#include "adagrad_op.h" namespace caffe2 { REGISTER_CPU_OPERATOR(Adagrad, AdagradOp); OPERATOR_SCHEMA(Adagrad) .NumInputs(4) .NumOutputs(2, 4) .AllowInplace({{0, 0}, {1, 1}}) .SetDoc(R"DOC( Computes the AdaGrad update for an input gradient and accumulated history. Concretely, given inputs (param, grad, moment, learning_rate), computes new_moment = moment + square(grad) effective_lr = learning_rate / (sqrt(new_moment) + epsilon) update = learning_rate * grad / (sqrt(new_moment) + epsilon) new_param = param + update and returns (new_param, new_moment). Optionally returns effective_lr and update as well. )DOC") .Input(0, "param", "Parameters to be updated") .Input(1, "moment", "Moment history") .Input(2, "grad", "Gradient computed") .Input(3, "lr", "learning rate") .Output(0, "output_param", "Updated parameters") .Output(1, "output_moment", "Updated moment") .Output(2, "output_effective_lr", "(optional) Effective learning rate") .Output(3, "output_update", "(optional) Actual update that is applied.") .Arg("epsilon", "Default 1e-5") .Arg( "decay", "Default 1. If it is in (0, 1), the gradient square sum " "is decayed by this factor."); static OpSchema::Cost CostInferenceForSparseAdagrad( const OperatorDef& /* unused */, const vector& inputs) { CAFFE_ENFORCE_GE( inputs.size(), 4, "SparseAdagrad requires at least 4 inputs"); const TensorShape param = inputs[0]; const TensorShape moment = inputs[1]; const TensorShape indices = inputs[2]; const TensorShape grad = inputs[3]; uint64_t n = nElemFromDim(indices); uint64_t grad_size = nElemFromDim(grad); OpSchema::Cost c; // See adagrad_op.h (note that decay is 1 for SparseAdagrad). // 2 multiplications, 3 additions, 1 division, and 1 sqrt // (optimistically count sqrt as one flop). c.flops = grad_size * 7; c.bytes_written = grad_size * (sizeof(param.data_type()) + sizeof(moment.data_type())); c.bytes_read = c.bytes_written + grad_size * sizeof(grad.data_type()) + n * sizeof(indices.data_type()); return c; } REGISTER_CPU_OPERATOR(SparseAdagrad, SparseAdagradOp); OPERATOR_SCHEMA(SparseAdagrad) .NumInputs(5) .NumOutputs(2) .EnforceOneToOneInplace() .SetDoc(R"DOC( Given inputs (param, moment, indices, grad, lr), runs the dense AdaGrad update on (param, grad, moment[indices], lr), and returns (new_param, new_moment) as in the dense case. )DOC") .Input(0, "param", "Parameters to be updated") .Input(1, "moment", "Moment history") .Input(2, "indices", "Sparse indices") .Input(3, "grad", "Gradient computed") .Input(4, "lr", "learning rate") .Output(0, "output_param", "Updated parameters") .Output(1, "output_moment_1", "Updated moment") .Arg("epsilon", "Default 1e-5") .CostInferenceFunction( OpSchema::CostInferenceFunctionType(CostInferenceForSparseAdagrad)); REGISTER_CPU_OPERATOR( RowWiseSparseAdagrad, RowWiseSparseAdagradOp); OPERATOR_SCHEMA(RowWiseSparseAdagrad) .NumInputs(5) .NumOutputs(2) .EnforceOneToOneInplace() .SetDoc(R"DOC( Given inputs (param, moment, indices, grad, lr), runs a modified sparse Adagrad update on (param, grad, moment[indices], lr), and returns (new_param, new_momwnr), where moment is a 1D tensor with length equal to the number of rows in param: shape(moment) == shape(param)[0]. Each element of moment is applied to an entire row of param, and the new moment is calculated by adding the average squared sum of gradients across each row. Note that indices must also be a 1D tensor indexing into the rows of param. )DOC") .Input(0, "param", "Parameters to be updated") .Input(1, "moment", "Moment history") .Input(2, "indices", "Sparse indices") .Input(3, "grad", "Gradient computed") .Input(4, "lr", "learning rate") .Output(0, "output_param", "Updated parameters") .Output(1, "output_moment_1", "Updated moment") .Arg("epsilon", "Default 1e-5"); SHOULD_NOT_DO_GRADIENT(Adagrad); SHOULD_NOT_DO_GRADIENT(SparseAdagrad); SHOULD_NOT_DO_GRADIENT(RowWiseSparseAdagrad); }