from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torch.testing import FileCheck from common_utils import run_tests, IS_WINDOWS, skipIfRocm, IS_SANDCASTLE from textwrap import dedent from itertools import product, permutations from test_jit import JitTestCase, enable_cpu_fuser, RUN_CUDA, RUN_CUDA_HALF, RUN_CUDA_MULTI_GPU, \ backward_graph, get_lstm_inputs, get_milstm_inputs, LSTMCellC, LSTMCellF, LSTMCellS, MiLSTMCell class TestFuser(JitTestCase): def assertAllFused(self, graph, except_for=()): if [n.kind() for n in graph.nodes()] == ['prim::DifferentiableGraph']: graph = next(graph.nodes()).g('Subgraph') allowed_nodes = {'prim::Constant', 'prim::FusionGroup'} | set(except_for) self.assertTrue(all(node.kind() in allowed_nodes for node in graph.nodes()), 'got {}'.format(graph)) self.assertTrue([node.kind() for node in graph.nodes()].count('prim::FusionGroup') == 1) def _test_fused_abs(self, device='cpu'): @torch.jit.script def func(x): return x.abs() * 2 a = torch.randn(5, device=device) self.assertEqual(func(a), a.abs() * 2) self.assertAllFused(func.graph_for(a)) @unittest.skipIf(IS_WINDOWS or IS_SANDCASTLE, "NYI: fuser support for Windows or Sandcastle") @enable_cpu_fuser def test_abs_cpu(self): self._test_fused_abs() @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "requires CUDA") @skipIfRocm def test_abs_cuda(self): self._test_fused_abs(device="cuda") @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") def test_arg_configurations_smoke_cuda(self): # A smoke test to make sure we won't use the same kernel for contiguous # and non-contiguous arguments. # TODO: add optionally enabled debug counters to the fuser to verify # that we really can tell the difference between configurations def f(x, y): z1, z2 = (x + y).chunk(2, dim=1) return z1 * z2 x = torch.randn(4, 4, dtype=torch.float, device='cuda') y = torch.randn(4, 4, dtype=torch.float, device='cuda') traced_f = torch.jit.trace(f, (x, y,)) self.assertEqual(traced_f(x.t().contiguous(), y), traced_f(x.t(), y)) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_broadcast_cuda(self): def scaleshift(x, scale, shift): return x * scale + shift inputs = [ torch.randn(4, 4, dtype=torch.float, device='cuda'), torch.randn(4, dtype=torch.float, device='cuda'), torch.randn(4, dtype=torch.float, device='cuda'), ] ge = self.checkTrace(scaleshift, inputs) self.assertAllFused(ge.graph_for(*inputs)) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @unittest.skipIf(not RUN_CUDA_HALF, "no half support") def test_cuda_half(self): x = torch.randn(4, 4, dtype=torch.half, device='cuda') y = torch.randn(4, 4, dtype=torch.half, device='cuda') funcs = [ self.fn_test_comparison_gt_lt, self.fn_test_relu, self.fn_test_exp ] # Note: Non fused inputs must be float to prevent loss of precision inputs = (x.float(), y.float()) fusion_inputs = (x, y) for fn in funcs: local_inputs = [t.clone().requires_grad_() for t in inputs] local_fusion_inputs = [t.clone().requires_grad_() for t in fusion_inputs] # Verifies outputs fusion = torch.jit.trace(fn, local_fusion_inputs, check_trace=False, optimize=True) outputs = fn(*local_inputs) fusion_outputs = fusion(*local_fusion_inputs) outputs_half = [t.half() for t in outputs] self.assertEqual(outputs_half, fusion_outputs) # Verifies gradients for output, fusion_output in zip(outputs_half, fusion_outputs): grads = torch.autograd.grad( output.float().sum(), local_inputs, allow_unused=True, retain_graph=True) fusion_grads = torch.autograd.grad( fusion_output.sum(), local_fusion_inputs, allow_unused=True, retain_graph=True) grads_half = [t.half() for t in grads] self.assertEqual(grads_half, fusion_grads) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_checks_cat_inputs(self): # We shouldn't treat cat nodes as broadcasting. All their inputs # need to be checked for having the same map size, before we can # run the kernel. @torch.jit.script def f(x, y): return torch.cat([x + 2 * x + x ** 2, y + 4 * y + y ** 3], dim=0) # NOTE: y is broadcastable to x, but output of f(x, y) should have # shape 3x4, and not 4x4. x = torch.randn(2, 4, dtype=torch.float, device='cuda') y = torch.randn(1, 4, dtype=torch.float, device='cuda') self.assertEqual(f(x, y).shape, (3, 4)) self.assertAllFused(f.graph_for(x, y)) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "No CUDA") @skipIfRocm def test_chunk_cuda(self): def fn(x): a, b, c = x.chunk(3, 1) return a * b + c inputs = [torch.randn(10, 6, dtype=torch.float, device='cuda')] ge = self.checkScript(fn, inputs) graph = ge.graph_for(*inputs) self.assertAllFused(graph) FileCheck().check("prim::ConstantChunk[chunks=3, dim=1]").run(str(graph)) @staticmethod def _test_chunk_correctness(self, device='cpu'): def chunk_4_0(x): x0, x1, x2, x3 = x.chunk(4, 0) return x0 + x1 + x2 + x3 def chunk_4_1(x): x0, x1, x2, x3 = x.chunk(4, 1) return x0 + x1 + x2 + x3 def chunk_4_last(x): x0, x1, x2, x3 = x.chunk(4, 2) return x0 + x1 + x2 + x3 fns = [chunk_4_0, chunk_4_1, chunk_4_last] tensors = [ # splitSize = 1 torch.randn(4, 4, 4, dtype=torch.float, device=device), # contiguous case torch.randn(12, 8, 16, dtype=torch.float, device=device), # non-contiguous case torch.randn(12, 8, 16, dtype=torch.float, device=device).transpose(1, 2), ] for tensor in tensors: for fn in fns: self.checkScript(fn, [tensor]) @unittest.skipIf(IS_WINDOWS or IS_SANDCASTLE, "NYI: fuser support for Windows or Sandcastle") @enable_cpu_fuser def test_chunk_correctness(self): return self._test_chunk_correctness(self, 'cpu') @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "No CUDA") def test_chunk_correctness_cuda(self): return self._test_chunk_correctness(self, 'cuda') @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_chunk_distributes_cuda(self): def f(x, y): z1, z2 = (x + y).chunk(2, dim=1) return z1 * z2 x = torch.randn(4, 4, dtype=torch.float, device='cuda') y = torch.randn(4, 4, dtype=torch.float, device='cuda') ge = self.checkTrace(f, (x, y)) graph = ge.graph_for(x, y) FileCheck().check("broadcast_tensors").check('with prim::FusionGroup_0') \ .check_count('ConstantChunk', 2, exactly=True).run(str(graph)) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_chunk_motion_deduplicates_inputs(self): def func1(x): z = x * x z0, z1 = z.chunk(2) return z0 * z1 def func2(x): z = x * x * x z0, z1 = z.chunk(2) return z0 * z1 inputs = [ torch.tensor([1.1, 1.2], device='cuda', dtype=torch.float), ] for func in [func1, func2]: module = self.checkScript(func, inputs) forward_graph = module.graph_for(*inputs) self.assertGraphContainsExactly(forward_graph, 'prim::FusionGroup', 1) fusion_group = list(forward_graph.nodes())[-1] self.assertEqual(len(list(fusion_group.inputs())), 1) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "No CUDA") @skipIfRocm def test_chunk_multiple_cuda(self): # The arguments are intentionally used out of order as a test to see # if the fusion compiler adds extra args in the correct order def fn(s, x, y, z): z1, z2 = z.chunk(2, 2) x1, x2, x3 = x.chunk(3, 1) y1, y2 = y.chunk(2, 0) return s + x1 + x2 + x3 + y1 + y2 + z1 + z2 inputs = [ torch.randn(5, 2, 3, dtype=torch.float, device='cuda'), torch.randn(5, 6, 3, dtype=torch.float, device='cuda'), torch.randn(10, 2, 3, dtype=torch.float, device='cuda'), torch.randn(5, 2, 6, dtype=torch.float, device='cuda'), ] ge = self.checkScript(fn, inputs) self.assertAllFused(ge.graph_for(*inputs)) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_clamp(self): def func2(a, b): return torch.clamp(a + b, min=0, max=2) def funcInf(a, b): return torch.clamp(a + b, min=0, max=float('inf')) def funcOptMin(a, b): return torch.clamp(a + b, max=2) def funcOptMax(a, b): return torch.clamp(a + b, min=0) a = torch.randn(4, 4, dtype=torch.float, device='cuda', requires_grad=True) b = torch.randn(4, 4, dtype=torch.float, device='cuda') nan = torch.tensor(float('nan'), dtype=torch.float, device='cuda') funcs = (func2, funcInf, funcOptMin, funcOptMax) for f, inputs in product(funcs, [[a, b], [a, nan]]): inp1, inp2 = inputs s = self.checkScript(f, (inp1, inp2)) self.assertAllFused(s.graph_for(inp1, inp2), except_for={'aten::size'}) c = s(inp1, inp2) c.sum().backward() graph = backward_graph(s) self.assertAllFused(graph) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_comparison_eq_ne(self): def f(x, y): mask = (x == 0).type_as(x) z = x * mask + y mask = (x != 0).type_as(x) z = z * mask + y return z x = torch.randn(4, 4, dtype=torch.float, device='cuda') y = torch.randn(4, 4, dtype=torch.float, device='cuda') ge = self.checkTrace(f, (x, y)) self.assertAllFused(ge.graph_for(x, y)) @staticmethod def fn_test_comparison_gt_lt(x, y): mask = (x > 0).type_as(x) z = x * mask + y mask = (x < 0).type_as(x) z = z * mask + y return z @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_comparison_gt_lt_cuda(self): x = torch.randn(4, 4, dtype=torch.float, device='cuda') y = torch.randn(4, 4, dtype=torch.float, device='cuda') ge = self.checkTrace(self.fn_test_comparison_gt_lt, (x, y)) self.assertAllFused(ge.graph_for(x, y)) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_comparison_ge_le_cuda(self): def f(x, y): mask = (x >= 0).type_as(x) z = x * mask + y mask = (x <= 0).type_as(x) z = z * mask + y return z x = torch.randn(4, 4, dtype=torch.float, device='cuda') y = torch.randn(4, 4, dtype=torch.float, device='cuda') ge = self.checkTrace(f, (x, y)) self.assertAllFused(ge.graph_for(x, y)) x.requires_grad_(True) y.requires_grad_(True) self.assertAllFused(ge.graph_for(x, y), except_for=("aten::size", "prim::BroadcastSizes")) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_addcmul_cuda(self): t = torch.randn(1, 4, dtype=torch.float, device='cuda') t1 = torch.randn(4, 1, dtype=torch.float, device='cuda') t2 = torch.randn(1, 4, dtype=torch.float, device='cuda') def foo(t, t1, t2): return t.addcmul(t + 1, t2, value=0.1) ge = self.checkTrace(foo, (t, t1, t2), allow_unused=True) graph = ge.graph_for(t, t1, t2) self.assertAllFused(graph) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_lerp_cuda(self): start = torch.randn(4, 1, dtype=torch.float, device='cuda') end = torch.randn(1, 4, dtype=torch.float, device='cuda') weight = torch.tensor(0.5, dtype=torch.float, device='cuda') # scalar weight overload def foo_weight_scalar(start, end): return torch.lerp(start + 1, end, 0.5) # tensor weight overload def foo_weight_tensor(start, end): return torch.lerp(start + 1, end, weight) ge_weight_scalar = self.checkTrace(foo_weight_scalar, (start, end)) graph = ge_weight_scalar.graph_for(start, end) self.assertAllFused(graph) ge_weight_tensor = self.checkTrace(foo_weight_tensor, (start, end)) graph = ge_weight_tensor.graph_for(start, end) self.assertAllFused(graph) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_concat_cuda(self): hx = torch.randn(3, 20, dtype=torch.float, device='cuda') cx = torch.randn(3, 20, dtype=torch.float, device='cuda') def foo(hx, cx): return torch.cat((hx + cx, hx * cx)) ge = self.checkTrace(foo, (hx, cx)) graph = ge.graph_for(hx, cx) self.assertAllFused(graph) FileCheck().check("FusedConcat").check_next("return").run(str(graph)) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_concat_invariant_cuda(self): # Invariant: the output of prim::FusedConcat may # not be an input to any node inside the FusionGroup. def fn(x, y, z): x1 = x + y y1 = x - y w = torch.cat([x1, y1]) return w + z x = torch.randn(2, 2, dtype=torch.float, device='cuda') y = torch.randn(2, 2, dtype=torch.float, device='cuda') z = torch.randn(4, 2, dtype=torch.float, device='cuda') ge = self.checkTrace(fn, (x, y, z)) graph = ge.graph_for(x, y, z) self.assertAllFused(graph, except_for={'aten::add'}) FileCheck().check("FusedConcat").check_next("return").run(str(graph)) @staticmethod def fn_test_exp(x, y): return (x + .5 * y).exp() @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_exp_cuda(self): x = torch.randn(4, 4, dtype=torch.float, device='cuda') y = torch.randn(4, 4, dtype=torch.float, device='cuda') ge = self.checkTrace(self.fn_test_exp, (x, y)) self.assertAllFused(ge.graph_for(x, y)) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_fuse_decompose_normalization(self): class ResLike(torch.jit.ScriptModule): def __init__(self, norm_module, optimize=True): super(ResLike, self).__init__(optimize) self.nm = norm_module @torch.jit.script_method def forward(self, x, y): return y + torch.relu(self.nm(x)) def test_norm_decompose(nm, in_opt_graph, not_in_opt_graph, in_fusegraph): model = ResLike(nm).cuda() model_noopt = ResLike(nm, optimize=False).cuda() model_noopt.load_state_dict(model.state_dict()) x = torch.randn(2, 16, 8, 8, device='cuda') y = torch.randn(2, 16, 8, 8, device='cuda') # FIXME: We need differentiation for CNNs for this optimization to trigger with torch.no_grad(): out = model(x, y) graph = model.graph_for(x, y) rep = str(graph) out_noopt = model_noopt(x, y) rep_noopt = str(model_noopt.graph_for(x, y)) self.assertEqual(out, out_noopt, prec=3e-5) # Check that normalization op has really been decomposed for node_in_graph in in_opt_graph: self.assertIn(node_in_graph, rep) for node_not_in_graph in not_in_opt_graph: self.assertNotIn(node_not_in_graph, rep) self.assertIn(node_not_in_graph, rep_noopt) fusion_groups = [node for node in graph.nodes() if node.kind() == 'prim::FusionGroup'] self.assertEqual(len(fusion_groups), 1) fused_graph = str(fusion_groups[0].g('Subgraph')) for node_in_fusegraph in in_fusegraph: self.assertIn(node_in_fusegraph, fused_graph) # test for batchnorm decompose bm = nn.BatchNorm2d(16) test_norm_decompose(bm, ['aten::batch_norm_update_stats'], ['aten::batch_norm('], ['aten::sqrt']) # test for layernorm decompose lm = nn.LayerNorm(8) test_norm_decompose(lm, ['aten::batch_norm_stats'], ['aten::layer_norm('], ['aten::sub', 'aten::mul', 'aten::addcmul']) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_threshold(self): def f(x): return torch.threshold(x, 0, -10) + x + x + x x = torch.tensor([-1, -0.5, 0, 1, 2, 3], device='cuda') scripted = torch.jit.script(f) self.assertEqual(f(x), scripted(x)) self.assertAllFused(scripted.graph_for(x)) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_scalar_arg_cuda(self): def fn_test_scalar_arg(x, p): # type: (Tensor, float) -> Tensor return p * (x * x + x) x = torch.randn(4, 4, dtype=torch.float, device='cuda') p = 3 scripted = torch.jit.script(fn_test_scalar_arg, (x, p)) self.assertEqual(fn_test_scalar_arg(x, p), scripted(x, p)) self.assertAllFused(scripted.graph_for(x, p)) x.requires_grad_(True) out = scripted(x, p) self.assertAllFused(scripted.graph_for(x, p), except_for=("aten::size", "prim::BroadcastSizes")) @unittest.skipIf(IS_WINDOWS or IS_SANDCASTLE, "NYI: fuser support for Windows or Sandcastle") @enable_cpu_fuser def test_fuser_deduplication(self): # See that fusion kernel outputs are deduplicated when removing _grad_sum_to_size in the fuser's compilation # see the discussion in PR #14957. def f(x, y): return torch.sigmoid(x + y) b = torch.randn(5, 5, requires_grad=True) a = torch.randn(5, 5, requires_grad=True) s = self.checkScript(f, (a, b)) self.assertAllFused(s.graph_for(a, b), except_for={'aten::size'}) c = s(a, b) ga, gb = torch.autograd.grad(c.sum(), [a, b]) graph = backward_graph(s) self.assertAllFused(graph) # check that a, b share storage, i.e. were generated as a single output in the fuser self.assertEqual(ga.data_ptr(), gb.data_ptr()) @unittest.skipIf(IS_WINDOWS or IS_SANDCASTLE, "NYI: fuser support for Windows or Sandcastle") @enable_cpu_fuser def test_fuser_iou(self): # This checks if most of Intersection over Union is fused. # In particular, the backward contains many _grad_sum_to_size. def iou(b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2): ltx = torch.max(b1x1, b2x1) # [N,M] lty = torch.max(b1y1, b2y1) rbx = torch.min(b1x2, b2x2) rby = torch.min(b1y2, b2y2) w = (rbx - ltx).clamp(min=0, max=float('inf')) # [N,M] h = (rby - lty).clamp(min=0, max=float('inf')) # [N,M] inter = w * h # [N,M] area1 = (b1x2 - b1x1) * (b1y2 - b1y2) # [N,1] area2 = (b2x2 - b2x1) * (b2y2 - b2y2) # [1,M] iou = inter / (area1 + area2 - inter) return iou box1 = torch.randn(5, 4, requires_grad=True) box2 = torch.randn(5, 4, requires_grad=True) # unsqueezing can currently not be fused b1x1 = box1[:, 0].unsqueeze(1) # [N,1] b1y1 = box1[:, 1].unsqueeze(1) b1x2 = box1[:, 2].unsqueeze(1) b1y2 = box1[:, 3].unsqueeze(1) b2x1 = box2[:, 0].unsqueeze(0) # [1,N] b2y1 = box2[:, 1].unsqueeze(0) b2x2 = box2[:, 2].unsqueeze(0) b2y2 = box2[:, 3].unsqueeze(0) s = self.checkScript(iou, (b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2)) self.assertAllFused(s.graph_for(b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2), except_for={'aten::size', 'prim::BroadcastSizes'}) c = s(b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2) torch.autograd.grad(c.sum(), [b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2]) graph = backward_graph(s) self.assertAllFused(graph, except_for={'aten::size', 'prim::BroadcastSizes'}) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device") @skipIfRocm @enable_cpu_fuser def test_fusion_reuse_multi_gpu(self): def fn(x, y): return x * y * x * y inputs_cpu = [ torch.randn(4, 4, dtype=torch.float), torch.randn(4, 4, dtype=torch.float), ] inputs_cuda0 = [x.cuda(0) for x in inputs_cpu] inputs_cuda1 = [y.cuda(1) for y in inputs_cpu] # Should not crash; these should compile different kernels. ge = self.checkScript(fn, inputs_cpu) self.assertAllFused(ge.graph_for(*inputs_cpu)) ge(*inputs_cuda0) ge(*inputs_cuda1) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device") @skipIfRocm @enable_cpu_fuser def test_kernel_cache_multi_gpu(self): def not_fusible(x): return x def fn(x, y, z): x_out = x * x * x * x * x # fusion: lambda x. x * x * x * x * x y_out = y * y * y * y * y z_out = z * z * z * z * z return not_fusible(x_out), not_fusible(y_out), not_fusible(z_out) inputs = [ torch.randn(4, 4, dtype=torch.float), torch.randn(4, 4, dtype=torch.float, device='cuda:0'), torch.randn(4, 4, dtype=torch.float, device='cuda:1'), ] prev_cache_size = torch._C._jit_debug_fuser_num_cached_kernel_specs() # There are 3 FusionGroups. Because they have the same graph, they # should reuse the same KernelSpec in the KernelSpec cache. ge = self.checkScript(fn, inputs) self.assertGraphContainsExactly( ge.graph_for(*inputs), 'prim::FusionGroup', 3, True) new_cache_size = torch._C._jit_debug_fuser_num_cached_kernel_specs() # XXX: This assumes that the same kernel isn't already used by another test self.assertEqual(new_cache_size - prev_cache_size, 1) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device") @skipIfRocm def test_nonzero_device_cuda(self): device = 'cuda:' + str(1) x = torch.tensor([0.4], dtype=torch.float, device=device) y = torch.tensor([0.7], dtype=torch.float, device=device) def doit(x, y): return torch.sigmoid(torch.tanh(x * (x + y) + x)) ge = self.checkTrace(doit, (x, y)) self.assertAllFused(ge.graph_for(x, y)) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_lstm_cuda(self): inputs = get_lstm_inputs('cuda', training=True) module = self.checkScript(LSTMCellS, inputs) forward_graph = module.graph_for(*inputs) self.assertGraphContainsExactly( forward_graph, 'prim::FusionGroup', 1, consider_subgraphs=True) self.assertTrue(len(list(forward_graph.nodes())) == 2) # Everything is differentiable but TupleConstruct return FileCheck().check("DifferentiableGraph").check_next("TupleConstruct") \ .check_next("return").run(str(forward_graph)) hy, cy = module(*inputs) (hy + cy).sum().backward() backward = backward_graph(module) FileCheck().check("FusionGroup_0").check_next("FusionGroup_1") \ .check_not("FusionGroup_2").run(str(backward)) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_lstm_concat_cuda(self): inputs = get_lstm_inputs('cuda') ge = self.checkTrace(LSTMCellC, inputs) graph = ge.graph_for(*inputs) FileCheck().check("FusedConcat").check_next("return").run(str(graph)) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_lstm_gates_permutations_cuda(self): # lstm has gates = x.mm(w_ih.t()) + hx.mm(w_hh.t()) + b_ih + b_hh. # Test that any permutation of this will still result in one FusionGroup. choices = ['x.mm(w_ih.t())', 'hx.mm(w_hh.t())', 'b_ih', 'b_hh'] template = dedent(''' def cell(x, hx, cx, w_ih, w_hh, b_ih, b_hh): gates = {} + {} + {} + {} ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1) return ingate * forgetgate * cellgate * outgate ''') for permutation in permutations(choices, len(choices)): code = template.format(*permutation) scope = {} exec(code, globals(), scope) cu = torch.jit.CompilationUnit(code) inputs = get_lstm_inputs('cuda', training=False) self.assertEqual(cu.cell(*inputs), scope['cell'](*inputs)) forward_graph = cu.cell.graph_for(*inputs) self.assertGraphContainsExactly(forward_graph, 'prim::FusionGroup', 1) # TODO: Fuser doesn't work at all when inputs require grad. Fix that @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_lstm_traced_cuda(self): inputs = get_lstm_inputs('cuda') ge = self.checkTrace(LSTMCellF, inputs) graph = ge.graph_for(*inputs) FileCheck().check_not("Chunk").check_not("aten::add").check_not("aten::sigmoid") \ .check_not("aten::tanh").check("FusionGroup").check_next("TupleConstruct") \ .check_next("return").check_not("FusionGroup_1").run(str(graph)) @unittest.skipIf(IS_WINDOWS or IS_SANDCASTLE, "NYI: fuser support for Windows or Sandcastle") @unittest.skip("Test is flaky, see https://github.com/pytorch/pytorch/issues/8746") @enable_cpu_fuser def test_lstm_traced_cpu(self): inputs = get_lstm_inputs('cpu') try: ge = self.checkTrace(LSTMCellF, inputs) graph = ge.graph_for(*inputs) FileCheck.check("FusionGroup").run(str(graph)) except RuntimeError as e: if 'Failed to compile' in e.args[0]: warnings.warn('CPU fuser test has failed! This is not a hard failure, ' 'because the kernels sometimes trigger bugs in compilers ' '(most notably GCC 7.2).') raise unittest.SkipTest('Failed to compile') else: raise @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_milstm_cuda(self): inputs = get_milstm_inputs('cuda', training=True) module = self.checkScript(MiLSTMCell, inputs) forward_graph = module.graph_for(*inputs) self.assertGraphContainsExactly( forward_graph, 'prim::FusionGroup', 1, consider_subgraphs=True) FileCheck().check("DifferentiableGraph").check_next("TupleConstruct") \ .check_next("return").check("FusionGroup").run(str(forward_graph)) hy, cy = module(*inputs) (hy + cy).sum().backward() @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_rand_cuda(self): class M(torch.jit.ScriptModule): __constants__ = ['d'] def __init__(self): self.d = torch.device('cuda') @torch.jit.script_method def create(self, x): return x * x + x + torch.rand_like(x) x = torch.zeros([3, 4, 5], dtype=torch.float, device='cuda') m = M() out1 = m.create(x) out2 = m.create(x) self.assertNotEqual(out1, out2) self.assertTrue(torch.all(out1 >= 0)) self.assertTrue(torch.all(out1 < 1)) self.assertTrue(torch.all(out2 >= 0)) self.assertTrue(torch.all(out2 < 1)) self.assertAllFused(m.create.graph_for(x)) @staticmethod def fn_test_relu(x, y): return F.relu(x + .5 * y) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_relu_cuda(self): x = torch.randn(4, 4, dtype=torch.float, device='cuda') y = torch.randn(4, 4, dtype=torch.float, device='cuda') ge = self.checkTrace(self.fn_test_relu, (x, y)) self.assertAllFused(ge.graph_for(x, y)) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_erf_cuda(self): def fn_test_erf(x): return F.relu(torch.erf(x) - torch.erfc(x)) x = torch.randn(4, 4, dtype=torch.float, device='cuda') ge = self.checkTrace(fn_test_erf, (x,)) self.assertAllFused(ge.graph_for(x)) x.requires_grad_(True) self.assertAllFused(ge.graph_for(x), except_for=("aten::size", "prim::BroadcastSizes")) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_rand_broadcast_cuda(self): def fn_test_rand(x, y): r = torch.rand_like(y) return r * x + x x = torch.randn(4, 4, dtype=torch.float, device='cuda') y = torch.randn(4, 4, dtype=torch.float, device='cuda') script_f = torch.jit.script(fn_test_rand, (x, y)) out = script_f(x, y) self.assertAllFused(script_f.graph_for(x, y)) x.requires_grad_(True) out = script_f(x, y) self.assertAllFused(script_f.graph_for(x, y), except_for=("aten::size", "prim::BroadcastSizes")) # test that broadcasting random produces correct results x = torch.ones(4, 4, dtype=torch.float, device='cuda') y = torch.ones(4, dtype=torch.float, device='cuda') out = script_f(x, y) self.assertEqual(out[0], out[1]) @unittest.skipIf(IS_WINDOWS or IS_SANDCASTLE, "NYI: fuser support for Windows or Sandcastle") @enable_cpu_fuser def test_scalar(self): def fn(x, y): return 2 * x + y x = torch.tensor(0.1, dtype=torch.float, device='cpu') y = torch.tensor(1, dtype=torch.float, device='cpu') ge = self.checkScript(fn, (x, y)) self.assertAllFused(ge.graph_for(x, y)) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_small_constant_cuda(self): def fn_test_small_constant(x, y): return (1e-8 * x + 5e-9 * y) * 1e8 x = torch.randn(4, 4, dtype=torch.float, device='cuda') y = torch.randn(4, 4, dtype=torch.float, device='cuda') ge = self.checkTrace(fn_test_small_constant, (x, y)) self.assertAllFused(ge.graph_for(x, y)) @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") @skipIfRocm def test_tensor_scalar_ops_cuda(self): def should_fuse(x): z = 3. y = x + z return x * y # XXX: right now we only support fusing scalars if # they're constant (#9940) def should_not_fuse(x, z): y = x + int(z) return x * y inputs = [torch.randn(2, 2, dtype=torch.float, device='cuda')] ge = self.checkScript(should_fuse, inputs) self.assertAllFused(ge.graph_for(*inputs)) inputs = [ torch.randn(2, 2, dtype=torch.float, device='cuda'), torch.tensor(3., dtype=torch.float, device='cuda'), ] ge = self.checkScript(should_not_fuse, inputs) self.assertGraphContainsExactly( ge.graph_for(*inputs), 'prim::FusionGroup', 0, consider_subgraphs=True) @unittest.skipIf(IS_WINDOWS or IS_SANDCASTLE, "NYI: fuser support for Windows or Sandcastle") @enable_cpu_fuser def test_where_and_typing(self): def f(x, y): mask = x > y res = torch.where(mask, x, y) return mask, res script_f = torch.jit.script(f) x = torch.randn(4, 4, dtype=torch.double) y = torch.randn(4, 4, dtype=torch.double) result1, result2 = script_f(x, y) expected1, expected2 = f(x, y) self.assertEqual(result1, expected1) self.assertEqual(result2, expected2) self.assertAllFused(script_f.graph_for(x, y), except_for={'prim::TupleConstruct'}) @unittest.skipIf(not IS_WINDOWS, "Test that the fuser is disabled on Windows") @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") def test_windows_cuda(self): def scaleshift(x, scale, shift): return x * scale + shift inputs = [ torch.randn(4, 4, dtype=torch.float, device='cuda'), torch.randn(4, dtype=torch.float, device='cuda'), torch.randn(4, dtype=torch.float, device='cuda'), ] ge = self.checkScript(scaleshift, inputs) self.assertGraphContainsExactly( ge.graph_for(*inputs), 'prim::FusionGroup', 0, consider_subgraphs=True) if __name__ == '__main__': run_tests()