r"""This file is allowed to initialize CUDA context when imported.""" import torch import torch.cuda from common_utils import TEST_WITH_ROCM, TEST_NUMBA TEST_CUDA = torch.cuda.is_available() TEST_MULTIGPU = TEST_CUDA and torch.cuda.device_count() >= 2 TEST_GEQ4GPU = TEST_CUDA and torch.cuda.device_count() >= 4 CUDA_DEVICE = TEST_CUDA and torch.device("cuda:0") # note: if ROCm is targeted, TEST_CUDNN is code for TEST_MIOPEN TEST_CUDNN = TEST_CUDA and (TEST_WITH_ROCM or torch.backends.cudnn.is_acceptable(torch.tensor(1., device=CUDA_DEVICE))) TEST_CUDNN_VERSION = TEST_CUDNN and torch.backends.cudnn.version() if TEST_NUMBA: import numba.cuda TEST_NUMBA_CUDA = numba.cuda.is_available() else: TEST_NUMBA_CUDA = False # Used below in `initialize_cuda_context_rng` to ensure that CUDA context and # RNG have been initialized. __cuda_ctx_rng_initialized = False # after this call, CUDA context and RNG must have been initialized on each GPU def initialize_cuda_context_rng(): global __cuda_ctx_rng_initialized assert TEST_CUDA, 'CUDA must be available when calling initialize_cuda_context_rng' if not __cuda_ctx_rng_initialized: # initialize cuda context and rng for memory tests for i in range(torch.cuda.device_count()): torch.randn(1, device="cuda:{}".format(i)) __cuda_ctx_rng_initialized = True