - 1, 0, -1): kis[ks.size() - i + 1] = ks[i] imvx = torch.xcorr3(x, ki) imvx2 = torch.xcorr3(x, ki, 'V') imfx = torch.xcorr3(x, ki, 'F') self.assertEqual(imvc, imvc2, 0, 'torch.conv3') self.assertEqual(imvc, imvx, 0, 'torch.conv3') self.assertEqual(imvc, imvx2, 0, 'torch.conv3') self.assertEqual(imfc, imfx, 0, 'torch.conv3') self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3') xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3)) xx[1].copy_(x) xx[2].copy_(x) kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3)) kk[1].copy_(k) kk[2].copy_(k) immvc = torch.conv3(xx, kk) immvc2 = torch.conv3(xx, kk, 'V') immfc = torch.conv3(xx, kk, 'F') self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3') self.assertEqual(immvc[0], imvc, 0, 'torch.conv3') self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3') self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3') self.assertEqual(immfc[0], imfc, 0, 'torch.conv3') @unittest.skip("Not implemented yet") def _test_conv_corr_eq(self, fn, fn_2_to_3): ix = math.floor(random.randint(20, 40)) iy = math.floor(random.randint(20, 40)) iz = math.floor(random.randint(20, 40)) kx = math.floor(random.randint(5, 10)) ky = math.floor(random.randint(5, 10)) kz = math.floor(random.randint(5, 10)) x = torch.rand(ix, iy, iz) k = torch.rand(kx, ky, kz) o3 = fn(x, k) o32 = torch.zeros(o3.size()) fn_2_to_3(x, k, o3, o32) self.assertEqual(o3, o32) @unittest.skip("Not implemented yet") def test_xcorr3_xcorr2_eq(self): def reference(x, k, o3, o32): for i in range(o3.size(1)): for j in range(k.size(1)): o32[i].add(torch.xcorr2(x[i + j - 1], k[j])) self._test_conv_corr_eq(lambda x, k: torch.xcorr3(x, k), reference) @unittest.skip("Not implemented yet") def test_xcorr3_xcorr2_eq_full(self): def reference(x, k, o3, o32): for i in range(x.size(1)): for j in range(k.size(1)): o32[i].add(torch.xcorr2(x[i], k[k.size(1) - j + 1], 'F')) self._test_conv_corr_eq(lambda x, k: torch.xcorr3(x, k, 'F'), reference) @unittest.skip("Not implemented yet") def test_conv3_conv2_eq_valid(self): def reference(x, k, o3, o32): for i in range(o3.size(1)): for j in range(k.size(1)): o32[i].add(torch.conv2(x[i + j - 1], k[k.size(1) - j + 1])) self._test_conv_corr_eq(lambda x, k: torch.conv3(x, k), reference) @unittest.skip("Not implemented yet") def test_fconv3_fconv2_eq(self): def reference(x, k, o3, o32): for i in range(o3.size(1)): for j in range(k.size(1)): o32[i + j - 1].add(torch.conv2(x[i], k[j], 'F')) self._test_conv_corr_eq(lambda x, k: torch.conv3(x, k, 'F'), reference) def test_logical(self): x = torch.rand(100, 100) * 2 - 1 xgt = torch.gt(x, 1) xlt = torch.lt(x, 1) xeq = torch.eq(x, 1) xne = torch.ne(x, 1) neqs = xgt + xlt all = neqs + xeq self.assertEqual(neqs.long().sum(), xne.long().sum(), 0) self.assertEqual(x.nelement(), all.long().sum()) def test_isnan(self): x = torch.Tensor([1, float('nan'), 2]) self.assertEqual(torch.isnan(x), torch.ByteTensor([0, 1, 0])) def test_RNGState(self): state = torch.get_rng_state() stateCloned = state.clone() before = torch.rand(1000) self.assertEqual(state.ne(stateCloned).long().sum(), 0, 0) torch.set_rng_state(state) after = torch.rand(1000) self.assertEqual(before, after, 0) def test_RNGStateAliasing(self): # Fork the random number stream at this point gen = torch.Generator() gen.set_state(torch.get_rng_state()) self.assertEqual(gen.get_state(), torch.get_rng_state()) target_value = torch.rand(1000) # Dramatically alter the internal state of the main generator _ = torch.rand(100000) forked_value = torch.rand(1000, generator=gen) self.assertEqual(target_value, forked_value, 0, "RNG has not forked correctly.") def test_boxMullerState(self): torch.manual_seed(123) odd_number = 101 seeded = torch.randn(odd_number) state = torch.get_rng_state() midstream = torch.randn(odd_number) torch.set_rng_state(state) repeat_midstream = torch.randn(odd_number) torch.manual_seed(123) reseeded = torch.randn(odd_number) self.assertEqual(midstream, repeat_midstream, 0, 'get_rng_state/set_rng_state not generating same sequence of normally distributed numbers') self.assertEqual(seeded, reseeded, 0, 'repeated calls to manual_seed not generating same sequence of normally distributed numbers') def test_manual_seed(self): rng_state = torch.get_rng_state() torch.manual_seed(2) x = torch.randn(100) self.assertEqual(torch.initial_seed(), 2) torch.manual_seed(2) y = torch.randn(100) self.assertEqual(x, y) torch.set_rng_state(rng_state) @skipIfNoLapack def test_cholesky(self): x = torch.rand(10, 10) + 1e-1 A = torch.mm(x, x.t()) # default Case C = torch.potrf(A) B = torch.mm(C.t(), C) self.assertEqual(A, B, 1e-14) # test Upper Triangular U = torch.potrf(A, True) B = torch.mm(U.t(), U) self.assertEqual(A, B, 1e-14, 'potrf (upper) did not allow rebuilding the original matrix') # test Lower Triangular L = torch.potrf(A, False) B = torch.mm(L, L.t()) self.assertEqual(A, B, 1e-14, 'potrf (lower) did not allow rebuilding the original matrix') @skipIfNoLapack def test_potrs(self): a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23), (-6.05, -3.30, 5.36, -4.44, 1.08), (-0.45, 2.58, -2.70, 0.27, 9.04), (8.32, 2.71, 4.35, -7.17, 2.14), (-9.67, -5.14, -7.26, 6.08, -6.87))).t() b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03), (-1.56, 4.00, -8.67, 1.75, 2.86), (9.81, -4.09, -4.57, -8.61, 8.99))).t() # make sure 'a' is symmetric PSD a = torch.mm(a, a.t()) # upper Triangular Test U = torch.potrf(a) x = torch.potrs(b, U) self.assertLessEqual(b.dist(torch.mm(a, x)), 1e-12) # lower Triangular Test L = torch.potrf(a, False) x = torch.potrs(b, L, False) self.assertLessEqual(b.dist(torch.mm(a, x)), 1e-12) @skipIfNoLapack def tset_potri(self): a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23), (-6.05, -3.30, 5.36, -4.44, 1.08), (-0.45, 2.58, -2.70, 0.27, 9.04), (8.32, 2.71, 4.35, -7.17, 2.14), (-9.67, -5.14, -7.26, 6.08, -6.87))).t() # make sure 'a' is symmetric PSD a = a * a.t() # compute inverse directly inv0 = torch.inverse(a) # default case chol = torch.potrf(a) inv1 = torch.potri(chol) self.assertLessEqual(inv0.dist(inv1), 1e-12) # upper Triangular Test chol = torch.potrf(a, 'U') inv1 = torch.potri(chol, 'U') self.assertLessEqual(inv0.dist(inv1), 1e-12) # lower Triangular Test chol = torch.potrf(a, 'L') inv1 = torch.potri(chol, 'L') self.assertLessEqual(inv0.dist(inv1), 1e-12) @skipIfNoLapack def test_pstrf(self): def checkPsdCholesky(a, uplo, inplace): if inplace: u = torch.empty_like(a) piv = a.new(a.size(0)).int() kwargs = {'out': (u, piv)} else: kwargs = {} args = [a] if uplo is not None: args += [uplo] u, piv = torch.pstrf(*args, **kwargs) if uplo is False: a_reconstructed = torch.mm(u, u.t()) else: a_reconstructed = torch.mm(u.t(), u) piv = piv.long() a_permuted = a.index_select(0, piv).index_select(1, piv) self.assertEqual(a_permuted, a_reconstructed, 1e-14) dimensions = ((5, 1), (5, 3), (5, 5), (10, 10)) for dim in dimensions: m = torch.Tensor(*dim).uniform_() a = torch.mm(m, m.t()) # add a small number to the diagonal to make the matrix numerically positive semidefinite for i in range(m.size(0)): a[i][i] = a[i][i] + 1e-7 for inplace in (True, False): for uplo in (None, True, False): checkPsdCholesky(a, uplo, inplace) def test_numel(self): b = torch.ByteTensor(3, 100, 100) self.assertEqual(b.nelement(), 3 * 100 * 100) self.assertEqual(b.numel(), 3 * 100 * 100) def _consecutive(self, size, start=1): sequence = torch.ones(int(torch.Tensor(size).prod(0))).cumsum(0) sequence.add_(start - 1) return sequence.resize_(*size) @staticmethod def _test_index(self, conv_fn): def consec(size, start=1): sequence = torch.ones(int(torch.Tensor(size).prod(0))).cumsum(0) sequence.add_(start - 1) return sequence.view(*size) reference = conv_fn(consec((3, 3, 3))) # empty tensor indexing self.assertEqual(reference[conv_fn(torch.LongTensor())], reference.new()) self.assertEqual(reference[0], consec((3, 3)), 0) self.assertEqual(reference[1], consec((3, 3), 10), 0) self.assertEqual(reference[2], consec((3, 3), 19), 0) self.assertEqual(reference[0, 1], consec((3,), 4), 0) self.assertEqual(reference[0:2], consec((2, 3, 3)), 0) self.assertEqual(reference[2, 2, 2], 27, 0) self.assertEqual(reference[:], consec((3, 3, 3)), 0) # indexing with Ellipsis self.assertEqual(reference[..., 2], torch.Tensor([[3, 6, 9], [12, 15, 18], [21, 24, 27]]), 0) self.assertEqual(reference[0, ..., 2], torch.Tensor([3, 6, 9]), 0) self.assertEqual(reference[..., 2], reference[:, :, 2], 0) self.assertEqual(reference[0, ..., 2], reference[0, :, 2], 0) self.assertEqual(reference[0, 2, ...], reference[0, 2], 0) self.assertEqual(reference[..., 2, 2, 2], 27, 0) self.assertEqual(reference[2, ..., 2, 2], 27, 0) self.assertEqual(reference[2, 2, ..., 2], 27, 0) self.assertEqual(reference[2, 2, 2, ...], 27, 0) self.assertEqual(reference[...], reference, 0) reference_5d = conv_fn(consec((3, 3, 3, 3, 3))) self.assertEqual(reference_5d[..., 1, 0], reference_5d[:, :, :, 1, 0], 0) self.assertEqual(reference_5d[2, ..., 1, 0], reference_5d[2, :, :, 1, 0], 0) self.assertEqual(reference_5d[2, 1, 0, ..., 1], reference_5d[2, 1, 0, :, 1], 0) self.assertEqual(reference_5d[...], reference_5d, 0) # LongTensor indexing reference = conv_fn(consec((5, 5, 5))) idx = conv_fn(torch.LongTensor([2, 4])) self.assertEqual(reference[idx], torch.stack([reference[2], reference[4]])) # TODO: enable one indexing is implemented like in numpy # self.assertEqual(reference[2, idx], torch.stack([reference[2, 2], reference[2, 4]])) # self.assertEqual(reference[3, idx, 1], torch.stack([reference[3, 2], reference[3, 4]])[:, 1]) # None indexing self.assertEqual(reference[2, None], reference[2].unsqueeze(0)) self.assertEqual(reference[2, None, None], reference[2].unsqueeze(0).unsqueeze(0)) self.assertEqual(reference[2:4, None], reference[2:4].unsqueeze(1)) self.assertEqual(reference[None, 2, None, None], reference.unsqueeze(0)[:, 2].unsqueeze(0).unsqueeze(0)) self.assertEqual(reference[None, 2:5, None, None], reference.unsqueeze(0)[:, 2:5].unsqueeze(2).unsqueeze(2)) # indexing 0-length slice self.assertEqual(torch.tensor([]), reference[slice(0)]) self.assertEqual(torch.tensor([]), reference[slice(0), 2]) self.assertEqual(torch.tensor([]), reference[2, slice(0)]) self.assertEqual(torch.tensor([]), reference[2, 1:1, 2]) # indexing with step reference = consec((10, 10, 10)) self.assertEqual(reference[1:5:2], torch.stack([reference[1], reference[3]], 0)) self.assertEqual(reference[1:6:2], torch.stack([reference[1], reference[3], reference[5]], 0)) self.assertEqual(reference[1:9:4], torch.stack([reference[1], reference[5]], 0)) self.assertEqual(reference[2:4, 1:5:2], torch.stack([reference[2:4, 1], reference[2:4, 3]], 1)) self.assertEqual(reference[3, 1:6:2], torch.stack([reference[3, 1], reference[3, 3], reference[3, 5]], 0)) self.assertEqual(reference[None, 2, 1:9:4], torch.stack([reference[2, 1], reference[2, 5]], 0).unsqueeze(0)) self.assertEqual(reference[:, 2, 1:6:2], torch.stack([reference[:, 2, 1], reference[:, 2, 3], reference[:, 2, 5]], 1)) lst = [list(range(i, i + 10)) for i in range(0, 100, 10)] tensor = conv_fn(torch.DoubleTensor(lst)) for _i in range(100): idx1_start = random.randrange(10) idx1_end = idx1_start + random.randrange(1, 10 - idx1_start + 1) idx1_step = random.randrange(1, 8) idx1 = slice(idx1_start, idx1_end, idx1_step) if random.randrange(2) == 0: idx2_start = random.randrange(10) idx2_end = idx2_start + random.randrange(1, 10 - idx2_start + 1) idx2_step = random.randrange(1, 8) idx2 = slice(idx2_start, idx2_end, idx2_step) lst_indexed = list(map(lambda l: l[idx2], lst[idx1])) tensor_indexed = tensor[idx1, idx2] else: lst_indexed = lst[idx1] tensor_indexed = tensor[idx1] self.assertEqual(torch.DoubleTensor(lst_indexed), tensor_indexed) self.assertRaises(ValueError, lambda: reference[1:9:0]) self.assertRaises(ValueError, lambda: reference[1:9:-1]) self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1]) self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1:1]) self.assertRaises(IndexError, lambda: reference[3, 3, 3, 3, 3, 3, 3, 3]) self.assertRaises(IndexError, lambda: reference[0.0]) self.assertRaises(TypeError, lambda: reference[0.0:2.0]) self.assertRaises(IndexError, lambda: reference[0.0, 0.0:2.0]) self.assertRaises(IndexError, lambda: reference[0.0, :, 0.0:2.0]) self.assertRaises(IndexError, lambda: reference[0.0, ..., 0.0:2.0]) self.assertRaises(IndexError, lambda: reference[0.0, :, 0.0]) def test_index(self): self._test_index(self, lambda x: x) @staticmethod def _test_advancedindex(self, conv_fn): # Tests for Integer Array Indexing, Part I - Purely integer array # indexing def consec(size, start=1): numel = reduce(lambda x, y: x * y, size, 1) sequence = torch.ones(numel).cumsum(0) sequence.add_(start - 1) return sequence.view(*size) # pick a random valid indexer type def ri(indices): choice = random.randint(0, 2) if choice == 0: return conv_fn(torch.LongTensor(indices)) elif choice == 1: return list(indices) else: return tuple(indices) # First, we will test indexing to generate return values # Case 1: Purely Integer Array Indexing reference = conv_fn(consec((10,))) self.assertEqual(reference[[0]], consec((1,))) self.assertEqual(reference[ri([0]), ], consec((1,))) self.assertEqual(reference[ri([3]), ], consec((1,), 4)) self.assertEqual(reference[[2, 3, 4]], consec((3,), 3)) self.assertEqual(reference[ri([2, 3, 4]), ], consec((3,), 3)) self.assertEqual(reference[ri([0, 2, 4]), ], torch.Tensor([1, 3, 5])) # setting values reference[[0]] = -2 self.assertEqual(reference[[0]], torch.Tensor([-2])) reference[[0]] = -1 self.assertEqual(reference[ri([0]), ], torch.Tensor([-1])) reference[[2, 3, 4]] = 4 self.assertEqual(reference[[2, 3, 4]], torch.Tensor([4, 4, 4])) reference[ri([2, 3, 4]), ] = 3 self.assertEqual(reference[ri([2, 3, 4]), ], torch.Tensor([3, 3, 3])) reference[ri([0, 2, 4]), ] = conv_fn(torch.Tensor([5, 4, 3])) self.assertEqual(reference[ri([0, 2, 4]), ], torch.Tensor([5, 4, 3])) # Tensor with stride != 1 # strided is [1, 3, 5, 7] reference = conv_fn(consec((10,))) strided = conv_fn(torch.Tensor()) strided.set_(reference.storage(), storage_offset=0, size=torch.Size([4]), stride=[2]) self.assertEqual(strided[[0]], torch.Tensor([1])) self.assertEqual(strided[ri([0]), ], torch.Tensor([1])) self.assertEqual(strided[ri([3]), ], torch.Tensor([7])) self.assertEqual(strided[[1, 2]], torch.Tensor([3, 5])) self.assertEqual(strided[ri([1, 2]), ], torch.Tensor([3, 5])) self.assertEqual(strided[ri([[2, 1], [0, 3]]), ], torch.Tensor([[5, 3], [1, 7]])) # stride is [4, 8] strided = conv_fn(torch.Tensor()) strided.set_(reference.storage(), storage_offset=4, size=torch.Size([2]), stride=[4]) self.assertEqual(strided[[0]], torch.Tensor([5])) self.assertEqual(strided[ri([0]), ], torch.Tensor([5])) self.assertEqual(strided[ri([1]), ], torch.Tensor([9])) self.assertEqual(strided[[0, 1]], torch.Tensor([5, 9])) self.assertEqual(strided[ri([0, 1]), ], torch.Tensor([5, 9])) self.assertEqual(strided[ri([[0, 1], [1, 0]]), ], torch.Tensor([[5, 9], [9, 5]])) # reference is 1 2 # 3 4 # 5 6 reference = conv_fn(consec((3, 2))) self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([1, 3, 5])) self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.Tensor([2, 4, 6])) self.assertEqual(reference[ri([0]), ri([0])], consec((1,))) self.assertEqual(reference[ri([2]), ri([1])], consec((1,), 6)) self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.Tensor([1, 2])) self.assertEqual(reference[[ri([0, 1, 1, 0, 2]), ri([1])]], torch.Tensor([2, 4, 4, 2, 6])) self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]], torch.Tensor([1, 2, 3, 3])) rows = ri([[0, 0], [1, 2]]) columns = [0], self.assertEqual(reference[rows, columns], torch.Tensor([[1, 1], [3, 5]])) rows = ri([[0, 0], [1, 2]]) columns = ri([1, 0]) self.assertEqual(reference[rows, columns], torch.Tensor([[2, 1], [4, 5]])) rows = ri([[0, 0], [1, 2]]) columns = ri([[0, 1], [1, 0]]) self.assertEqual(reference[rows, columns], torch.Tensor([[1, 2], [4, 5]])) # setting values reference[ri([0]), ri([1])] = -1 self.assertEqual(reference[ri([0]), ri([1])], torch.Tensor([-1])) reference[ri([0, 1, 2]), ri([0])] = conv_fn(torch.Tensor([-1, 2, -4])) self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([-1, 2, -4])) reference[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]])) self.assertEqual(reference[rows, columns], torch.Tensor([[4, 6], [2, 3]])) # Verify still works with Transposed (i.e. non-contiguous) Tensors reference = conv_fn(torch.Tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])).t_() # Transposed: [[0, 4, 8], # [1, 5, 9], # [2, 6, 10], # [3, 7, 11]] self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([0, 1, 2])) self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.Tensor([4, 5, 6])) self.assertEqual(reference[ri([0]), ri([0])], torch.Tensor([0])) self.assertEqual(reference[ri([2]), ri([1])], torch.Tensor([6])) self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.Tensor([0, 4])) self.assertEqual(reference[[ri([0, 1, 1, 0, 3]), ri([1])]], torch.Tensor([4, 5, 5, 4, 7])) self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]], torch.Tensor([0, 4, 1, 1])) rows = ri([[0, 0], [1, 2]]) columns = [0], self.assertEqual(reference[rows, columns], torch.Tensor([[0, 0], [1, 2]])) rows = ri([[0, 0], [1, 2]]) columns = ri([1, 0]) self.assertEqual(reference[rows, columns], torch.Tensor([[4, 0], [5, 2]])) rows = ri([[0, 0], [1, 3]]) columns = ri([[0, 1], [1, 2]]) self.assertEqual(reference[rows, columns], torch.Tensor([[0, 4], [5, 11]])) # setting values reference[ri([0]), ri([1])] = -1 self.assertEqual(reference[ri([0]), ri([1])], torch.Tensor([-1])) reference[ri([0, 1, 2]), ri([0])] = conv_fn(torch.Tensor([-1, 2, -4])) self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([-1, 2, -4])) reference[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]])) self.assertEqual(reference[rows, columns], torch.Tensor([[4, 6], [2, 3]])) # stride != 1 # strided is [[1 3 5 7], # [9 11 13 15]] reference = conv_fn(torch.arange(0., 24).view(3, 8)) strided = conv_fn(torch.Tensor()) strided.set_(reference.storage(), 1, size=torch.Size([2, 4]), stride=[8, 2]) self.assertEqual(strided[ri([0, 1]), ri([0])], torch.Tensor([1, 9])) self.assertEqual(strided[ri([0, 1]), ri([1])], torch.Tensor([3, 11])) self.assertEqual(strided[ri([0]), ri([0])], torch.Tensor([1])) self.assertEqual(strided[ri([1]), ri([3])], torch.Tensor([15])) self.assertEqual(strided[[ri([0, 0]), ri([0, 3])]], torch.Tensor([1, 7])) self.assertEqual(strided[[ri([1]), ri([0, 1, 1, 0, 3])]], torch.Tensor([9, 11, 11, 9, 15])) self.assertEqual(strided[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]], torch.Tensor([1, 3, 9, 9])) rows = ri([[0, 0], [1, 1]]) columns = [0], self.assertEqual(strided[rows, columns], torch.Tensor([[1, 1], [9, 9]])) rows = ri([[0, 1], [1, 0]]) columns = ri([1, 2]) self.assertEqual(strided[rows, columns], torch.Tensor([[3, 13], [11, 5]])) rows = ri([[0, 0], [1, 1]]) columns = ri([[0, 1], [1, 2]]) self.assertEqual(strided[rows, columns], torch.Tensor([[1, 3], [11, 13]])) # setting values # strided is [[10, 11], # [17, 18]] reference = conv_fn(torch.arange(0., 24).view(3, 8)) strided = conv_fn(torch.Tensor()) strided.set_(reference.storage(), 10, size=torch.Size([2, 2]), stride=[7, 1]) self.assertEqual(strided[ri([0]), ri([1])], torch.Tensor([11])) strided[ri([0]), ri([1])] = -1 self.assertEqual(strided[ri([0]), ri([1])], torch.Tensor([-1])) reference = conv_fn(torch.arange(0., 24).view(3, 8)) strided = conv_fn(torch.Tensor()) strided.set_(reference.storage(), 10, size=torch.Size([2, 2]), stride=[7, 1]) self.assertEqual(strided[ri([0, 1]), ri([1, 0])], torch.Tensor([11, 17])) strided[ri([0, 1]), ri([1, 0])] = conv_fn(torch.Tensor([-1, 2])) self.assertEqual(strided[ri([0, 1]), ri([1, 0])], torch.Tensor([-1, 2])) reference = conv_fn(torch.arange(0., 24).view(3, 8)) strided = conv_fn(torch.Tensor()) strided.set_(reference.storage(), 10, size=torch.Size([2, 2]), stride=[7, 1]) rows = ri([[0], [1]]) columns = ri([[0, 1], [0, 1]]) self.assertEqual(strided[rows, columns], torch.Tensor([[10, 11], [17, 18]])) strided[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]])) self.assertEqual(strided[rows, columns], torch.Tensor([[4, 6], [2, 3]])) # Tests using less than the number of dims, and ellipsis # reference is 1 2 # 3 4 # 5 6 reference = conv_fn(consec((3, 2))) self.assertEqual(reference[ri([0, 2]), ], torch.Tensor([[1, 2], [5, 6]])) self.assertEqual(reference[ri([1]), ...], torch.Tensor([[3, 4]])) self.assertEqual(reference[..., ri([1])], torch.Tensor([[2], [4], [6]])) # verify too many indices fails with self.assertRaises(IndexError): reference[ri([1]), ri([0, 2]), ri([3])] # test invalid index fails reference = conv_fn(torch.empty(10)) # can't test cuda because it is a device assert if not reference.is_cuda: for err_idx in (10, -11): with self.assertRaisesRegex(IndexError, r'out of'): reference[err_idx] with self.assertRaisesRegex(RuntimeError, r'out of'): reference[conv_fn(torch.LongTensor([err_idx]))] with self.assertRaisesRegex(RuntimeError, r'out of'): reference[[err_idx]] if TEST_NUMPY: # we use numpy to compare against, to verify that our advanced # indexing semantics are the same, and also for ease of test # writing def tensor_indices_to_np(tensor, indices): # convert the Torch Tensor to a numpy array if (tensor.is_cuda): tensor = tensor.cpu() npt = tensor.numpy() # convert indices idxs = tuple(i.tolist() if isinstance(i, torch.LongTensor) else i for i in indices) return npt, idxs def get_numpy(tensor, indices): npt, idxs = tensor_indices_to_np(tensor, indices) # index and return as a Torch Tensor return torch.Tensor(npt[idxs]) def set_numpy(tensor, indices, value): if not isinstance(value, int): if value.is_cuda: value = value.cpu() value = value.numpy() npt, idxs = tensor_indices_to_np(tensor, indices) npt[idxs] = value return npt def assert_get_eq(tensor, indexer): self.assertEqual(tensor[indexer], conv_fn(get_numpy(tensor, indexer))) def assert_set_eq(tensor, indexer, val): pyt = tensor.clone() numt = tensor.clone() pyt[indexer] = val numt = conv_fn(torch.Tensor(set_numpy(numt, indexer, val))) self.assertEqual(pyt, numt) def get_set_tensor(indexed, indexer): set_size = indexed[indexer].size() set_count = indexed[indexer].numel() set_tensor = conv_fn(torch.randperm(set_count).view(set_size).double()) return set_tensor # Tensor is 0 1 2 3 4 # 5 6 7 8 9 # 10 11 12 13 14 # 15 16 17 18 19 reference = conv_fn(torch.arange(0., 20).view(4, 5)) indices_to_test = [ # grab the second, fourth columns [slice(None), [1, 3]], # first, third rows, [[0, 2], slice(None)], # weird shape [slice(None), [[0, 1], [2, 3]]], # negatives [[-1], [0]], [[0, 2], [-1]], [slice(None), [-1]], ] # only test dupes on gets get_indices_to_test = indices_to_test + [[slice(None), [0, 1, 1, 2, 2]]] for indexer in get_indices_to_test: assert_get_eq(reference, indexer) for indexer in indices_to_test: assert_set_eq(reference, indexer, 44) assert_set_eq(reference, indexer, get_set_tensor(reference, indexer)) reference = conv_fn(torch.arange(0., 160).view(4, 8, 5)) indices_to_test = [ [slice(None), slice(None), [0, 3, 4]], [slice(None), [2, 4, 5, 7], slice(None)], [[2, 3], slice(None), slice(None)], [slice(None), [0, 2, 3], [1, 3, 4]], [slice(None), [0], [1, 2, 4]], [slice(None), [0, 1, 3], [4]], [slice(None), [[0, 1], [1, 0]], [[2, 3]]], [slice(None), [[0, 1], [2, 3]], [[0]]], [slice(None), [[5, 6]], [[0, 3], [4, 4]]], [[0, 2, 3], [1, 3, 4], slice(None)], [[0], [1, 2, 4], slice(None)], [[0, 1, 3], [4], slice(None)], [[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)], [[[0, 1], [1, 0]], [[2, 3]], slice(None)], [[[0, 1], [2, 3]], [[0]], slice(None)], [[[2, 1]], [[0, 3], [4, 4]], slice(None)], [[[2]], [[0, 3], [4, 1]], slice(None)], # less dim, ellipsis [[0, 2], ], [[0, 2], slice(None)], [[0, 2], Ellipsis], [[0, 2], slice(None), Ellipsis], [[0, 2], Ellipsis, slice(None)], [[0, 2], [1, 3]], [[0, 2], [1, 3], Ellipsis], [Ellipsis, [1, 3], [2, 3]], [Ellipsis, [2, 3, 4]], [Ellipsis, slice(None), [2, 3, 4]], [slice(None), Ellipsis, [2, 3, 4]], # ellipsis counts for nothing [Ellipsis, slice(None), slice(None), [0, 3, 4]], [slice(None), Ellipsis, slice(None), [0, 3, 4]], [slice(None), slice(None), Ellipsis, [0, 3, 4]], [slice(None), slice(None), [0, 3, 4], Ellipsis], [Ellipsis, [[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)], [[[0, 1], [1, 0]], [[2, 1], [3, 5]], Ellipsis, slice(None)], [[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None), Ellipsis], ] for indexer in indices_to_test: assert_get_eq(reference, indexer) assert_set_eq(reference, indexer, 212) assert_set_eq(reference, indexer, get_set_tensor(reference, indexer)) reference = conv_fn(torch.arange(0., 1296).view(3, 9, 8, 6)) indices_to_test = [ [slice(None), slice(None), slice(None), [0, 3, 4]], [slice(None), slice(None), [2, 4, 5, 7], slice(None)], [slice(None), [2, 3], slice(None), slice(None)], [[1, 2], slice(None), slice(None), slice(None)], [slice(None), slice(None), [0, 2, 3], [1, 3, 4]], [slice(None), slice(None), [0], [1, 2, 4]], [slice(None), slice(None), [0, 1, 3], [4]], [slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3]]], [slice(None), slice(None), [[0, 1], [2, 3]], [[0]]], [slice(None), slice(None), [[5, 6]], [[0, 3], [4, 4]]], [slice(None), [0, 2, 3], [1, 3, 4], slice(None)], [slice(None), [0], [1, 2, 4], slice(None)], [slice(None), [0, 1, 3], [4], slice(None)], [slice(None), [[0, 1], [3, 4]], [[2, 3], [0, 1]], slice(None)], [slice(None), [[0, 1], [3, 4]], [[2, 3]], slice(None)], [slice(None), [[0, 1], [3, 2]], [[0]], slice(None)], [slice(None), [[2, 1]], [[0, 3], [6, 4]], slice(None)], [slice(None), [[2]], [[0, 3], [4, 2]], slice(None)], [[0, 1, 2], [1, 3, 4], slice(None), slice(None)], [[0], [1, 2, 4], slice(None), slice(None)], [[0, 1, 2], [4], slice(None), slice(None)], [[[0, 1], [0, 2]], [[2, 4], [1, 5]], slice(None), slice(None)], [[[0, 1], [1, 2]], [[2, 0]], slice(None), slice(None)], [[[2, 2]], [[0, 3], [4, 5]], slice(None), slice(None)], [[[2]], [[0, 3], [4, 5]], slice(None), slice(None)], [slice(None), [3, 4, 6], [0, 2, 3], [1, 3, 4]], [slice(None), [2, 3, 4], [1, 3, 4], [4]], [slice(None), [0, 1, 3], [4], [1, 3, 4]], [slice(None), [6], [0, 2, 3], [1, 3, 4]], [slice(None), [2, 3, 5], [3], [4]], [slice(None), [0], [4], [1, 3, 4]], [slice(None), [6], [0, 2, 3], [1]], [slice(None), [[0, 3], [3, 6]], [[0, 1], [1, 3]], [[5, 3], [1, 2]]], [[2, 2, 1], [0, 2, 3], [1, 3, 4], slice(None)], [[2, 0, 1], [1, 2, 3], [4], slice(None)], [[0, 1, 2], [4], [1, 3, 4], slice(None)], [[0], [0, 2, 3], [1, 3, 4], slice(None)], [[0, 2, 1], [3], [4], slice(None)], [[0], [4], [1, 3, 4], slice(None)], [[1], [0, 2, 3], [1], slice(None)], [[[1, 2], [1, 2]], [[0, 1], [2, 3]], [[2, 3], [3, 5]], slice(None)], # less dim, ellipsis [Ellipsis, [0, 3, 4]], [Ellipsis, slice(None), [0, 3, 4]], [Ellipsis, slice(None), slice(None), [0, 3, 4]], [slice(None), Ellipsis, [0, 3, 4]], [slice(None), slice(None), Ellipsis, [0, 3, 4]], [slice(None), [0, 2, 3], [1, 3, 4]], [slice(None), [0, 2, 3], [1, 3, 4], Ellipsis], [Ellipsis, [0, 2, 3], [1, 3, 4], slice(None)], [[0], [1, 2, 4]], [[0], [1, 2, 4], slice(None)], [[0], [1, 2, 4], Ellipsis], [[0], [1, 2, 4], Ellipsis, slice(None)], [[1], ], [[0, 2, 1], [3], [4]], [[0, 2, 1], [3], [4], slice(None)], [[0, 2, 1], [3], [4], Ellipsis], [Ellipsis, [0, 2, 1], [3], [4]], ] for indexer in indices_to_test: assert_get_eq(reference, indexer) assert_set_eq(reference, indexer, 1333) assert_set_eq(reference, indexer, get_set_tensor(reference, indexer)) indices_to_test += [ [slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3], [3, 0]]], [slice(None), slice(None), [[2]], [[0, 3], [4, 4]]], ] for indexer in indices_to_test: assert_get_eq(reference, indexer) assert_set_eq(reference, indexer, 1333) def test_advancedindex(self): self._test_advancedindex(self, lambda x: x) @staticmethod def _test_advancedindex_big(self, conv_fn): reference = conv_fn(torch.arange(0, 123344).int()) self.assertEqual(reference[[0, 123, 44488, 68807, 123343], ], torch.LongTensor([0, 123, 44488, 68807, 123343])) def test_advancedindex_big(self): self._test_advancedindex_big(self, lambda x: x) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_newaxis_numpy_comparison(self): def run_test(tensor, *idx): npt = tensor.numpy() self.assertEqual(tensor[idx], npt[idx]) # 1D Tensor Tests x = torch.arange(0, 10) cases = [ [None], [None, None], [Ellipsis, None], [None, Ellipsis], [2, None], [None, 2], [Ellipsis, None, 2], [Ellipsis, 2, None], [2, Ellipsis, None], [2, None, Ellipsis], [None, 2, Ellipsis], [None, Ellipsis, 2], ] for case in cases: run_test(x, *case) # 2D Tensor Tests x = torch.arange(0, 12).view(3, 4) cases = [ [None], [None, None], [None, None, None], [Ellipsis, None], [Ellipsis, None, None], [None, Ellipsis], [None, Ellipsis, None], [None, None, Ellipsis], [2, None], [2, None, Ellipsis], [2, Ellipsis, None], [None, 2, Ellipsis], [Ellipsis, 2, None], [Ellipsis, None, 2], [None, Ellipsis, 2], [1, 2, None], [1, 2, Ellipsis, None], [1, Ellipsis, 2, None], [Ellipsis, 1, None, 2], [Ellipsis, 1, 2, None], [1, None, 2, Ellipsis], [None, 1, Ellipsis, 2], [None, 1, 2, Ellipsis], ] for case in cases: run_test(x, *case) def test_newindex(self): reference = self._consecutive((3, 3, 3)) # This relies on __index__() being correct - but we have separate tests for that def checkPartialAssign(index): reference = torch.zeros(3, 3, 3) reference[index] = self._consecutive((3, 3, 3))[index] self.assertEqual(reference[index], self._consecutive((3, 3, 3))[index], 0) reference[index] = 0 self.assertEqual(reference, torch.zeros(3, 3, 3), 0) checkPartialAssign(0) checkPartialAssign(1) checkPartialAssign(2) checkPartialAssign((0, 1)) checkPartialAssign((1, 2)) checkPartialAssign((0, 2)) checkPartialAssign(torch.LongTensor((0, 2))) with self.assertRaises(IndexError): reference[1, 1, 1, 1] = 1 with self.assertRaises(IndexError): reference[1, 1, 1, (1, 1)] = 1 with self.assertRaises(IndexError): reference[3, 3, 3, 3, 3, 3, 3, 3] = 1 with self.assertRaises(IndexError): reference[0.0] = 1 with self.assertRaises(TypeError): reference[0.0:2.0] = 1 with self.assertRaises(IndexError): reference[0.0, 0.0:2.0] = 1 with self.assertRaises(IndexError): reference[0.0, :, 0.0:2.0] = 1 with self.assertRaises(IndexError): reference[0.0, ..., 0.0:2.0] = 1 with self.assertRaises(IndexError): reference[0.0, :, 0.0] = 1 def test_index_copy(self): num_copy, num_dest = 3, 20 dest = torch.randn(num_dest, 4, 5) src = torch.randn(num_copy, 4, 5) idx = torch.randperm(num_dest).narrow(0, 0, num_copy) dest2 = dest.clone() dest.index_copy_(0, idx, src) for i in range(idx.size(0)): dest2[idx[i]] = src[i] self.assertEqual(dest, dest2, 0) dest = torch.randn(num_dest) src = torch.randn(num_copy) idx = torch.randperm(num_dest).narrow(0, 0, num_copy) dest2 = dest.clone() dest.index_copy_(0, idx, src) for i in range(idx.size(0)): dest2[idx[i]] = src[i] self.assertEqual(dest, dest2, 0) def test_index_add(self): num_copy, num_dest = 3, 3 dest = torch.randn(num_dest, 4, 5) src = torch.randn(num_copy, 4, 5) idx = torch.randperm(num_dest).narrow(0, 0, num_copy) dest2 = dest.clone() dest.index_add_(0, idx, src) for i in range(idx.size(0)): dest2[idx[i]] += src[i] self.assertEqual(dest, dest2) dest = torch.randn(num_dest) src = torch.randn(num_copy) idx = torch.randperm(num_dest).narrow(0, 0, num_copy) dest2 = dest.clone() dest.index_add_(0, idx, src) for i in range(idx.size(0)): dest2[idx[i]] = dest2[idx[i]] + src[i] self.assertEqual(dest, dest2) def test_index_select(self): src = torch.randn(3, 4, 5) # Index can be duplicated. idx = torch.LongTensor([2, 1, 0, 1, 2]) dest = torch.index_select(src, 0, idx) self.assertEqual(dest.shape, (5, 4, 5)) for i in range(idx.size(0)): self.assertEqual(dest[i], src[idx[i]]) # Check that 'out' is used correctly. out = torch.randn(5 * 4 * 5) dest = torch.index_select(src, 0, idx, out=out.view(5, 4, 5)) self.assertEqual(dest.shape, (5, 4, 5)) for i in range(idx.size(0)): self.assertEqual(dest[i], src[idx[i]]) out.fill_(0.123) self.assertEqual(out, dest.view(-1)) # Must point to the same storage. def test_take(self): def check(src, idx): expected = src.contiguous().view(-1).index_select( 0, idx.contiguous().view(-1)).view_as(idx) actual = src.take(idx) self.assertEqual(actual.size(), idx.size()) self.assertEqual(expected, actual) src = torch.randn(2, 3, 5) idx = torch.LongTensor([[0, 2], [3, 4]]) check(src, idx) check(src.transpose(1, 2), idx) def test_put_(self): def check(dst, idx, value): expected = dst.clone().view(-1).index_copy_( 0, idx.contiguous().view(-1), value.contiguous().view(-1)) expected = expected.view_as(dst) dst.put_(idx, value) self.assertEqual(expected, dst) dst = torch.randn(2, 3, 5) idx = torch.LongTensor([[0, 2], [3, 4]]) values = torch.randn(2, 2) check(dst, idx, values) check(dst.transpose(1, 2), idx, values) def test_put_accumulate(self): dst = torch.ones(2, 2) idx = torch.LongTensor([[0, 1], [0, 1]]) src = torch.Tensor([1, 2, 3, 4]) dst.put_(idx, src, accumulate=True) self.assertEqual(dst.tolist(), [[5, 7], [1, 1]]) # Fill idx with valid indices. @staticmethod def _fill_indices(self, idx, dim, dim_size, elems_per_row, m, n, o): for i in range(1 if dim == 0 else m): for j in range(1 if dim == 1 else n): for k in range(1 if dim == 2 else o): ii = [i, j, k] ii[dim] = slice(0, idx.size(dim) + 1) idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row] def test_flatten(self): src = torch.randn(5, 5, 5, 5) flat = src.flatten(0, -1) self.assertEqual(flat.shape, torch.Size([625])) self.assertEqual(src.view(-1), flat.view(-1)) flat = src.flatten(0, 2) self.assertEqual(flat.shape, torch.Size([125, 5])) self.assertEqual(src.view(-1), flat.view(-1)) flat = src.flatten(0, 1) self.assertEqual(flat.shape, torch.Size([25, 5, 5])) self.assertEqual(src.view(-1), flat.view(-1)) flat = src.flatten(1, 2) self.assertEqual(flat.shape, torch.Size([5, 25, 5])) self.assertEqual(src.view(-1), flat.view(-1)) flat = src.flatten(2, 3) self.assertEqual(flat.shape, torch.Size([5, 5, 25])) self.assertEqual(src.view(-1), flat.view(-1)) flat = src.flatten(-2, -1) self.assertEqual(flat.shape, torch.Size([5, 5, 25])) self.assertEqual(src.view(-1), flat.view(-1)) flat = src.flatten(2, 2) self.assertEqual(flat, src) # out of bounds index with self.assertRaisesRegex(RuntimeError, 'dimension out of range'): src.flatten(5, 10) # invalid start and end with self.assertRaisesRegex(RuntimeError, 'start_dim cannot come after end_dim'): src.flatten(2, 0) @staticmethod def _test_gather(self, cast, test_bounds=True): m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20) elems_per_row = random.randint(1, 10) dim = random.randrange(3) src = torch.randn(m, n, o) idx_size = [m, n, o] idx_size[dim] = elems_per_row idx = torch.LongTensor().resize_(*idx_size) TestTorch._fill_indices(self, idx, dim, src.size(dim), elems_per_row, m, n, o) src = cast(src) idx = cast(idx) actual = torch.gather(src, dim, idx) expected = cast(torch.Tensor().resize_(*idx_size)) for i in range(idx_size[0]): for j in range(idx_size[1]): for k in range(idx_size[2]): ii = [i, j, k] ii[dim] = idx[i, j, k] expected[i, j, k] = src[tuple(ii)] self.assertEqual(actual, expected, 0) if test_bounds: idx[0][0][0] = 23 self.assertRaises(RuntimeError, lambda: torch.gather(src, dim, idx)) src = cast(torch.randn(3, 4, 5)) expected, idx = src.max(2, True) expected = cast(expected) idx = cast(idx) actual = torch.gather(src, 2, idx) self.assertEqual(actual, expected, 0) def test_gather(self): self._test_gather(self, lambda t: t) @staticmethod def _test_scatter_base(self, cast, method, is_scalar=False, test_bounds=True): m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20) elems_per_row = random.randint(1, 10) dim = random.randrange(3) idx_size = [m, n, o] idx_size[dim] = elems_per_row idx = cast(torch.LongTensor().resize_(*idx_size)) TestTorch._fill_indices(self, idx, dim, ([m, n, o])[dim], elems_per_row, m, n, o) if is_scalar: src = random.random() else: src = cast(torch.Tensor(*idx_size).normal_()) base = cast(torch.randn(m, n, o)) actual = getattr(base.clone(), method)(dim, idx, src) expected = base.clone() for i in range(idx_size[0]): for j in range(idx_size[1]): for k in range(idx_size[2]): ii = [i, j, k] ii[dim] = idx[i, j, k] if method == 'scatter_' and not is_scalar: expected[tuple(ii)] = src[i, j, k] elif method == 'scatter_add_': expected[tuple(ii)] += src[i, j, k] else: expected[tuple(ii)] = src self.assertEqual(actual, expected, 0) if test_bounds: idx[0][0][0] = 34 with self.assertRaises(RuntimeError): getattr(base.clone(), method)(dim, idx, src) def test_scatter(self): self._test_scatter_base(self, lambda t: t, 'scatter_') def test_scatterAdd(self): self._test_scatter_base(self, lambda t: t, 'scatter_add_') def test_scatterFill(self): self._test_scatter_base(self, lambda t: t, 'scatter_', True) def test_masked_scatter(self): num_copy, num_dest = 3, 10 dest = torch.randn(num_dest) src = torch.randn(num_copy) mask = torch.ByteTensor((0, 0, 0, 0, 1, 0, 1, 0, 1, 0)) dest2 = dest.clone() dest.masked_scatter_(mask, src) j = 0 for i in range(num_dest): if mask[i]: dest2[i] = src[j] j += 1 self.assertEqual(dest, dest2, 0) # make source bigger than number of 1s in mask src = torch.randn(num_dest) dest.masked_scatter_(mask, src) # make src smaller. this should fail src = torch.randn(num_copy - 1) with self.assertRaises(RuntimeError): dest.masked_scatter_(mask, src) def test_masked_select(self): num_src = 10 src = torch.randn(num_src) mask = torch.rand(num_src).clamp(0, 1).mul(2).floor().byte() dst = src.masked_select(mask) dst2 = [] for i in range(num_src): if mask[i]: dst2 += [src[i]] self.assertEqual(dst, torch.Tensor(dst2), 0) def test_masked_fill(self): num_dest = 10 dst = torch.randn(num_dest) mask = torch.rand(num_dest).mul(2).floor().byte() val = random.random() dst2 = dst.clone() dst.masked_fill_(mask, val) for i in range(num_dest): if mask[i]: dst2[i] = val self.assertEqual(dst, dst2, 0) def test_abs(self): size = 1000 max_val = 1000 original = torch.rand(size).mul(max_val) # Tensor filled with values from {-1, 1} switch = torch.rand(size).mul(2).floor().mul(2).add(-1) types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor', 'torch.IntTensor', 'torch.ShortTensor'] for t in types: data = original.type(t) switch = switch.type(t) res = torch.mul(data, switch) # abs is used in assertEqual so we use the slow version instead self.assertTensorsSlowEqual(res.abs(), data, 1e-16) # Checking that the right abs function is called for LongTensor bignumber = 2 ^ 31 + 1 res = torch.LongTensor((-bignumber,)) self.assertGreater(res.abs()[0], 0) def test_hardshrink(self): data_original = torch.tensor([1, 0.5, 0.3, 0.6]).view(2, 2) float_types = [ 'torch.DoubleTensor', 'torch.FloatTensor' ] for t in float_types: data = data_original.type(t) self.assertEqual(torch.tensor([1, 0.5, 0, 0.6]).view(2, 2), torch.nn.Hardshrink(0.3)(data)) self.assertEqual(torch.tensor([1, 0, 0, 0.6]).view(2, 2), torch.nn.Hardshrink(0.5)(data)) self.assertEqual(torch.tensor([1, 0, 0, 0.6]).view(2, 2), torch.nn.Hardshrink()(data)) # test non-contiguous case self.assertEqual(torch.tensor([1, 0.3, 0.5, 0.6]).view(2, 2), torch.nn.Hardshrink(0.1)(data.t())) # not supporting default lambd value for torch.hardshrink() due to a Scalar bug self.assertRaises(TypeError, lambda: data.hardshrink()) def test_unbiased(self): tensor = torch.randn(100) self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True)) self.assertEqual(tensor.var(), tensor.var(unbiased=True)) self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False)) tensor = torch.FloatTensor([1.0, 2.0]) self.assertEqual(tensor.var(unbiased=True), 0.5) self.assertEqual(tensor.var(unbiased=False), 0.25) tensor = torch.FloatTensor([1.0, 2.0, 3.0]) self.assertEqual(tensor.var(unbiased=True), 1.0) self.assertEqual(tensor.var(unbiased=False), 2.0 / 3.0) tensor = torch.randn(100) self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True)) self.assertEqual(tensor.std(), tensor.std(unbiased=True)) self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False)) def test_var_stability(self): tensor = torch.FloatTensor([2281.5, 2281.25]) self.assertEqual(tensor.var(dim=0), 0.03125) self.assertEqual(tensor.var(), 0.03125) @staticmethod def _test_view(self, cast): tensor = cast(torch.rand(15)) template = cast(torch.rand(3, 5)) empty = cast(torch.Tensor()) target = template.size() self.assertEqual(tensor.view_as(template).size(), target) self.assertEqual(tensor.view(3, 5).size(), target) self.assertEqual(tensor.view(torch.Size([3, 5])).size(), target) self.assertEqual(tensor.view(-1, 5).size(), target) self.assertEqual(tensor.view(3, -1).size(), target) tensor_view = tensor.view(5, 3) tensor_view.fill_(random.uniform(0, 1)) self.assertEqual(empty.view_as(empty), empty) self.assertEqual(empty.view(0), empty) self.assertRaises(RuntimeError, lambda: tensor.view(15, 0)) self.assertRaises(RuntimeError, lambda: tensor.view(7, -1)) self.assertRaises(RuntimeError, lambda: tensor.view(15, -1, -1)) # test view when tensor is not contiguous in every dimension, but only # contiguous dimensions are touched. tensor = cast(torch.rand(4, 2, 5, 1, 6, 2, 9, 3)).transpose(-1, 2).transpose(-2, 3) # size: [ 4, 2, 3, 9, 6, 2, 1, 5] # stride: [3840, 1620, 1, 3, 54, 27, 324, 324] # contiguous dim chunks: [__________, ____, ____, __________, ____, ____] # merging 1 to chunk after: [__________, ____, ____, __________, __________] contig_tensor = tensor.clone() # [4, 2] => [8, 1] # [3] => [3] # [9] => [3, 3] # [6, 2] => [4, 1, 3] # [1, 5] => [5] view_size = [8, 1, 3, 3, 3, 4, 1, 3, 5] self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size)) # [4, 2] => [2, 4] # [3] => [3] # [9] => [1, 9] # [6, 2] => [2, 2, 3] # [1, 5] => [5, 1] view_size = [2, 4, 3, 1, 9, 2, 2, 3, 5, 1] self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size)) # adding size 1 dims view_size = [1, 1, 2, 1, 4, 3, 1, 1, 9, 1, 2, 1, 2, 3, 1, 5, 1, 1] self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size)) # invalid views self.assertRaises(RuntimeError, lambda: tensor.view(-1)) # crossing [4, 2], [3] self.assertRaises(RuntimeError, lambda: tensor.view(24, 9, 6, 2, 1, 5)) # crossing [6, 2], [1, 5] self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 9, 6, 10)) # crossing [9], [6, 2] self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 54, 2, 1, 5)) # view with stride 0 dims tensor = cast(torch.Tensor(1, 1)).expand(3, 4) # all dims are contiguous contig_tensor = tensor.clone() self.assertEqual(tensor.view(-1), contig_tensor.view(-1)) self.assertEqual(tensor.view(1, -1, 1), contig_tensor.view(1, -1, 1)) self.assertEqual(tensor.view(-1, 1), contig_tensor.view(-1, 1)) self.assertEqual(tensor.view(6, 2, 1), contig_tensor.view(6, 2, 1)) self.assertEqual(tensor.view(1, 6, 2, 1), contig_tensor.view(1, 6, 2, 1)) def test_view(self): TestTorch._test_view(self, lambda x: x) def test_reshape(self): x = torch.randn(3, 3) self.assertEqual(x.data_ptr(), x.reshape(-1).data_ptr()) self.assertEqual(x.data_ptr(), x.reshape(1, 9, 1).data_ptr()) self.assertEqual(torch.reshape(x, (9,)), x.reshape(9)) self.assertRaises(RuntimeError, lambda: x.reshape(-1, -1)) y = torch.randn(4, 4, 4)[:, 0, :] self.assertNotEqual(y.data_ptr(), y.reshape(-1).data_ptr()) self.assertEqual(y.contiguous().view(-1), y.reshape(-1)) self.assertEqual(y.reshape(2, 2, 4).data_ptr(), y.data_ptr()) s = torch.randn(()) self.assertEqual(s.data_ptr(), s.reshape(()).data_ptr()) self.assertEqual(s.reshape(-1).shape, (1,)) self.assertRaises(RuntimeError, lambda: s.reshape(2)) empty = torch.tensor([]) self.assertEqual(empty, empty.reshape(-1)) self.assertEqual(empty, empty.reshape([0])) # TODO: fix these once we have multi-dimensional empty tensors self.assertEqual(empty.reshape([0, 1]).shape, (0,)) self.assertEqual(empty.reshape([1, -1]).shape, (0,)) self.assertRaises(RuntimeError, lambda: empty.reshape(1)) def test_expand(self): tensor = torch.rand(1, 8, 1) tensor2 = torch.rand(5) template = torch.rand(4, 8, 5) target = template.size() self.assertEqual(tensor.expand_as(template).size(), target) self.assertEqual(tensor.expand(4, 8, 5).size(), target) self.assertEqual(tensor.expand(target).size(), target) self.assertEqual(tensor2.expand_as(template).size(), target) self.assertEqual(tensor2.expand(4, 8, 5).size(), target) self.assertEqual(tensor2.expand(target).size(), target) # test double expand self.assertEqual(tensor2.expand(1, 5).expand(2, 2, 5), tensor2.repeat(2, 2, 1)) # test non-contiguous noncontig = torch.randn(5, 2, 1, 3)[:, 0] self.assertFalse(noncontig.is_contiguous()) self.assertEqual(noncontig.expand(2, 5, 4, 3), noncontig.contiguous().repeat(2, 1, 4, 1)) # make sure it's compatible with unsqueeze expanded = tensor2.expand(1, 1, 5) unsqueezed = tensor2.unsqueeze(0).unsqueeze(1) self.assertEqual(expanded, unsqueezed) self.assertEqual(expanded.stride(), unsqueezed.stride()) # test -1 as target size self.assertEqual(tensor.expand(4, -1, 5), tensor.expand(4, 8, 5)) self.assertRaises(RuntimeError, lambda: tensor2.expand(-1, -1)) # test expanding empty to empty self.assertEqual(torch.zeros(0).expand((0,)), torch.zeros(0)) def test_repeat(self): initial_shape = (8, 4) tensor = torch.rand(*initial_shape) size = (3, 1, 1) torchSize = torch.Size(size) target = [3, 8, 4] self.assertEqual(tensor.repeat(*size).size(), target, 'Error in repeat') self.assertEqual(tensor.repeat(torchSize).size(), target, 'Error in repeat using LongStorage') result = tensor.repeat(*size) self.assertEqual(result.size(), target, 'Error in repeat using result') result = tensor.repeat(torchSize) self.assertEqual(result.size(), target, 'Error in repeat using result and LongStorage') self.assertEqual(result.mean(0).view(8, 4), tensor, 'Error in repeat (not equal)') @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_repeat_tile(self): initial_shape = (8, 4) repeats = ((3, 1, 1), (3, 3, 3), (1, 2, 1), (2, 2, 2, 2)) def _generate_noncontiguous_input(): out = np.broadcast_to(np.random.random((1, 4)), initial_shape) assert not (out.flags.c_contiguous or out.flags.f_contiguous) return out for repeat in repeats: for tensor in (torch.from_numpy(np.random.random(initial_shape)), torch.from_numpy(_generate_noncontiguous_input()),): self.assertEqual(tensor.repeat(*repeat).numpy(), np.tile(tensor.numpy(), repeat)) def test_is_same_size(self): t1 = torch.Tensor(3, 4, 9, 10) t2 = torch.Tensor(3, 4) t3 = torch.Tensor(1, 9, 3, 3) t4 = torch.Tensor(3, 4, 9, 10) self.assertFalse(t1.is_same_size(t2)) self.assertFalse(t1.is_same_size(t3)) self.assertTrue(t1.is_same_size(t4)) def test_is_set_to(self): t1 = torch.Tensor(3, 4, 9, 10) t2 = torch.Tensor(3, 4, 9, 10) t3 = torch.Tensor().set_(t1) t4 = t3.clone().resize_(12, 90) self.assertFalse(t1.is_set_to(t2)) self.assertTrue(t1.is_set_to(t3)) self.assertTrue(t3.is_set_to(t1), "is_set_to should be symmetric") self.assertFalse(t1.is_set_to(t4)) self.assertFalse(torch.Tensor().is_set_to(torch.Tensor()), "Tensors with no storages should not appear to be set " "to each other") def test_tensor_set(self): t1 = torch.Tensor() t2 = torch.Tensor(3, 4, 9, 10).uniform_() t1.set_(t2) self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) size = torch.Size([9, 3, 4, 10]) t1.set_(t2.storage(), 0, size) self.assertEqual(t1.size(), size) t1.set_(t2.storage(), 0, tuple(size)) self.assertEqual(t1.size(), size) self.assertEqual(t1.stride(), (120, 40, 10, 1)) stride = (10, 360, 90, 1) t1.set_(t2.storage(), 0, size, stride) self.assertEqual(t1.stride(), stride) t1.set_(t2.storage(), 0, size=size, stride=stride) self.assertEqual(t1.size(), size) self.assertEqual(t1.stride(), stride) # test argument names t1 = torch.Tensor() # 1. case when source is tensor t1.set_(source=t2) self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) # 2. case when source is storage t1.set_(source=t2.storage()) self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) # 3. case when source is storage, and other args also specified t1.set_(source=t2.storage(), storage_offset=0, size=size, stride=stride) self.assertEqual(t1.size(), size) self.assertEqual(t1.stride(), stride) def test_equal(self): # Contiguous, 1D t1 = torch.Tensor((3, 4, 9, 10)) t2 = t1.contiguous() t3 = torch.Tensor((1, 9, 3, 10)) t4 = torch.Tensor((3, 4, 9)) t5 = torch.Tensor() self.assertTrue(t1.equal(t2)) self.assertFalse(t1.equal(t3)) self.assertFalse(t1.equal(t4)) self.assertFalse(t1.equal(t5)) self.assertTrue(torch.equal(t1, t2)) self.assertFalse(torch.equal(t1, t3)) self.assertFalse(torch.equal(t1, t4)) self.assertFalse(torch.equal(t1, t5)) # Non contiguous, 2D s = torch.Tensor(((1, 2, 3, 4), (5, 6, 7, 8))) s1 = s[:, 1:3] s2 = s1.clone() s3 = torch.Tensor(((2, 3), (6, 7))) s4 = torch.Tensor(((0, 0), (0, 0))) self.assertFalse(s1.is_contiguous()) self.assertTrue(s1.equal(s2)) self.assertTrue(s1.equal(s3)) self.assertFalse(s1.equal(s4)) self.assertTrue(torch.equal(s1, s2)) self.assertTrue(torch.equal(s1, s3)) self.assertFalse(torch.equal(s1, s4)) def test_element_size(self): byte = torch.ByteStorage().element_size() char = torch.CharStorage().element_size() short = torch.ShortStorage().element_size() int = torch.IntStorage().element_size() long = torch.LongStorage().element_size() float = torch.FloatStorage().element_size() double = torch.DoubleStorage().element_size() self.assertEqual(byte, torch.ByteTensor().element_size()) self.assertEqual(char, torch.CharTensor().element_size()) self.assertEqual(short, torch.ShortTensor().element_size()) self.assertEqual(int, torch.IntTensor().element_size()) self.assertEqual(long, torch.LongTensor().element_size()) self.assertEqual(float, torch.FloatTensor().element_size()) self.assertEqual(double, torch.DoubleTensor().element_size()) self.assertGreater(byte, 0) self.assertGreater(char, 0) self.assertGreater(short, 0) self.assertGreater(int, 0) self.assertGreater(long, 0) self.assertGreater(float, 0) self.assertGreater(double, 0) # These tests are portable, not necessarily strict for your system. self.assertEqual(byte, 1) self.assertEqual(char, 1) self.assertGreaterEqual(short, 2) self.assertGreaterEqual(int, 2) self.assertGreaterEqual(int, short) self.assertGreaterEqual(long, 4) self.assertGreaterEqual(long, int) self.assertGreaterEqual(double, float) def test_split(self): tensor = torch.rand(7, 4) split_size = 3 dim = 0 target_sizes = ([3, 4], [3, 4], [1, 4]) splits = tensor.split(split_size, dim) start = 0 for target_size, split in zip(target_sizes, splits): self.assertEqual(split.size(), target_size) self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0) start = start + target_size[dim] # Variable sections split tensor = torch.randn(20, 10) dim = 0 split_sizes = [5, 5, 10] target_sizes = ([[5, 10], [5, 10], [10, 10]]) splits = tensor.split(split_sizes, dim) start = 0 for target_size, split in zip(target_sizes, splits): self.assertEqual(split.size(), target_size) self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0) start = start + target_size[dim] split_sizes = [2, 2, 6] target_sizes = ([20, 2], [20, 2], [20, 6]) dim = 1 splits = tensor.split(split_sizes, dim) start = 0 for target_size, split in zip(target_sizes, splits): self.assertEqual(split.size(), target_size) self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0) start = start + target_size[dim] def test_chunk(self): tensor = torch.rand(4, 7) num_chunks = 3 dim = 1 target_sizes = ([4, 3], [4, 3], [4, 1]) splits = tensor.chunk(num_chunks, dim) start = 0 for target_size, split in zip(target_sizes, splits): self.assertEqual(split.size(), target_size) self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0) start = start + target_size[dim] # Invalid chunk sizes error_regex = 'chunk expects.*greater than 0' with self.assertRaisesRegex(RuntimeError, error_regex): tensor.chunk(0) with self.assertRaisesRegex(RuntimeError, error_regex): tensor.chunk(-2) def test_tolist(self): list0D = [] tensor0D = torch.Tensor(list0D) self.assertEqual(tensor0D.tolist(), list0D) table1D = [1, 2, 3] tensor1D = torch.Tensor(table1D) storage = torch.Storage(table1D) self.assertEqual(tensor1D.tolist(), table1D) self.assertEqual(storage.tolist(), table1D) self.assertEqual(tensor1D.tolist(), table1D) self.assertEqual(storage.tolist(), table1D) table2D = [[1, 2], [3, 4]] tensor2D = torch.Tensor(table2D) self.assertEqual(tensor2D.tolist(), table2D) tensor3D = torch.Tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) tensorNonContig = tensor3D.select(1, 1) self.assertFalse(tensorNonContig.is_contiguous()) self.assertEqual(tensorNonContig.tolist(), [[3, 4], [7, 8]]) def test_permute(self): orig = [1, 2, 3, 4, 5, 6, 7] perm = torch.randperm(7).tolist() x = torch.Tensor(*orig).fill_(0) new = list(map(lambda x: x - 1, x.permute(*perm).size())) self.assertEqual(perm, new) self.assertEqual(x.size(), orig) @staticmethod def _test_flip(self, use_cuda=False): if use_cuda: cuda = torch.device("cuda") data = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8], device=cuda).view(2, 2, 2) # large data testing large_data = torch.arange(0, 100000000, device=cuda).view(10000, 10000) large_data.flip([0, 1]) else: data = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]).view(2, 2, 2) self.assertEqual(torch.tensor([5, 6, 7, 8, 1, 2, 3, 4]).view(2, 2, 2), data.flip(0)) self.assertEqual(torch.tensor([3, 4, 1, 2, 7, 8, 5, 6]).view(2, 2, 2), data.flip(1)) self.assertEqual(torch.tensor([2, 1, 4, 3, 6, 5, 8, 7]).view(2, 2, 2), data.flip(2)) self.assertEqual(torch.tensor([7, 8, 5, 6, 3, 4, 1, 2]).view(2, 2, 2), data.flip(0, 1)) self.assertEqual(torch.tensor([8, 7, 6, 5, 4, 3, 2, 1]).view(2, 2, 2), data.flip(0, 1, 2)) # check for permute self.assertEqual(torch.tensor([6, 5, 8, 7, 2, 1, 4, 3]).view(2, 2, 2), data.flip(0, 2)) self.assertEqual(torch.tensor([6, 5, 8, 7, 2, 1, 4, 3]).view(2, 2, 2), data.flip(2, 0)) # not allow flip on the same dim more than once self.assertRaises(RuntimeError, lambda: data.flip(0, 1, 1)) # not allow empty list as input self.assertRaises(TypeError, lambda: data.flip()) # not allow size of flip dim > total dims self.assertRaises(RuntimeError, lambda: data.flip(0, 1, 2, 3)) # not allow dim < 0 self.assertRaises(RuntimeError, lambda: data.flip(-1)) # not allow dim > max dim self.assertRaises(RuntimeError, lambda: data.flip(3)) # test for non-contiguous case if use_cuda: expanded_data = torch.arange(1, 4, device=cuda).view(3, 1).expand(3, 2) tranposed_data = torch.arange(1, 9, device=cuda).view(2, 2, 2).transpose(0, 1) else: expanded_data = torch.arange(1, 4).view(3, 1).expand(3, 2) tranposed_data = torch.arange(1, 9).view(2, 2, 2).transpose(0, 1) self.assertEqual(torch.tensor([3, 3, 2, 2, 1, 1]).view(3, 2), expanded_data.flip(0)) self.assertEqual(torch.tensor([8, 7, 4, 3, 6, 5, 2, 1]).view(2, 2, 2), tranposed_data.flip(0, 1, 2)) def test_flip(self): self._test_flip(self, use_cuda=False) def test_storage(self): v = torch.randn(3, 5) self.assertEqual(v.storage()[0], v.data[0][0]) self.assertEqual(v.storage()[14], v.data[2][4]) def test_storageview(self): s1 = torch.LongStorage((3, 4, 5)) s2 = torch.LongStorage(s1, 1) self.assertEqual(s2.size(), 2) self.assertEqual(s2[0], s1[1]) self.assertEqual(s2[1], s1[2]) s2[1] = 13 self.assertEqual(13, s1[2]) def test_nonzero(self): num_src = 12 types = [ 'torch.ByteTensor', 'torch.CharTensor', 'torch.ShortTensor', 'torch.IntTensor', 'torch.FloatTensor', 'torch.DoubleTensor', 'torch.LongTensor', ] shapes = [ torch.Size((12,)), torch.Size((12, 1)), torch.Size((1, 12)), torch.Size((6, 2)), torch.Size((3, 2, 2)), ] for t in types: while True: tensor = torch.rand(num_src).mul(2).floor().type(t) if tensor.sum() > 0: break for shape in shapes: tensor = tensor.clone().resize_(shape) dst1 = torch.nonzero(tensor) dst2 = tensor.nonzero() dst3 = torch.LongTensor() torch.nonzero(tensor, out=dst3) if len(shape) == 1: dst = [] for i in range(num_src): if tensor[i] != 0: dst += [i] self.assertEqual(dst1.select(1, 0), torch.LongTensor(dst), 0) self.assertEqual(dst2.select(1, 0), torch.LongTensor(dst), 0) self.assertEqual(dst3.select(1, 0), torch.LongTensor(dst), 0) elif len(shape) == 2: # This test will allow through some False positives. It only checks # that the elements flagged positive are indeed non-zero. for i in range(dst1.size(0)): self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1]].item(), 0) elif len(shape) == 3: # This test will allow through some False positives. It only checks # that the elements flagged positive are indeed non-zero. for i in range(dst1.size(0)): self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1], dst1[i, 2]].item(), 0) def test_deepcopy(self): from copy import deepcopy a = torch.randn(5, 5) b = torch.randn(5, 5) c = a.view(25) q = [a, [a.storage(), b.storage()], b, c] w = deepcopy(q) self.assertEqual(w[0], q[0], 0) self.assertEqual(w[1][0], q[1][0], 0) self.assertEqual(w[1][1], q[1][1], 0) self.assertEqual(w[1], q[1], 0) self.assertEqual(w[2], q[2], 0) # Check that deepcopy preserves sharing w[0].add_(1) for i in range(a.numel()): self.assertEqual(w[1][0][i], q[1][0][i] + 1) self.assertEqual(w[3], c + 1) w[2].sub_(1) for i in range(a.numel()): self.assertEqual(w[1][1][i], q[1][1][i] - 1) def test_deepcopy_scalar(self): from copy import deepcopy a = torch.tensor(5) self.assertEqual(a.size(), deepcopy(a).size()) self.assertEqual(a, deepcopy(a)) def test_copy(self): from copy import copy a = torch.randn(5, 5) a_clone = a.clone() b = copy(a) b.fill_(1) # copy is a shallow copy, only copies the tensor view, # not the data self.assertEqual(a, b) def test_pickle(self): if sys.version_info[0] == 2: import cPickle as pickle else: import pickle a = torch.randn(5, 5) serialized = pickle.dumps(a) b = pickle.loads(serialized) self.assertEqual(a, b) def test_pickle_parameter(self): if sys.version_info[0] == 2: import cPickle as pickle else: import pickle a = torch.nn.Parameter(torch.randn(5, 5)) serialized = pickle.dumps(a) b = pickle.loads(serialized) self.assertTrue(isinstance(b, torch.nn.Parameter)) self.assertEqual(a.requires_grad, b.requires_grad) self.assertEqual(a, b) def test_pickle_parameter_no_requires_grad(self): if sys.version_info[0] == 2: import cPickle as pickle else: import pickle a = torch.nn.Parameter(torch.randn(5, 5), requires_grad=False) serialized = pickle.dumps(a) b = pickle.loads(serialized) self.assertTrue(isinstance(b, torch.nn.Parameter)) self.assertEqual(a.requires_grad, b.requires_grad) self.assertEqual(a, b) def test_norm_fastpaths(self): x = torch.randn(3, 5) # slow path result = torch.norm(x, 4.5, 1) expected = torch.pow(x.abs().pow(4.5).sum(1), 1.0 / 4.5) self.assertEqual(result, expected) # fast 0-norm result = torch.norm(x, 0, 1) expected = (x != 0).type_as(x).sum(1) self.assertEqual(result, expected) # fast 1-norm result = torch.norm(x, 1, 1) expected = x.abs().sum(1) self.assertEqual(result, expected) # fast 2-norm result = torch.norm(x, 2, 1) expected = torch.sqrt(x.pow(2).sum(1)) self.assertEqual(result, expected) # fast 3-norm result = torch.norm(x, 3, 1) expected = torch.pow(x.pow(3).abs().sum(1), 1.0 / 3.0) self.assertEqual(result, expected) def test_bernoulli(self): t = torch.ByteTensor(10, 10) def isBinary(t): return torch.ne(t, 0).mul_(torch.ne(t, 1)).sum() == 0 p = 0.5 t.bernoulli_(p) self.assertTrue(isBinary(t)) p = torch.rand(10, 10) t.bernoulli_(p) self.assertTrue(isBinary(t)) q = torch.rand(5, 5) self.assertTrue(isBinary(q.bernoulli())) def test_normal(self): q = torch.Tensor(100, 100) q.normal_() self.assertEqual(q.mean(), 0, 0.2) self.assertEqual(q.std(), 1, 0.2) q.normal_(2, 3) self.assertEqual(q.mean(), 2, 0.3) self.assertEqual(q.std(), 3, 0.3) mean = torch.Tensor(100, 100) std = torch.Tensor(100, 100) mean[:50] = 0 mean[50:] = 1 std[:, :50] = 4 std[:, 50:] = 1 r = torch.normal(mean) self.assertEqual(r[:50].mean(), 0, 0.2) self.assertEqual(r[50:].mean(), 1, 0.2) self.assertEqual(r.std(), 1, 0.2) r = torch.normal(mean, 3) self.assertEqual(r[:50].mean(), 0, 0.2) self.assertEqual(r[50:].mean(), 1, 0.2) self.assertEqual(r.std(), 3, 0.2) r = torch.normal(2, std) self.assertEqual(r.mean(), 2, 0.2) self.assertEqual(r[:, :50].std(), 4, 0.3) self.assertEqual(r[:, 50:].std(), 1, 0.2) r = torch.normal(mean, std) self.assertEqual(r[:50].mean(), 0, 0.2) self.assertEqual(r[50:].mean(), 1, 0.2) self.assertEqual(r[:, :50].std(), 4, 0.3) self.assertEqual(r[:, 50:].std(), 1, 0.2) def test_parsing_int64(self): # accepts integer arguments x = torch.cumsum(torch.ones(5, 5), 0) self.assertEqual(x, torch.cumsum(torch.ones(5, 5), torch.tensor(0))) # doesn't accept floating point variables self.assertRaises(TypeError, lambda: torch.cumsum(torch.ones(5, 5), torch.tensor(0.))) def test_parsing_double(self): # accepts floating point and integer arguments x = torch.randn(2, 3) torch.isclose(x, x, 1, 1) self.assertTrue(torch.isclose(x, x, 1, 1).all()) self.assertTrue(torch.isclose(x, x, 1.5, 1.).all()) # accepts floating point and integer tensors self.assertTrue(torch.isclose(x, x, torch.tensor(1), torch.tensor(1)).all()) self.assertTrue(torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1.)).all()) # doesn't accept variables with requires_grad self.assertRaises(TypeError, lambda: torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1., requires_grad=True)).all()) def test_parsing_intlist(self): # parse with integer variables self.assertEqual(torch.Size([3, 4]), torch.ones((torch.tensor(3), torch.tensor(4))).shape) self.assertEqual(torch.Size([3, 4]), torch.ones(torch.tensor(3), torch.tensor(4)).shape) # parse with numpy integers if TEST_NUMPY: self.assertEqual(torch.Size([3, 4]), torch.ones((np.array(3), np.int64(4))).shape) self.assertEqual(torch.Size([3, 4]), torch.ones(np.array(3), np.int64(4)).shape) self.assertEqual(torch.Size([3, 4]), torch.ones((np.int64(3), np.array(4))).shape) self.assertEqual(torch.Size([3, 4]), torch.ones(np.int64(3), np.array(4)).shape) # fail parse with float variables self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3.), torch.tensor(4)))) # fail parse with numpy floats if TEST_NUMPY: self.assertRaises(TypeError, lambda: torch.ones((np.float(3.), torch.tensor(4)))) self.assertRaises(TypeError, lambda: torch.ones((np.array(3.), torch.tensor(4)))) # fail parse with > 1 element variables self.assertRaises(TypeError, lambda: torch.ones(torch.tensor(3, 3))) self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3, 3)))) if TEST_NUMPY: self.assertRaises(TypeError, lambda: torch.ones(np.array(3, 3))) self.assertRaises(TypeError, lambda: torch.ones((np.array(3, 3)))) def _test_serialization_data(self): a = [torch.randn(5, 5).float() for i in range(2)] b = [a[i % 2] for i in range(4)] b += [a[0].storage()] b += [a[0].storage()[1:4]] b += [torch.arange(1, 11).int()] t1 = torch.FloatTensor().set_(a[0].storage()[1:4], 0, (3,), (1,)) t2 = torch.FloatTensor().set_(a[0].storage()[1:4], 0, (3,), (1,)) b += [(t1.storage(), t1.storage(), t2.storage())] b += [a[0].storage()[0:2]] return b def _test_serialization_assert(self, b, c): self.assertEqual(b, c, 0) self.assertTrue(isinstance(c[0], torch.FloatTensor)) self.assertTrue(isinstance(c[1], torch.FloatTensor)) self.assertTrue(isinstance(c[2], torch.FloatTensor)) self.assertTrue(isinstance(c[3], torch.FloatTensor)) self.assertTrue(isinstance(c[4], torch.FloatStorage)) c[0].fill_(10) self.assertEqual(c[0], c[2], 0) self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), 0) c[1].fill_(20) self.assertEqual(c[1], c[3], 0) self.assertEqual(c[4][1:4], c[5], 0) # check that serializing the same storage view object unpickles # it as one object not two (and vice versa) views = c[7] self.assertEqual(views[0]._cdata, views[1]._cdata) self.assertEqual(views[0], views[2]) self.assertNotEqual(views[0]._cdata, views[2]._cdata) rootview = c[8] self.assertEqual(rootview.data_ptr(), c[0].data_ptr()) def test_serialization(self): # Test serialization with a real file b = self._test_serialization_data() for use_name in (False, True): # Passing filename to torch.save(...) will cause the file to be opened twice, # which is not supported on Windows if sys.platform == "win32" and use_name: continue with tempfile.NamedTemporaryFile() as f: handle = f if not use_name else f.name torch.save(b, handle) f.seek(0) c = torch.load(handle) self._test_serialization_assert(b, c) def test_serialization_filelike(self): # Test serialization (load and save) with a filelike object b = self._test_serialization_data() with BytesIOContext() as f: torch.save(b, f) f.seek(0) c = torch.load(f) self._test_serialization_assert(b, c) def test_serialization_gzip(self): # Test serialization with gzip file b = self._test_serialization_data() f1 = tempfile.NamedTemporaryFile(delete=False) f2 = tempfile.NamedTemporaryFile(delete=False) torch.save(b, f1) with open(f1.name, 'rb') as f_in, gzip.open(f2.name, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) with gzip.open(f2.name, 'rb') as f: c = torch.load(f) self._test_serialization_assert(b, c) def test_serialization_offset(self): a = torch.randn(5, 5) i = 41 for use_name in (False, True): # Passing filename to torch.save(...) will cause the file to be opened twice, # which is not supported on Windows if sys.platform == "win32" and use_name: continue with tempfile.NamedTemporaryFile() as f: handle = f if not use_name else f.name pickle.dump(i, f) torch.save(a, f) f.seek(0) j = pickle.load(f) b = torch.load(f) self.assertTrue(torch.equal(a, b)) self.assertEqual(i, j) def test_serialization_offset_filelike(self): a = torch.randn(5, 5) i = 41 with BytesIOContext() as f: pickle.dump(i, f) torch.save(a, f) f.seek(0) j = pickle.load(f) b = torch.load(f) self.assertTrue(torch.equal(a, b)) self.assertEqual(i, j) def test_serialization_offset_gzip(self): a = torch.randn(5, 5) i = 41 f1 = tempfile.NamedTemporaryFile(delete=False) f2 = tempfile.NamedTemporaryFile(delete=False) with open(f1.name, 'wb') as f: pickle.dump(i, f) torch.save(a, f) with open(f1.name, 'rb') as f_in, gzip.open(f2.name, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) with gzip.open(f2.name, 'rb') as f: j = pickle.load(f) b = torch.load(f) self.assertTrue(torch.equal(a, b)) self.assertEqual(i, j) def test_half_tensor(self): x = torch.randn(5, 5).float() y = torch.randn(5, 5).float() xh, yh = x.half(), y.half() self.assertEqual(x.half().float(), x, 1e-3) z = torch.Tensor(5, 5) self.assertEqual(z.copy_(xh), x, 1e-3) with tempfile.NamedTemporaryFile() as f: torch.save(xh, f) f.seek(0) xh2 = torch.load(f) self.assertEqual(xh.float(), xh2.float()) def test_serialize_device(self): device_str = ['cpu', 'cpu:0', 'cuda', 'cuda:0'] device_obj = [torch.device(d) for d in device_str] for device in device_obj: device_copied = copy.deepcopy(device) self.assertEqual(device, device_copied) @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') def test_half_tensor_cuda(self): x = torch.randn(5, 5).half() self.assertEqual(x.cuda(), x) xc = x.cuda() with tempfile.NamedTemporaryFile() as f: torch.save(xc, f) f.seek(0) xc2 = torch.load(f) self.assertIsInstance(xc2, type(xc)) self.assertEqual(xc.float(), xc2.float()) def _test_serialization_cuda(self, filecontext_lambda): device_count = torch.cuda.device_count() t0 = torch.cuda.FloatTensor(5).fill_(1) torch.cuda.set_device(device_count - 1) tn = torch.cuda.FloatTensor(3).fill_(2) torch.cuda.set_device(0) b = (t0, tn) with filecontext_lambda() as f: torch.save(b, f) f.seek(0) c = torch.load(f) self.assertEqual(b, c, 0) u0, un = c self.assertEqual(u0.get_device(), 0) self.assertEqual(un.get_device(), device_count - 1) @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') def test_serialization_cuda(self): self._test_serialization_cuda(tempfile.NamedTemporaryFile) @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') def test_serialization_cuda_filelike(self): self._test_serialization_cuda(BytesIOContext) def test_serialization_backwards_compat(self): a = [torch.arange(1 + i, 26 + i).view(5, 5).float() for i in range(2)] b = [a[i % 2] for i in range(4)] b += [a[0].storage()] b += [a[0].storage()[1:4]] path = download_file('https://download.pytorch.org/test_data/legacy_serialized.pt') c = torch.load(path) self.assertEqual(b, c, 0) self.assertTrue(isinstance(c[0], torch.FloatTensor)) self.assertTrue(isinstance(c[1], torch.FloatTensor)) self.assertTrue(isinstance(c[2], torch.FloatTensor)) self.assertTrue(isinstance(c[3], torch.FloatTensor)) self.assertTrue(isinstance(c[4], torch.FloatStorage)) c[0].fill_(10) self.assertEqual(c[0], c[2], 0) self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), 0) c[1].fill_(20) self.assertEqual(c[1], c[3], 0) self.assertEqual(c[4][1:4], c[5], 0) # test some old tensor serialization mechanism class OldTensorBase(object): def __init__(self, new_tensor): self.new_tensor = new_tensor def __getstate__(self): return (self.new_tensor.storage(), self.new_tensor.storage_offset(), tuple(self.new_tensor.size()), self.new_tensor.stride()) class OldTensorV1(OldTensorBase): def __reduce__(self): return (torch.Tensor, (), self.__getstate__()) class OldTensorV2(OldTensorBase): def __reduce__(self): return (_rebuild_tensor, self.__getstate__()) x = torch.randn(30).as_strided([2, 3], [9, 3], 2) for old_cls in [OldTensorV1, OldTensorV2]: with tempfile.NamedTemporaryFile() as f: old_x = old_cls(x) torch.save(old_x, f) f.seek(0) load_x = torch.load(f) self.assertEqual(x.storage(), load_x.storage()) self.assertEqual(x.storage_offset(), load_x.storage_offset()) self.assertEqual(x.size(), load_x.size()) self.assertEqual(x.stride(), load_x.stride()) # unique_key is necessary because on Python 2.7, if a warning passed to # the warning module is the same, it is not raised again. def _test_serialization_container(self, unique_key, filecontext_lambda): tmpmodule_name = 'tmpmodule{}'.format(unique_key) def import_module(name, filename): if sys.version_info >= (3, 5): import importlib.util spec = importlib.util.spec_from_file_location(name, filename) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) else: import imp module = imp.load_source(name, filename) sys.modules[module.__name__] = module return module with filecontext_lambda() as checkpoint: try: fname = get_file_path_2(os.path.dirname(__file__), 'data', 'network1.py') except IOError: fname = get_file_path_2(os.path.dirname(__file__), 'data', 'network1.pyc') module = import_module(tmpmodule_name, fname) torch.save(module.Net(), checkpoint) # First check that the checkpoint can be loaded without warnings checkpoint.seek(0) with warnings.catch_warnings(record=True) as w: loaded = torch.load(checkpoint) self.assertTrue(isinstance(loaded, module.Net)) if can_retrieve_source: self.assertEquals(len(w), 0) # Replace the module with different source try: fname = get_file_path_2(os.path.dirname(__file__), 'data', 'network2.py') except IOError: fname = get_file_path_2(os.path.dirname(__file__), 'data', 'network2.pyc') module = import_module(tmpmodule_name, fname) checkpoint.seek(0) with warnings.catch_warnings(record=True) as w: loaded = torch.load(checkpoint) self.assertTrue(isinstance(loaded, module.Net)) if can_retrieve_source: self.assertEquals(len(w), 1) self.assertTrue(w[0].category, 'SourceChangeWarning') def test_serialization_container(self): self._test_serialization_container('file', tempfile.NamedTemporaryFile) def test_serialization_container_filelike(self): self._test_serialization_container('filelike', BytesIOContext) def test_serialization_map_location(self): test_file_path = download_file('https://download.pytorch.org/test_data/gpu_tensors.pt') def map_location(storage, loc): return storage def load_bytes(): with open(test_file_path, 'rb') as f: return io.BytesIO(f.read()) fileobject_lambdas = [lambda: test_file_path, load_bytes] cpu_map_locations = [ map_location, {'cuda:0': 'cpu'}, 'cpu', torch.device('cpu'), ] gpu_0_map_locations = [ {'cuda:0': 'cuda:0'}, 'cuda', 'cuda:0', torch.device('cuda'), torch.device('cuda', 0) ] gpu_last_map_locations = [ 'cuda:{}'.format(torch.cuda.device_count() - 1), ] def check_map_locations(map_locations, tensor_class, intended_device): for fileobject_lambda in fileobject_lambdas: for map_location in map_locations: tensor = torch.load(fileobject_lambda(), map_location=map_location) self.assertEqual(tensor.device, intended_device) self.assertIsInstance(tensor, tensor_class) self.assertEqual(tensor, tensor_class([[1.0, 2.0], [3.0, 4.0]])) check_map_locations(cpu_map_locations, torch.FloatTensor, torch.device('cpu')) if torch.cuda.is_available(): check_map_locations(gpu_0_map_locations, torch.cuda.FloatTensor, torch.device('cuda', 0)) check_map_locations( gpu_last_map_locations, torch.cuda.FloatTensor, torch.device('cuda', torch.cuda.device_count() - 1) ) @unittest.skipIf(torch.cuda.is_available(), "Testing torch.load on CPU-only machine") @unittest.skipIf(not PY3, "Test tensors were serialized using python 3") def test_load_nonexistent_device(self): # Setup: create a serialized file object with a 'cuda:0' restore location # The following was generated by saving a torch.randn(2, device='cuda') tensor. serialized = (b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9' b'\x03.\x80\x02}q\x00(X\x10\x00\x00\x00protocol_versionq' b'\x01M\xe9\x03X\r\x00\x00\x00little_endianq\x02\x88X\n' b'\x00\x00\x00type_sizesq\x03}q\x04(X\x05\x00\x00\x00shortq' b'\x05K\x02X\x03\x00\x00\x00intq\x06K\x04X\x04\x00\x00\x00' b'longq\x07K\x04uu.\x80\x02ctorch._utils\n_rebuild_tensor_v2' b'\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\nFloatStorage' b'\nq\x02X\x0e\x00\x00\x0094919395964320q\x03X\x06\x00\x00' b'\x00cuda:0q\x04K\x02Ntq\x05QK\x00K\x02\x85q\x06K\x01\x85q' b'\x07\x89Ntq\x08Rq\t.\x80\x02]q\x00X\x0e\x00\x00\x00' b'94919395964320q\x01a.\x02\x00\x00\x00\x00\x00\x00\x00\xbb' b'\x1f\x82\xbe\xea\x81\xd1>') buf = io.BytesIO(serialized) error_msg = r'Attempting to deserialize object on a CUDA device' with self.assertRaisesRegex(RuntimeError, error_msg): _ = torch.load(buf) def test_serialization_filelike_api_requirements(self): filemock = FilelikeMock(b'', has_readinto=False) tensor = torch.randn(3, 5) torch.save(tensor, filemock) expected_superset = set(['write', 'flush']) self.assertTrue(expected_superset.issuperset(filemock.calls)) # Reset between save and load filemock.seek(0) filemock.calls.clear() _ = torch.load(filemock) expected_superset = set(['read', 'readline', 'seek', 'tell']) self.assertTrue(expected_superset.issuperset(filemock.calls)) def _test_serialization_filelike(self, tensor, mock, desc): f = mock(b'') torch.save(tensor, f) f.seek(0) data = mock(f.read()) msg = 'filelike serialization with {}' b = torch.load(data) self.assertTrue(torch.equal(tensor, b), msg.format(desc)) def test_serialization_filelike_missing_attrs(self): # Test edge cases where filelike objects are missing attributes. # The Python io docs suggests that these attributes should really exist # and throw io.UnsupportedOperation, but that isn't always the case. mocks = [ ('no readinto', lambda x: FilelikeMock(x)), ('has readinto', lambda x: FilelikeMock(x, has_readinto=True)), ('no fileno', lambda x: FilelikeMock(x, has_fileno=False)), ] to_serialize = torch.randn(3, 10) for desc, mock in mocks: self._test_serialization_filelike(to_serialize, mock, desc) def test_serialization_filelike_stress(self): a = torch.randn(11 * (2 ** 9) + 1, 5 * (2 ** 9)) # This one should call python read multiple times self._test_serialization_filelike(a, lambda x: FilelikeMock(x, has_readinto=False), 'read() stress test') self._test_serialization_filelike(a, lambda x: FilelikeMock(x, has_readinto=True), 'readinto() stress test') def test_serialization_filelike_uses_readinto(self): # For maximum effiency, when reading a file-like object, # ensure the C API calls readinto instead of read. a = torch.randn(5, 4) f = io.BytesIO() torch.save(a, f) f.seek(0) data = FilelikeMock(f.read(), has_readinto=True) b = torch.load(data) self.assertTrue(data.was_called('readinto')) def test_load_error_msg(self): expected_err_msg = (".*You can only torch.load from a file that is seekable. " + "Please pre-load the data into a buffer like io.BytesIO and " + "try to load from it instead.") if PY3: import urllib.request import io resource = urllib.request.urlopen('https://download.pytorch.org/test_data/linear.pt') self.assertRaisesRegex(io.UnsupportedOperation, expected_err_msg, lambda: torch.load(resource)) else: import urllib resource = urllib.urlopen('https://download.pytorch.org/test_data/linear.pt') self.assertRaisesRegex(AttributeError, expected_err_msg, lambda: torch.load(resource)) def test_from_buffer(self): a = bytearray([1, 2, 3, 4]) self.assertEqual(torch.ByteStorage.from_buffer(a).tolist(), [1, 2, 3, 4]) shorts = torch.ShortStorage.from_buffer(a, 'big') self.assertEqual(shorts.size(), 2) self.assertEqual(shorts.tolist(), [258, 772]) ints = torch.IntStorage.from_buffer(a, 'little') self.assertEqual(ints.size(), 1) self.assertEqual(ints[0], 67305985) f = bytearray([0x40, 0x10, 0x00, 0x00]) floats = torch.FloatStorage.from_buffer(f, 'big') self.assertEqual(floats.size(), 1) self.assertEqual(floats[0], 2.25) @unittest.skipIf(IS_WINDOWS, "TODO: need to fix this test case for Windows") def test_from_file(self): size = 10000 with tempfile.NamedTemporaryFile() as f: s1 = torch.FloatStorage.from_file(f.name, True, size) t1 = torch.FloatTensor(s1).copy_(torch.randn(size)) # check mapping s2 = torch.FloatStorage.from_file(f.name, True, size) t2 = torch.FloatTensor(s2) self.assertEqual(t1, t2, 0) # check changes to t1 from t2 rnum = random.uniform(-1, 1) t1.fill_(rnum) self.assertEqual(t1, t2, 0) # check changes to t2 from t1 rnum = random.uniform(-1, 1) t2.fill_(rnum) self.assertEqual(t1, t2, 0) def test_print(self): default_type = torch.Tensor().type() for t in torch._tensor_classes: if t == torch.HalfTensor: continue # HalfTensor does not support fill if t.is_sparse: continue if t.is_cuda and not torch.cuda.is_available(): continue obj = t(100, 100).fill_(1) obj.__repr__() str(obj) for t in torch._storage_classes: if t.is_cuda and not torch.cuda.is_available(): continue obj = t(100).fill_(1) obj.__repr__() str(obj) # test big integer x = torch.tensor(2341234123412341) self.assertEqual(x.__repr__(), str(x)) self.assertExpected(str(x), subname='bigint') # test scientific notation x = torch.tensor([1e28, 1e-28]) self.assertEqual(x.__repr__(), str(x)) self.assertExpected(str(x), subname='scimode') # test no leading space if all elements positive x = torch.tensor([1, 2]) self.assertEqual(x.__repr__(), str(x)) self.assertExpected(str(x), subname='posint') # test for leading space if there are negative elements x = torch.tensor([1, -2]) self.assertEqual(x.__repr__(), str(x)) self.assertExpected(str(x), subname='negint') # test inf and nan x = torch.tensor([4, float('inf'), 1.5, float('-inf'), 0, float('nan'), 1]) self.assertEqual(x.__repr__(), str(x)) self.assertExpected(str(x), subname='nonfinite') # test dtype torch.set_default_dtype(torch.float) x = torch.tensor([1e-324, 1e-323, 1e-322, 1e307, 1e308, 1e309], dtype=torch.float64) self.assertEqual(x.__repr__(), str(x)) self.assertExpected(str(x), subname='dtype') # test changing default dtype torch.set_default_dtype(torch.float64) self.assertEqual(x.__repr__(), str(x)) self.assertExpected(str(x), subname='default_dtype') # test summary x = torch.zeros(10000) self.assertEqual(x.__repr__(), str(x)) self.assertExpected(str(x), subname='summary') # test device if torch.cuda.is_available(): x = torch.tensor([123], device='cuda:0') self.assertEqual(x.__repr__(), str(x)) self.assertExpected(str(x), subname='device') # test changing default to cuda torch.set_default_tensor_type(torch.cuda.FloatTensor) self.assertEqual(x.__repr__(), str(x)) self.assertExpected(str(x), subname='default_device') torch.set_default_tensor_type(default_type) # test integral floats and requires_grad x = torch.tensor([123.], requires_grad=True) self.assertEqual(x.__repr__(), str(x)) self.assertExpected(str(x), subname='requires_grad') def test_sizeof(self): sizeof_empty = torch.randn(0).storage().__sizeof__() sizeof_10 = torch.randn(10).storage().__sizeof__() sizeof_100 = torch.randn(100).storage().__sizeof__() self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10) self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0) sizeof_empty = torch.randn(0).type(torch.ByteTensor).storage().__sizeof__() sizeof_10 = torch.randn(10).type(torch.ByteTensor).storage().__sizeof__() sizeof_100 = torch.randn(100).type(torch.ByteTensor).storage().__sizeof__() self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10) self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0) def test_unsqueeze(self): x = torch.randn(2, 3, 4) y = x.unsqueeze(1) self.assertEqual(y, x.view(2, 1, 3, 4)) y = x.clone().unsqueeze_(2) self.assertEqual(y, x.view(2, 3, 1, 4)) x = x[:, 1] self.assertFalse(x.is_contiguous()) y = x.unsqueeze(1) self.assertEqual(y, x.contiguous().view(2, 1, 4)) y = x.clone().unsqueeze_(2) self.assertEqual(y, x.contiguous().view(2, 4, 1)) self.assertRaises(RuntimeError, lambda: torch.Tensor().unsqueeze(0)) def test_iter(self): x = torch.randn(5, 5) for i, sub in enumerate(x): self.assertEqual(sub, x[i]) x = torch.Tensor() self.assertEqual(list(x), []) def test_accreal_type(self): x = torch.ones(2, 3, 4) self.assertIsInstance(x.double().sum().item(), float) self.assertIsInstance(x.float().sum().item(), float) self.assertIsInstance(x.long().sum().item(), int) self.assertIsInstance(x.int().sum().item(), int) self.assertIsInstance(x.short().sum().item(), int) self.assertIsInstance(x.char().sum().item(), int) self.assertIsInstance(x.byte().sum().item(), int) def test_assertEqual(self): x = torch.FloatTensor([0]) self.assertEqual(x, 0) xv = torch.autograd.Variable(x) self.assertEqual(xv, 0) self.assertEqual(x, xv) self.assertEqual(xv, x) def test_new(self): x = torch.autograd.Variable(torch.Tensor()) y = torch.autograd.Variable(torch.randn(4, 4)) z = torch.autograd.Variable(torch.IntTensor([1, 2, 3])) self.assertEqual(x.new().shape, [0]) self.assertEqual(x.new(), x) self.assertEqual(x.new(1, 2).shape, [1, 2]) self.assertEqual(x.new(torch.Size([3, 4])).shape, [3, 4]) self.assertEqual(x.new([3, 4]).shape, [2]) self.assertEqual(x.new([3, 4]).tolist(), [3, 4]) self.assertEqual(x.new((3, 4)).tolist(), [3, 4]) if TEST_NUMPY: self.assertEqual(x.new([np.int32(3), np.float64(4)]).tolist(), [3, 4]) self.assertEqual(x.new(np.array((3, 4))).tolist(), [3, 4]) self.assertEqual(x.new([z[2], z[0] + 3]).tolist(), [3, 4]) self.assertEqual(x.new(size=(3, 4)).shape, [3, 4]) self.assertEqual(x.new(tuple()).shape, [0]) self.assertEqual(x.new(y.storage()).data_ptr(), y.data_ptr()) self.assertEqual(x.new(y).data_ptr(), y.data_ptr()) self.assertIsNot(x.new(y), y) self.assertRaises(TypeError, lambda: x.new(z)) # TypeError would be better self.assertRaises(RuntimeError, lambda: x.new(z.storage())) def test_empty_like(self): x = torch.autograd.Variable(torch.Tensor()) y = torch.autograd.Variable(torch.randn(4, 4)) z = torch.autograd.Variable(torch.IntTensor([1, 2, 3])) for a in (x, y, z): self.assertEqual(torch.empty_like(a).shape, a.shape) self.assertEqual(torch.empty_like(a).type(), a.type()) @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') def test_pin_memory(self): x = torch.randn(3, 5) self.assertFalse(x.is_pinned()) pinned = x.pin_memory() self.assertTrue(pinned.is_pinned()) self.assertEqual(pinned, x) self.assertNotEqual(pinned.data_ptr(), x.data_ptr()) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_numpy_unresizable(self): x = np.zeros((2, 2)) y = torch.from_numpy(x) with self.assertRaises(ValueError): x.resize((5, 5)) z = torch.randn(5, 5) w = z.numpy() with self.assertRaises(RuntimeError): z.resize_(10, 10) with self.assertRaises(ValueError): w.resize((10, 10)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_toNumpy(self): types = [ 'torch.ByteTensor', 'torch.IntTensor', 'torch.HalfTensor', 'torch.FloatTensor', 'torch.DoubleTensor', 'torch.LongTensor', ] for tp in types: # 1D sz = 10 x = torch.randn(sz).mul(255).type(tp) y = x.numpy() for i in range(sz): self.assertEqual(x[i], y[i]) # 1D > 0 storage offset xm = torch.randn(sz * 2).mul(255).type(tp) x = xm.narrow(0, sz - 1, sz) self.assertTrue(x.storage_offset() > 0) y = x.numpy() for i in range(sz): self.assertEqual(x[i], y[i]) def check2d(x, y): for i in range(sz1): for j in range(sz2): self.assertEqual(x[i][j], y[i][j]) # empty x = torch.Tensor().type(tp) y = x.numpy() self.assertEqual(y.size, 0) # contiguous 2D sz1 = 3 sz2 = 5 x = torch.randn(sz1, sz2).mul(255).type(tp) y = x.numpy() check2d(x, y) self.assertTrue(y.flags['C_CONTIGUOUS']) # with storage offset xm = torch.randn(sz1 * 2, sz2).mul(255).type(tp) x = xm.narrow(0, sz1 - 1, sz1) y = x.numpy() self.assertTrue(x.storage_offset() > 0) check2d(x, y) self.assertTrue(y.flags['C_CONTIGUOUS']) # non-contiguous 2D x = torch.randn(sz2, sz1).mul(255).type(tp).t() y = x.numpy() check2d(x, y) self.assertFalse(y.flags['C_CONTIGUOUS']) # with storage offset xm = torch.randn(sz2 * 2, sz1).mul(255).type(tp) x = xm.narrow(0, sz2 - 1, sz2).t() y = x.numpy() self.assertTrue(x.storage_offset() > 0) check2d(x, y) # non-contiguous 2D with holes xm = torch.randn(sz2 * 2, sz1 * 2).mul(255).type(tp) x = xm.narrow(0, sz2 - 1, sz2).narrow(1, sz1 - 1, sz1).t() y = x.numpy() self.assertTrue(x.storage_offset() > 0) check2d(x, y) if tp != 'torch.HalfTensor': # check writeable x = torch.randn(3, 4).mul(255).type(tp) y = x.numpy() self.assertTrue(y.flags.writeable) y[0][1] = 3 self.assertTrue(x[0][1] == 3) y = x.t().numpy() self.assertTrue(y.flags.writeable) y[0][1] = 3 self.assertTrue(x[0][1] == 3) def test_dlpack_conversion(self): x = torch.randn(1, 2, 3, 4).type('torch.FloatTensor') z = from_dlpack(to_dlpack(x)) self.assertEqual(z, x) @unittest.skipIf(not torch.cuda.is_available(), "No CUDA") def test_dlpack_cuda(self): x = torch.randn(1, 2, 3, 4).cuda() z = from_dlpack(to_dlpack(x)) self.assertEqual(z, x) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_from_numpy(self): dtypes = [ np.double, np.float, np.float16, np.int64, np.int32, np.int16, np.uint8, np.longlong, ] for dtype in dtypes: array = np.array([1, 2, 3, 4], dtype=dtype) tensor_from_array = torch.from_numpy(array) # TODO: change to tensor equality check once HalfTensor # implements `==` for i in range(len(array)): self.assertEqual(tensor_from_array[i], array[i]) # check storage offset x = np.linspace(1, 125, 125) x.shape = (5, 5, 5) x = x[1] expected = torch.arange(1, 126).view(5, 5, 5)[1] self.assertEqual(torch.from_numpy(x), expected) # check noncontiguous x = np.linspace(1, 25, 25) x.shape = (5, 5) expected = torch.arange(1, 26).view(5, 5).t() self.assertEqual(torch.from_numpy(x.T), expected) # check noncontiguous with holes x = np.linspace(1, 125, 125) x.shape = (5, 5, 5) x = x[:, 1] expected = torch.arange(1, 126).view(5, 5, 5)[:, 1] self.assertEqual(torch.from_numpy(x), expected) # check zero dimensional x = np.zeros((0, 2)) if torch._C._use_zero_size_dim(): self.assertEqual(torch.from_numpy(x).shape, (0, 2)) else: self.assertEqual(torch.from_numpy(x).shape, (0,)) # check ill-sized strides raise exception x = np.array([3., 5., 8.]) x.strides = (3,) self.assertRaises(ValueError, lambda: torch.from_numpy(x)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_ctor_with_numpy_array(self): dtypes = [ np.double, np.float, np.float16, np.int64, np.int32, np.int16, np.uint8 ] for dtype in dtypes: array = np.array([1, 2, 3, 4], dtype=dtype) # Upcast tensor = torch.DoubleTensor(array) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) if torch.cuda.is_available(): tensor = torch.cuda.DoubleTensor(array) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) # Downcast (sometimes) tensor = torch.FloatTensor(array) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) tensor = torch.HalfTensor(array) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) if torch.cuda.is_available(): tensor = torch.cuda.FloatTensor(array) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) tensor = torch.cuda.HalfTensor(array) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_numpy_index(self): i = np.int32([0, 1, 2]) x = torch.randn(5, 5) for idx in i: self.assertFalse(isinstance(idx, int)) self.assertEqual(x[idx], x[int(idx)]) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_numpy_array_interface(self): types = [ torch.DoubleTensor, torch.FloatTensor, torch.HalfTensor, torch.LongTensor, torch.IntTensor, torch.ShortTensor, torch.ByteTensor, ] dtypes = [ np.float64, np.float32, np.float16, np.int64, np.int32, np.int16, np.uint8, ] for tp, dtype in zip(types, dtypes): if np.dtype(dtype).kind == 'u': x = torch.Tensor([1, 2, 3, 4]).type(tp) array = np.array([1, 2, 3, 4], dtype=dtype) else: x = torch.Tensor([1, -2, 3, -4]).type(tp) array = np.array([1, -2, 3, -4], dtype=dtype) # Test __array__ w/o dtype argument asarray = np.asarray(x) self.assertIsInstance(asarray, np.ndarray) self.assertEqual(asarray.dtype, dtype) for i in range(len(x)): self.assertEqual(asarray[i], x[i]) # Test __array_wrap__, same dtype abs_x = np.abs(x) abs_array = np.abs(array) self.assertIsInstance(abs_x, tp) for i in range(len(x)): self.assertEqual(abs_x[i], abs_array[i]) # Test __array__ with dtype argument for dtype in dtypes: x = torch.IntTensor([1, -2, 3, -4]) asarray = np.asarray(x, dtype=dtype) self.assertEqual(asarray.dtype, dtype) if np.dtype(dtype).kind == 'u': wrapped_x = np.array([1, -2, 3, -4], dtype=dtype) for i in range(len(x)): self.assertEqual(asarray[i], wrapped_x[i]) else: for i in range(len(x)): self.assertEqual(asarray[i], x[i]) # Test some math functions with float types float_types = [torch.DoubleTensor, torch.FloatTensor] float_dtypes = [np.float64, np.float32] for tp, dtype in zip(float_types, float_dtypes): x = torch.Tensor([1, 2, 3, 4]).type(tp) array = np.array([1, 2, 3, 4], dtype=dtype) for func in ['sin', 'sqrt', 'ceil']: ufunc = getattr(np, func) res_x = ufunc(x) res_array = ufunc(array) self.assertIsInstance(res_x, tp) for i in range(len(x)): self.assertEqual(res_x[i], res_array[i]) # Test functions with boolean return value for tp, dtype in zip(types, dtypes): x = torch.Tensor([1, 2, 3, 4]).type(tp) array = np.array([1, 2, 3, 4], dtype=dtype) geq2_x = np.greater_equal(x, 2) geq2_array = np.greater_equal(array, 2).astype('uint8') self.assertIsInstance(geq2_x, torch.ByteTensor) for i in range(len(x)): self.assertEqual(geq2_x[i], geq2_array[i]) def test_error_msg_type_translation(self): with self.assertRaisesRegex( RuntimeError, # message includes both torch.DoubleTensor and torch.LongTensor '(?=.*torch\.DoubleTensor)(?=.*torch\.LongTensor)'): # Calls model with a DoubleTensor input but LongTensor weights input = torch.autograd.Variable(torch.randn(1, 1, 1, 6).double()) weight = torch.zeros(1, 1, 1, 3).long() model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False) model.weight.data = weight out = model(input) def test_tensor_from_sequence(self): class MockSequence(object): def __init__(self, lst): self.lst = lst def __len__(self): return len(self.lst) def __getitem__(self, item): raise TypeError class GoodMockSequence(MockSequence): def __getitem__(self, item): return self.lst[item] bad_mock_seq = MockSequence([1.0, 2.0, 3.0]) good_mock_seq = GoodMockSequence([1.0, 2.0, 3.0]) with self.assertRaisesRegex(ValueError, 'could not determine the shape'): torch.Tensor(bad_mock_seq) self.assertEqual(torch.Tensor([1.0, 2.0, 3.0]), torch.Tensor(good_mock_seq)) def test_comparison_ops(self): x = torch.randn(5, 5) y = torch.randn(5, 5) eq = x == y for idx in iter_indices(x): self.assertEqual(x[idx] == y[idx], eq[idx] == 1) ne = x != y for idx in iter_indices(x): self.assertEqual(x[idx] != y[idx], ne[idx] == 1) lt = x < y for idx in iter_indices(x): self.assertEqual(x[idx] < y[idx], lt[idx] == 1) le = x <= y for idx in iter_indices(x): self.assertEqual(x[idx] <= y[idx], le[idx] == 1) gt = x > y for idx in iter_indices(x): self.assertEqual(x[idx] > y[idx], gt[idx] == 1) ge = x >= y for idx in iter_indices(x): self.assertEqual(x[idx] >= y[idx], ge[idx] == 1) def test_bitwise_ops(self): x = torch.randn(5, 5).gt(0) y = torch.randn(5, 5).gt(0) and_result = x & y for idx in iter_indices(x): if and_result[idx]: self.assertTrue(x[idx] and y[idx]) else: self.assertFalse(x[idx] and y[idx]) or_result = x | y for idx in iter_indices(x): if or_result[idx]: self.assertTrue(x[idx] or y[idx]) else: self.assertFalse(x[idx] or y[idx]) xor_result = x ^ y for idx in iter_indices(x): if xor_result[idx]: self.assertTrue(x[idx] ^ y[idx]) else: self.assertFalse(x[idx] ^ y[idx]) invert_result = ~x for idx in iter_indices(x): self.assertEqual(1 - x[idx], invert_result[idx]) x_clone = x.clone() x_clone &= y self.assertEqual(x_clone, and_result) x_clone = x.clone() x_clone |= y self.assertEqual(x_clone, or_result) x_clone = x.clone() x_clone ^= y self.assertEqual(x_clone, xor_result) def test_invert(self): x = torch.ByteTensor([0, 1, 1]) self.assertEqual((~x).tolist(), [1, 0, 0]) def test_apply(self): x = torch.arange(1, 6) res = x.clone().apply_(lambda k: k + k) self.assertEqual(res, x * 2) self.assertRaises(TypeError, lambda: x.apply_(lambda k: "str")) def test_map(self): x = torch.autograd.Variable(torch.randn(3, 3)) y = torch.autograd.Variable(torch.randn(3)) res = x.clone() res.map_(y, lambda a, b: a + b) self.assertEqual(res, x + y) self.assertRaisesRegex(TypeError, "not callable", lambda: res.map_(y, "str")) def test_map2(self): x = torch.autograd.Variable(torch.randn(3, 3)) y = torch.autograd.Variable(torch.randn(3)) z = torch.autograd.Variable(torch.randn(1, 3)) res = x.clone() res.map2_(y, z, lambda a, b, c: a + b * c) self.assertEqual(res, x + y * z) z.requires_grad = True self.assertRaisesRegex( RuntimeError, "requires grad", lambda: res.map2_(y, z, lambda a, b, c: a + b * c)) def test_Size(self): x = torch.Size([1, 2, 3]) self.assertIsInstance(x, tuple) self.assertEqual(x[0], 1) self.assertEqual(x[1], 2) self.assertEqual(x[2], 3) self.assertEqual(len(x), 3) self.assertRaises(TypeError, lambda: torch.Size(torch.ones(3))) self.assertIsInstance(x * 2, torch.Size) self.assertIsInstance(x[:-1], torch.Size) self.assertIsInstance(x + x, torch.Size) def test_Size_scalar(self): three = torch.tensor(3) two = torch.tensor(2) x = torch.Size([0, 1, two, three, 4]) for i in range(1, 5): self.assertEqual(x[i], i) def test_Size_iter(self): for sizes in [iter([1, 2, 3, 4, 5]), range(1, 6)]: x = torch.Size(sizes) for i in range(0, 5): self.assertEqual(x[i], i + 1) def test_t_not_2d_error(self): self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t()) self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t_()) # unit test for THTensor_(copyTranspose) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_big_transpose(self): t = torch.rand(456, 789) t1 = t.t().contiguous() t2 = torch.from_numpy(t.numpy().transpose()) self.assertEqual(t1, t2) def test_inplace_division(self): t = torch.rand(5, 5) id_before = id(t) t /= 2 id_after = id(t) self.assertEqual(id_before, id_after) def test_simple_scalar_cast(self): ok = [torch.Tensor([1.5]), torch.zeros(1, 1, 1, 1)] ok_values = [1.5, 0] not_ok = map(torch.Tensor, [[], [1, 2], [[1, 2], [3, 4]]]) for tensor, value in zip(ok, ok_values): self.assertEqual(int(tensor), int(value)) self.assertEqual(float(tensor), float(value)) if sys.version_info[0] < 3: self.assertEqual(long(tensor), long(value)) for tensor in not_ok: self.assertRaises(ValueError, lambda: int(tensor)) self.assertRaises(ValueError, lambda: float(tensor)) if sys.version_info[0] < 3: self.assertRaises(ValueError, lambda: long(tensor)) def test_offset_scalar_cast(self): x = torch.Tensor([1, 2, 3]) y = x[2:] self.assertEqual(int(y), 3) # skip this test for now as it affects all tests @unittest.skipIf(True, "flush_denormal not supported") def test_set_flush_denormal(self): tiny_float = 1e-42 tiny_double = 1e-320 float_tensor = torch.FloatTensor([1.0, tiny_float]) double_tensor = torch.DoubleTensor([1.0, tiny_float, tiny_double]) self.assertEqual(float_tensor[0], 1.0, prec=0.0) self.assertEqual(float_tensor[1], tiny_float, prec=tiny_float / 16) self.assertEqual(double_tensor[0], 1.0, prec=0.0) self.assertEqual(double_tensor[1], tiny_float, prec=0.0) self.assertEqual(double_tensor[2], tiny_double, prec=0.0) torch.set_flush_denormal(True) self.assertEqual(float_tensor[0], 1.0, prec=0.0) self.assertEqual(float_tensor[1], 0.0, prec=0.0) # tiny_float to zero self.assertEqual(double_tensor[0], 1.0, prec=0.0) # tiny_float is not converted to zero in double type self.assertEqual(double_tensor[1], tiny_float, prec=0.0) self.assertEqual(double_tensor[2], 0.0, prec=0.0) # tiny_double to zero torch.set_flush_denormal(False) def test_unique_cpu(self): x = torch.LongTensor([1, 2, 3, 2, 8, 5, 2, 3]) expected_unique = torch.LongTensor([1, 2, 3, 5, 8]) expected_inverse = torch.LongTensor([0, 1, 2, 1, 4, 3, 1, 2]) x_unique = torch.unique(x) self.assertEqual( expected_unique.tolist(), sorted(x_unique.tolist())) x_unique, x_inverse = x.unique(return_inverse=True) self.assertEqual( expected_unique.tolist(), sorted(x_unique.tolist())) self.assertEqual(expected_inverse.numel(), x_inverse.numel()) x_unique = x.unique(sorted=True) self.assertEqual(expected_unique, x_unique) x_unique, x_inverse = torch.unique( x, sorted=True, return_inverse=True) self.assertEqual(expected_unique, x_unique) self.assertEqual(expected_inverse, x_inverse) # Tests per-element unique on a higher rank tensor. y = x.view(2, 2, 2) y_unique, y_inverse = y.unique(sorted=True, return_inverse=True) self.assertEqual(expected_unique, y_unique) self.assertEqual(expected_inverse.view(y.size()), y_inverse) # Tests unique on other types. int_unique, int_inverse = torch.unique( torch.IntTensor([2, 1, 2]), sorted=True, return_inverse=True) self.assertEqual(torch.IntTensor([1, 2]), int_unique) self.assertEqual(torch.LongTensor([1, 0, 1]), int_inverse) double_unique, double_inverse = torch.unique( torch.DoubleTensor([2., 1.5, 2.1, 2.]), sorted=True, return_inverse=True, ) self.assertEqual(torch.DoubleTensor([1.5, 2., 2.1]), double_unique) self.assertEqual(torch.LongTensor([1, 0, 2, 1]), double_inverse) byte_unique, byte_inverse = torch.unique( torch.ByteTensor([133, 7, 7, 7, 42, 128]), sorted=True, return_inverse=True, ) self.assertEqual(torch.ByteTensor([7, 42, 128, 133]), byte_unique) self.assertEqual(torch.LongTensor([3, 0, 0, 0, 1, 2]), byte_inverse) @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') def test_unique_cuda(self): # unique currently does not support CUDA. self.assertRaises( RuntimeError, lambda: torch.cuda.LongTensor([0, 1]).unique()) self.assertRaises( RuntimeError, lambda: torch.unique(torch.cuda.FloatTensor([0., 1.])), ) @staticmethod def _test_bincount(self, device): # negative input throws with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'): torch.bincount(torch.tensor([1, -1], device=device)) # n-d input, with n > 1 throws with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'): torch.bincount(torch.tensor([[1, 2], [3, 4]], device=device)) # floating input type throws with self.assertRaisesRegex(RuntimeError, 'not implemented'): torch.bincount(torch.tensor([1., 0.3], device=device)) # minlength < 0 throws with self.assertRaisesRegex(RuntimeError, 'minlength should be >= 0'): torch.bincount(torch.tensor([1, 3], device=device), torch.tensor([.2, .2], device=device), minlength=-1) # input and weights dim mismatch with self.assertRaisesRegex(RuntimeError, 'same length'): torch.bincount(torch.tensor([1, 0], device=device), torch.tensor([1., 0.3, 0.5], device=device)) # test tensor method without weights long_counts = torch.tensor( [0, 3, 2, 1, 3], dtype=torch.uint8, device=device).bincount() self.assertEqual( torch.tensor([1, 1, 1, 2], dtype=torch.int64, device=device), long_counts) # test minlength functionality int_counts = torch.bincount( torch.tensor([1, 1, 1, 1], device=device), minlength=5) self.assertEqual( torch.tensor([0, 4, 0, 0, 0], dtype=torch.int64, device=device), int_counts) # test weights byte_counts = torch.bincount( torch.tensor([0, 1, 1, 1, 4], device=device), torch.tensor([.1, .2, .3, .4, .5], device=device)) self.assertEqual( torch.tensor([0.1, 0.9, 0, 0, 0.5], device=device), byte_counts) byte_counts = torch.bincount( torch.tensor([0, 1, 1, 1, 4], device=device), torch.tensor([1, 2, 3, 4, 5], dtype=torch.int8, device=device)) self.assertEqual( torch.tensor([1, 9, 0, 0, 5], device=device), byte_counts) # test large number of bins - global memory use big_exp = torch.zeros(10000000, device=device) big_exp[-1] = 50.0 big_w = torch.tensor([.5] * 100, device=device) big_out = torch.tensor([9999999] * 100, device=device).bincount(big_w) self.assertEqual(big_exp, big_out) # test large input size big_exp = torch.zeros(2, device=device) big_exp[1] = 1000000 big_out = torch.ones(1000000, dtype=torch.int8, device=device).bincount() self.assertEqual(big_exp, big_out) def test_bincount_cpu(self): self._test_bincount(self, device='cpu') def test_is_nonzero(self): self.assertExpectedRaises(RuntimeError, lambda: torch.tensor([]).is_nonzero(), subname="empty") self.assertExpectedRaises(RuntimeError, lambda: torch.tensor([0, 0]).is_nonzero(), subname="multiple") self.assertFalse(torch.tensor(0).is_nonzero()) self.assertTrue(torch.tensor(1).is_nonzero()) self.assertFalse(torch.tensor([0]).is_nonzero()) self.assertTrue(torch.tensor([1]).is_nonzero()) self.assertFalse(torch.tensor([[0]]).is_nonzero()) self.assertTrue(torch.tensor([[1]]).is_nonzero()) # Functions to test negative dimension wrapping METHOD = 1 INPLACE_METHOD = 2 FUNCTIONAL = 4 DIM_ARG = None def make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim=0): def neg_dim_test(self): if isinstance(tensor_arg, list): assert METHOD not in types and INPLACE_METHOD not in types x = [torch.randn(arg) for arg in tensor_arg] ndim = len(tensor_arg[-1]) else: x = torch.randn(*tensor_arg) ndim = len(tensor_arg) ndim += extra_dim n_dim_to_test = sum(map(lambda e: e is DIM_ARG, arg_constr())) for dims_val in combinations(range(ndim), n_dim_to_test): arg = arg_constr() arg_neg = copy.deepcopy(arg) idx = 0 for i, v in enumerate(arg): if v is DIM_ARG: arg[i] = dims_val[idx] arg_neg[i] = dims_val[idx] - ndim idx += 1 if METHOD in types: a = getattr(x, name)(*arg) b = getattr(x, name)(*arg_neg) self.assertEqual(a, b) if INPLACE_METHOD in types: a = x.clone() getattr(a, name + '_')(*arg) b = x.clone() getattr(b, name + '_')(*arg_neg) self.assertEqual(a, b) if FUNCTIONAL in types: a = getattr(torch, name)(x, *arg) b = getattr(torch, name)(x, *arg_neg) self.assertEqual(a, b) return neg_dim_test def idx_tensor(size, max_val): return torch.LongTensor(*size).random_(0, max_val - 1) neg_dim_tests = [ ('narrow', (10, 20, 30), lambda: [DIM_ARG, 0, 5], [METHOD]), ('transpose', (10, 20, 30), lambda: [DIM_ARG, DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]), ('size', (10, 20, 30), lambda: [DIM_ARG], [METHOD]), ('cat', [(2, 3, 4), (2, 3, 4)], lambda: [DIM_ARG], [FUNCTIONAL]), ('chunk', (10, 20, 30), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]), ('gather', (10, 20), lambda: [DIM_ARG, idx_tensor((10, 20), 10)], [METHOD, FUNCTIONAL]), ('index_select', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10)], [METHOD, FUNCTIONAL]), ('split', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]), ('squeeze', (10, 1, 20, 1), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]), ('unbind', (2, 3, 4), lambda: [DIM_ARG], [FUNCTIONAL]), ('unsqueeze', (10, 20), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL], 1), ('cumprod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('cumsum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('mean', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('median', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('mode', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('norm', (10, 20), lambda: [2, DIM_ARG], [METHOD, FUNCTIONAL]), ('prod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('std', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('sum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('var', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('kthvalue', (10, 20), lambda: [3, DIM_ARG], [METHOD, FUNCTIONAL]), ('max', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('min', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('sort', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('topk', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]), ('renorm', (10, 20), lambda: [2, DIM_ARG, 1], [METHOD, INPLACE_METHOD, FUNCTIONAL]), ('index_add', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]), ('index_copy', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]), ('index_fill', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), 12], [INPLACE_METHOD]), ('scatter', (10, 10), lambda: [DIM_ARG, idx_tensor((10, 10), 10), torch.randn(10, 10)], [INPLACE_METHOD]), ('select', (10, 20), lambda: [DIM_ARG, 3], [METHOD]), ('unfold', (10, 20), lambda: [DIM_ARG, 5, 2], [METHOD]), ] for decl in neg_dim_tests: if len(decl) == 4: name, tensor_arg, arg_constr, types = decl extra_dim = 0 elif len(decl) == 5: name, tensor_arg, arg_constr, types, extra_dim = decl test_name = 'test_' + name + '_neg_dim' assert not hasattr(TestTorch, test_name), "Duplicated test name: " + test_name setattr(TestTorch, test_name, make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim)) if __name__ == '__main__': run_tests()