from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from caffe2.python import workspace, memonger, core, model_helper, brew from caffe2.proto import caffe2_pb2 import caffe2.python.hypothesis_test_util as hu from future.utils import viewvalues import hypothesis.strategies as st from hypothesis import given, settings import unittest def has_blob(proto, needle): for op in proto.op: for inp in op.input: if inp == needle: return True for outp in op.output: if outp == needle: return True return False def count_blobs(proto): blobs = set() for op in proto.op: blobs = blobs.union(set(op.input)).union(set(op.output)) return len(blobs) class MemongerTest(hu.HypothesisTestCase): @given(input_dim=st.integers(min_value=1, max_value=10), output_dim=st.integers(min_value=1, max_value=10), batch_size=st.integers(min_value=1, max_value=10), do=st.sampled_from(hu.device_options), algo=st.sampled_from(memonger.AssignmentAlgorithm)) @settings(max_examples=5, timeout=120) def test_simple_memonger(self, input_dim, output_dim, batch_size, do, algo): m = model_helper.ModelHelper() fc1 = brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim) fc2 = brew.fc(m, fc1, "fc2", dim_in=output_dim, dim_out=output_dim) fc3 = brew.fc(m, fc2, "fc3", dim_in=output_dim, dim_out=output_dim) fc3.Relu([], fc3)\ .Softmax([], "pred") \ .LabelCrossEntropy(["label"], ["xent"]) \ .AveragedLoss([], "loss") input_to_grad = m.AddGradientOperators(["loss"]) m.net.Proto().device_option.CopyFrom(do) m.param_init_net.Proto().device_option.CopyFrom(do) static_blobs = \ [o for op in m.param_init_net.Proto().op for o in op.output] + \ ["data", "label", "loss", input_to_grad["fc1_w"]] optimization = memonger.optimize_interference( m.Proto(), static_blobs, algo=algo) data = np.random.randn(batch_size, input_dim).astype(np.float32) label = np.random.randint( low=0, high=output_dim, size=(batch_size,)).astype(np.int32) workspace.RunNetOnce(m.param_init_net) workspace.FeedBlob("data", data, device_option=do) workspace.FeedBlob("label", label, device_option=do) workspace.RunNetOnce(m.net) loss = workspace.FetchBlob("loss") grad = workspace.FetchBlob(str(input_to_grad["fc1_w"])) workspace.RunNetOnce(optimization.net) optimized_loss = workspace.FetchBlob("loss") optimized_grad = workspace.FetchBlob(str(input_to_grad["fc1_w"])) np.testing.assert_almost_equal(loss, optimized_loss) np.testing.assert_almost_equal(grad, optimized_grad) stats = memonger.compute_statistics(optimization.assignments) self.assertLess(stats.optimized_nbytes, stats.baseline_nbytes) # run with blob sizes blob_sizes = memonger.collect_blob_sizes(m.Proto()) optimization1 = memonger.optimize_interference( m.Proto(), static_blobs, blob_sizes=blob_sizes, algo=algo) workspace.RunNetOnce(optimization1.net) optimized_loss = workspace.FetchBlob("loss") optimized_grad = workspace.FetchBlob(str(input_to_grad["fc1_w"])) np.testing.assert_almost_equal(loss, optimized_loss) np.testing.assert_almost_equal(grad, optimized_grad) stats = memonger.compute_statistics(optimization1.assignments) self.assertLessEqual(stats.optimized_nbytes, stats.baseline_nbytes) @given(input_dim=st.integers(min_value=1, max_value=10), output_dim=st.integers(min_value=1, max_value=10), batch_size=st.integers(min_value=1, max_value=10), do=st.sampled_from(hu.device_options)) @settings(max_examples=5, timeout=120) def test_fast_memonger(self, input_dim, output_dim, batch_size, do): m = model_helper.ModelHelper() fc1 = brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim) fc2 = brew.fc(m, fc1, "fc2", dim_in=output_dim, dim_out=output_dim) fc3 = brew.fc(m, fc2, "fc3", dim_in=output_dim, dim_out=output_dim) fc3.Relu([], fc3)\ .Softmax([], "pred") \ .LabelCrossEntropy(["label"], ["xent"]) \ .AveragedLoss([], "loss") input_to_grad = m.AddGradientOperators(["loss"]) m.net.Proto().device_option.CopyFrom(do) m.param_init_net.Proto().device_option.CopyFrom(do) static_blobs = \ [o for op in m.param_init_net.Proto().op for o in op.output] + \ ["data", "label", "loss", input_to_grad["fc1_w"]] optimized_net = memonger.optimize_inference_fast( m.Proto(), static_blobs) data = np.random.randn(batch_size, input_dim).astype(np.float32) label = np.random.randint( low=0, high=output_dim, size=(batch_size,)).astype(np.int32) workspace.RunNetOnce(m.param_init_net) workspace.FeedBlob("data", data, device_option=do) workspace.FeedBlob("label", label, device_option=do) workspace.RunNetOnce(m.net) loss = workspace.FetchBlob("loss") grad = workspace.FetchBlob(str(input_to_grad["fc1_w"])) workspace.RunNetOnce(optimized_net) optimized_loss = workspace.FetchBlob("loss") optimized_grad = workspace.FetchBlob(str(input_to_grad["fc1_w"])) np.testing.assert_almost_equal(loss, optimized_loss) np.testing.assert_almost_equal(grad, optimized_grad) self.assertLess(count_blobs(optimized_net), count_blobs(m.Proto())) def test_fast_memonger_unique_outputs(self): m = model_helper.ModelHelper() fc = [] for i in range(2): z = brew.fc( m, "data{}".format(i), "fc".format(i), dim_in=2, dim_out=2) fc.append(z) r = [] # Trick is here to have same input appear twice in a same Sum for x in fc: for y in fc: r.append(brew.sum(m, [x, y], 1)) concated = brew.concat(m, r, "concated") brew.relu(m, concated, "merged") static_blobs = \ [o for op in m.param_init_net.Proto().op for o in op.output] + \ ["merged"] + ["data{}".format(i) for i in range(len(fc))] optimized_net = memonger.optimize_inference_fast( m.Proto(), static_blobs) for op in optimized_net.op: self.assertEqual(len(op.output), len(set(op.output)), str(op)) @given(input_dim=st.integers(min_value=1, max_value=4), output_dim=st.integers(min_value=1, max_value=4), batch_size=st.integers(min_value=1, max_value=4)) def test_gradient_optim(self, input_dim, output_dim, batch_size): m = model_helper.ModelHelper() with core.NameScope("name_x"): fc1 = brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim) fc2 = brew.fc(m, fc1, "fc2", dim_in=output_dim, dim_out=output_dim) fc3 = brew.fc(m, fc2, "fc3", dim_in=output_dim, dim_out=output_dim) fc4 = brew.fc(m, fc3, "fc4", dim_in=output_dim, dim_out=output_dim) fc5 = brew.fc(m, fc4, "fc5", dim_in=output_dim, dim_out=output_dim) fc5.Relu([], fc5)\ .Softmax([], "pred") \ .LabelCrossEntropy(["label"], ["xent"]) \ .AveragedLoss([], "loss") input_to_grad = m.AddGradientOperators(["name_x/loss"]) blobs_before = count_blobs(m.net.Proto()) optim_proto = memonger.share_grad_blobs( m.net, ["name_x/loss"], set(viewvalues(m.param_to_grad)), "name_x/", share_activations=False, ) blobs_after = count_blobs(optim_proto) self.assertLess(blobs_after, blobs_before) optim_proto_wacts = memonger.share_grad_blobs( m.net, ["name_x/loss"], set(viewvalues(m.param_to_grad)), "name_x/", share_activations=True, dont_share_blobs=set([str(input_to_grad["name_x/fc1_w"])]), ) blobs_wact_optim = count_blobs(optim_proto_wacts) self.assertLessEqual(blobs_wact_optim, blobs_after) # Check that the last activations are not shared self.assertTrue(has_blob(optim_proto, "name_x/fc5")) self.assertTrue( has_blob(optim_proto_wacts, "name_x/fc5"), "Dont remap final activation", ) # Test networks produce exactly same gradients data = np.random.randn(batch_size, input_dim).astype(np.float32) label = np.random.randint( low=0, high=output_dim, size=(batch_size,)).astype(np.int32) workspace.RunNetOnce(m.param_init_net) workspace.FeedBlob("name_x/data", data) workspace.FeedBlob("name_x/label", label) workspace.RunNetOnce(m.net) loss = workspace.FetchBlob("name_x/loss") grad = workspace.FetchBlob(str(input_to_grad["name_x/fc1_w"])) workspace.RunNetOnce(optim_proto) optimized_loss = workspace.FetchBlob("name_x/loss") optimized_grad = workspace.FetchBlob(str(input_to_grad["name_x/fc1_w"])) np.testing.assert_almost_equal(loss, optimized_loss) np.testing.assert_almost_equal(grad, optimized_grad) workspace.FeedBlob(str(input_to_grad["name_x/fc1_w"]), np.array([0.0])) # Run with the forward optimization workspace.RunNetOnce(optim_proto_wacts) optimized_loss = workspace.FetchBlob("name_x/loss") optimized_grad = workspace.FetchBlob(str(input_to_grad["name_x/fc1_w"])) np.testing.assert_almost_equal(loss, optimized_loss) np.testing.assert_almost_equal(grad, optimized_grad) @unittest.skipIf(not workspace.has_gpu_support, "No gpu support.") def test_memonger_mix_cpu_gpu(self): ''' Check that memonger does not make blobs cross CPU/GPU boundary ''' m = model_helper.ModelHelper() with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): fc1 = brew.fc(m, "data", "fc1", dim_in=2, dim_out=2) fc2 = brew.fc(m, fc1, "fc2", dim_in=2, dim_out=2) fc3 = brew.fc(m, fc2, "fc3", dim_in=2, dim_out=2) fc4 = brew.fc(m, fc3, "fc4", dim_in=2, dim_out=2) fc4_cpu = m.net.CopyGPUToCPU(fc4, "fc4_cpu") with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 0)): fc5_cpu = brew.fc(m, fc4_cpu, "fc5_cpu", dim_in=2, dim_out=2) fc6_cpu = brew.fc(m, fc5_cpu, "fc6_cpu", dim_in=2, dim_out=2) fc7_cpu = brew.fc(m, fc6_cpu, "fc7_cpu", dim_in=2, dim_out=2) fc7_cpu.Relu([], fc7_cpu) \ .Softmax([], "pred") \ .LabelCrossEntropy(["label"], ["xent"]) \ .AveragedLoss([], "loss") m.AddGradientOperators(["loss"]) blobs_before = count_blobs(m.net.Proto()) optim_proto = memonger.share_grad_blobs( m.net, ["loss"], set(viewvalues(m.param_to_grad)), "", share_activations=True, dont_share_blobs=set(), ) blobs_after = count_blobs(optim_proto) self.assertLess(blobs_after, blobs_before) # Create set of blobs on CPU side and GPU side and check they don't # overlap device_blobs = {caffe2_pb2.CPU: set(), caffe2_pb2.CUDA: set()} for op in optim_proto.op: if op.type not in ['CopyCPUToGPU', "CopyGPUToCPU"]: dev = op.device_option.device_type for b in list(op.input) + list(op.output): device_blobs[dev].add(b) device_crossers = device_blobs[caffe2_pb2.CPU].intersection( device_blobs[caffe2_pb2.CUDA] ) self.assertEquals(device_crossers, set()) @given(input_dim=st.integers(min_value=4, max_value=4), output_dim=st.integers(min_value=4, max_value=4), batch_size=st.integers(min_value=4, max_value=4)) def test_gradient_optim_tree(self, input_dim, output_dim, batch_size): m = model_helper.ModelHelper() with core.NameScope("name_x"): fc1 = brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim) fc2 = brew.fc(m, fc1, "fc2", dim_in=output_dim, dim_out=output_dim) fc3 = brew.fc(m, fc2, "fc3", dim_in=output_dim, dim_out=output_dim) fc4 = brew.fc(m, fc3, "fc4", dim_in=output_dim, dim_out=output_dim) fc5 = brew.fc(m, fc4, "fc5", dim_in=output_dim, dim_out=output_dim) fc5.Relu([], fc5) \ .Softmax([], "pred1") \ .LabelCrossEntropy(["label"], ["xent1"]) \ .AveragedLoss([], "loss1") fc6 = brew.fc(m, fc5, "fc6", dim_in=output_dim, dim_out=output_dim) fc6.Relu([], fc6) \ .Softmax([], "pred2") \ .LabelCrossEntropy(["label"], ["xent2"]) \ .AveragedLoss([], "loss2") input_to_grad = m.AddGradientOperators(["name_x/loss1", "name_x/loss2"]) blobs_before = count_blobs(m.net.Proto()) optim_proto = memonger.share_grad_blobs( m.net, ["name_x/loss1", "name_x/loss2"], set(viewvalues(m.param_to_grad)), "name_x", # "name_x//shared_gradinp_0_shared" if using "name_x/" share_activations=True, dont_share_blobs=set(['name_x/fc6', 'name_x/fc5', str(input_to_grad["name_x/fc1_w"])]), ) blobs_after = count_blobs(optim_proto) self.assertLess(blobs_after, blobs_before) self.assertTrue(has_blob(optim_proto, "name_x/fc6")) # Test networks produce exactly same gradients data = np.random.randn(batch_size, input_dim).astype(np.float32) label = np.random.randint( low=0, high=output_dim, size=(batch_size,)).astype(np.int32) workspace.RunNetOnce(m.param_init_net) workspace.FeedBlob("name_x/data", data) workspace.FeedBlob("name_x/label", label) workspace.RunNetOnce(m.net) loss1 = workspace.FetchBlob("name_x/loss1") loss2 = workspace.FetchBlob("name_x/loss2") grad = workspace.FetchBlob(str(input_to_grad["name_x/fc1_w"])) workspace.FeedBlob(str(input_to_grad["name_x/fc1_w"]), np.array([0.0])) workspace.RunNetOnce(optim_proto) optimized_loss1 = workspace.FetchBlob("name_x/loss1") optimized_loss2 = workspace.FetchBlob("name_x/loss2") optimized_grad = workspace.FetchBlob(str(input_to_grad["name_x/fc1_w"])) np.testing.assert_almost_equal(loss1, optimized_loss1) np.testing.assert_almost_equal(loss2, optimized_loss2) np.testing.assert_almost_equal(grad, optimized_grad) @given(input_dim=st.integers(min_value=4, max_value=4), output_dim=st.integers(min_value=4, max_value=4), batch_size=st.integers(min_value=4, max_value=4)) def test_forward_optim_tree_daggy(self, input_dim, output_dim, batch_size): m = model_helper.ModelHelper() m.Proto().type = "dag" m.Proto().num_workers = 4 with core.NameScope("name_x"): fc1 = brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim) fc2 = brew.fc(m, fc1, "fc2", dim_in=output_dim, dim_out=output_dim) fc3 = brew.fc(m, fc2, "fc3", dim_in=output_dim, dim_out=output_dim) fc4 = brew.fc(m, fc3, "fc4", dim_in=output_dim, dim_out=output_dim) fc5 = brew.fc(m, fc4, "fc5", dim_in=output_dim, dim_out=output_dim) # Branch fc3b = brew.fc(m, fc2, "fc3b", dim_in=output_dim, dim_out=output_dim) fc4b = brew.fc(m, fc3b, "fc4b", dim_in=output_dim, dim_out=output_dim) fc5b = brew.fc(m, fc4b, "fc5b", dim_in=output_dim, dim_out=output_dim) fc5sum = brew.sum(m, [fc5, fc5b], "fc5sum") fc5.Relu([], fc5sum) \ .Softmax([], "pred1") \ .LabelCrossEntropy(["label"], ["xent1"]) \ .AveragedLoss([], "loss1") fc6 = brew.fc(m, fc5, "fc6", dim_in=output_dim, dim_out=output_dim) fc6.Relu([], fc6) \ .Softmax([], "pred2") \ .LabelCrossEntropy(["label"], ["xent2"]) \ .AveragedLoss([], "loss2") blobs_before = count_blobs(m.net.Proto()) optim_proto = memonger.optimize_inference_for_dag( m.net, ["name_x/data"], "name_x" ) blobs_after = count_blobs(optim_proto) self.assertLess(blobs_after, blobs_before) # Test networks produce exactly same results data = np.random.randn(batch_size, input_dim).astype(np.float32) label = np.random.randint( low=0, high=output_dim, size=(batch_size,)).astype(np.int32) workspace.RunNetOnce(m.param_init_net) workspace.FeedBlob("name_x/data", data) workspace.FeedBlob("name_x/label", label) workspace.RunNetOnce(m.net) loss1 = workspace.FetchBlob("name_x/loss1") loss2 = workspace.FetchBlob("name_x/loss2") workspace.RunNetOnce(optim_proto) optimized_loss1 = workspace.FetchBlob("name_x/loss1") optimized_loss2 = workspace.FetchBlob("name_x/loss2") np.testing.assert_almost_equal(loss1, optimized_loss1) np.testing.assert_almost_equal(loss2, optimized_loss2) @given(input_dim=st.integers(min_value=4, max_value=4), output_dim=st.integers(min_value=4, max_value=4), batch_size=st.integers(min_value=4, max_value=4)) def test_forward_optim_tree_harder(self, input_dim, output_dim, batch_size): m = model_helper.ModelHelper() m.net.Proto().type = "dag" m.net.Proto().num_workers = 4 m.net.AddExternalInput("label") m.net.AddExternalInput("data") with core.NameScope("name_x"): fc1 = brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim) fc2 = brew.fc(m, fc1, "fc2", dim_in=output_dim, dim_out=output_dim) fc3 = brew.fc(m, fc2, "fc3", dim_in=output_dim, dim_out=output_dim) fc4 = brew.fc(m, fc3, "fc4", dim_in=output_dim, dim_out=output_dim) fc5 = brew.fc(m, fc4, "fc5", dim_in=output_dim, dim_out=output_dim) # Branch fc3b = brew.fc(m, fc2, "fc3b", dim_in=output_dim, dim_out=output_dim) fc4b = brew.fc(m, fc3b, "fc4b", dim_in=output_dim, dim_out=output_dim) fc5b = brew.fc(m, fc4b, "fc5b", dim_in=output_dim, dim_out=output_dim) fc5sum = brew.sum(m, [fc5, fc5b], "fc5sum") fc5sum.Relu([], "relu1") \ .Softmax([], "pred1") \ .LabelCrossEntropy(["label"], ["xent1"]) \ .AveragedLoss([], "loss1") fc6 = brew.fc(m, fc5, "fc6", dim_in=output_dim, dim_out=output_dim) fc6.Relu([], fc6) \ .Softmax([], "pred2") \ .LabelCrossEntropy(["label"], ["xent2"]) \ .AveragedLoss([], "loss2") blobs_before = count_blobs(m.net.Proto()) optim_proto = memonger.optimize_inference_for_dag( m.net, ["name_x/data"], "name_x/" ) blobs_after = count_blobs(optim_proto) # Extra test with when one of the parameters is also an input. # This caused a bug before. optim_proto_extra_input = memonger.optimize_inference_for_dag( m.net, ["name_x/data", "name_x/fc1_w"], "name_x/" ) blobs_after_extra_input = count_blobs(optim_proto_extra_input) self.assertEqual(blobs_after, blobs_after_extra_input) ### print(str(optim_proto)) self.assertLess(blobs_after, blobs_before) # Test networks produce exactly same results data = np.random.randn(batch_size, input_dim).astype(np.float32) label = np.random.randint( low=0, high=output_dim, size=(batch_size,)).astype(np.int32) workspace.RunNetOnce(m.param_init_net) workspace.FeedBlob("name_x/data", data) workspace.FeedBlob("name_x/label", label) workspace.RunNetOnce(m.net) loss1 = workspace.FetchBlob("name_x/loss1") loss2 = workspace.FetchBlob("name_x/loss2") workspace.RunNetOnce(optim_proto) optimized_loss1 = workspace.FetchBlob("name_x/loss1") optimized_loss2 = workspace.FetchBlob("name_x/loss2") np.testing.assert_almost_equal(loss1, optimized_loss1) np.testing.assert_almost_equal(loss2, optimized_loss2) def test_rnn(self): from caffe2.python import rnn_cell T = 5 model = model_helper.ModelHelper() seq_lengths, labels = \ model.net.AddExternalInputs( 'seq_lengths', 'labels', ) init_blobs = [] for i in range(2): hidden_init, cell_init = model.net.AddExternalInputs( "hidden_init_{}".format(i), "cell_init_{}".format(i) ) init_blobs.extend([hidden_init, cell_init]) model.param_init_net.ConstantFill([], ["input"], shape=[T, 4, 10]) output, last_hidden, _, last_state = rnn_cell.LSTM( model=model, input_blob="input", seq_lengths=seq_lengths, initial_states=init_blobs, dim_in=10, dim_out=[10, 10], scope="lstm1", forward_only=False, drop_states=True, return_last_layer_only=True, ) softmax, loss = model.net.SoftmaxWithLoss( [model.Flatten(output), "labels"], ['softmax', 'loss'], ) model.AddGradientOperators([loss]) blobs_before = count_blobs(model.net.Proto()) optim_proto = memonger.share_grad_blobs( model.net, ["loss"], set(viewvalues(model.param_to_grad)), "", share_activations=True, dont_share_blobs=set(), ) blobs_after = count_blobs(optim_proto) self.assertLess(blobs_after, blobs_before) # Run once to see all blobs are set up correctly for init_blob in init_blobs: workspace.FeedBlob(init_blob, np.zeros( [1, 4, 10], dtype=np.float32 )) workspace.FeedBlob("seq_lengths", np.array([T] * 4, dtype=np.int32)) workspace.FeedBlob("labels", np.random.rand(T).astype(np.int32)) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) def test_compute_interference_graph_inplace_ops(self): m = model_helper.ModelHelper() m.Copy("b1", "b1") m.Copy("b1", "b1") m.Copy("b1", "b1") g = memonger.compute_interference_graph(m.net.Proto().op) self.assertEqual(list(g.edges()), [(0, 1), (0, 2), (1, 2)]) def test_topological_sort_longest_path(self): m = model_helper.ModelHelper() # 0 m.Copy("conv0_w_comp", "conv0_w") # 1 conv0 = brew.conv(m, "data", "conv0", 32, 32, 4) # 2 m.Copy("conv2_w", "conv2_w") # 3 brew.conv(m, conv0, "conv2", 16, 32, 4) g = memonger.compute_interference_graph(m.net.Proto().op) orders_org = memonger.topological_sort_traversal(g) orders_gt_org = [2, 0, 1, 3] self.assertEqual(orders_gt_org, list(orders_org)) orders = memonger.topological_sort_traversal_longest_path(g) # longer path is in front of the shorter one orders_gt = [0, 1, 2, 3] self.assertEqual(orders_gt, list(orders)) def test_topological_sort_longest_path_multi_target(self): # two outputs: conv2 and data4 m = model_helper.ModelHelper() # 0 m.Copy("conv0_w_comp", "conv0_w") # 1 conv0 = brew.conv(m, "data", "conv0", 32, 32, 4) # 2 m.Copy("conv2_w", "conv2_w") # 3 brew.conv(m, conv0, "conv2", 16, 32, 4) # 4 m.Copy("data1", "data2") # 5 m.Copy("data2", "data3") g = memonger.compute_interference_graph(m.net.Proto().op) orders_org = memonger.topological_sort_traversal(g) orders_gt_org = [4, 5, 2, 0, 1, 3] self.assertEqual(orders_gt_org, list(orders_org)) orders = memonger.topological_sort_traversal_longest_path(g) # longer path is in front of the shorter one orders_gt = [0, 1, 2, 3, 4, 5] self.assertEqual(orders_gt, list(orders)) def test_topological_sort_longest_path_single_node(self): # single node m = model_helper.ModelHelper() # 0 m.Copy("conv0_w_comp", "conv0_w") g = memonger.compute_interference_graph(m.net.Proto().op) orders_org = memonger.topological_sort_traversal(g) orders_gt_org = [0] self.assertEqual(orders_gt_org, list(orders_org)) orders = memonger.topological_sort_traversal_longest_path(g) # longer path is in front of the shorter one orders_gt = [0] self.assertEqual(orders_gt, list(orders)) def test_compute_assignments_greedy(self): LiveRange = memonger.LiveRange ranges_sorted = [ ('b1', LiveRange(1, 3, 10)), ('b2', LiveRange(3, 4, 1)), ('b3', LiveRange(5, 6, 1)), ('b4', LiveRange(5, 7, 10)), ] assignment_gt = [ [ranges_sorted[0], ranges_sorted[3]], [ranges_sorted[1], ranges_sorted[2]], ] best = memonger.compute_assignments_greedy(ranges_sorted, None) self.assertEqual(memonger.get_memory_usage(best), 11) self.assertEqual(best, assignment_gt) def test_compute_assignments_dp(self): LiveRange = memonger.LiveRange ranges_sorted = [ ('b1', LiveRange(1, 3, 10)), ('b2', LiveRange(3, 4, 1)), ('b3', LiveRange(5, 6, 1)), ('b4', LiveRange(5, 7, 10)), ] best = memonger.compute_assignments_dp(ranges_sorted, None) self.assertEqual(memonger.get_memory_usage(best), 11) def test_compute_assignments_dp1(self): LiveRange = memonger.LiveRange ranges_sorted = [ ('b1', LiveRange(1, 2, 10)), ('b2', LiveRange(4, 6, 1)), ('b3', LiveRange(5, 6, 10)), ] best = memonger.compute_assignments_dp(ranges_sorted, []) self.assertEqual(memonger.get_memory_usage(best), 11) @given(input_dim=st.integers(min_value=4, max_value=4), output_dim=st.integers(min_value=4, max_value=4), batch_size=st.integers(min_value=4, max_value=4)) def test_verify_graph_equality(self, input_dim, output_dim, batch_size): m = model_helper.ModelHelper() m.Proto().type = "dag" m.Proto().num_workers = 4 with core.NameScope("name_x"): fc1 = brew.fc(m, "data", "x", dim_in=input_dim, dim_out=output_dim) fc2 = brew.fc(m, fc1, "y", dim_in=output_dim, dim_out=output_dim) fc3 = brew.fc(m, fc1, "z", dim_in=output_dim, dim_out=output_dim) brew.sum(m, [fc2, fc3], "out") m2 = model_helper.ModelHelper() m2.Proto().type = "dag" m2.Proto().num_workers = 4 with core.NameScope("name_x"): fc1 = brew.fc(m2, "data", "other_x", dim_in=input_dim, dim_out=output_dim) fc2 = brew.fc(m2, fc1, "other_y", dim_in=output_dim, dim_out=output_dim) fc3 = brew.fc(m2, fc1, "other_z", dim_in=output_dim, dim_out=output_dim) brew.sum(m2, [fc2, fc3], "out") self.assertTrue(memonger.verify_graph_equality(m.net.Proto(), m2.net.Proto())) @given(input_dim=st.integers(min_value=4, max_value=4), output_dim=st.integers(min_value=4, max_value=4), batch_size=st.integers(min_value=4, max_value=4)) def test_verify_graph_equality_harder(self, input_dim, output_dim, batch_size): m = model_helper.ModelHelper() m.Proto().type = "dag" m.Proto().num_workers = 4 with core.NameScope("name_x"): fc1 = brew.fc(m, "data", "x", dim_in=input_dim, dim_out=output_dim) fc2a = brew.fc(m, fc1, "y", dim_in=output_dim, dim_out=output_dim) fc2b = brew.fc(m, fc1, "z", dim_in=output_dim, dim_out=output_dim) fc3a = brew.fc(m, fc2a, "u", dim_in=output_dim, dim_out=output_dim) fc3b = brew.fc(m, fc2b, "v", dim_in=output_dim, dim_out=output_dim) brew.sum(m, [fc3a, fc3b], "out") m2 = model_helper.ModelHelper() m2.Proto().type = "dag" m2.Proto().num_workers = 4 with core.NameScope("name_x"): fc1 = brew.fc(m2, "data", "x", dim_in=input_dim, dim_out=output_dim) fc2a = brew.fc(m2, fc1, "y", dim_in=output_dim, dim_out=output_dim) fc2b = brew.fc(m2, fc1, "z", dim_in=output_dim, dim_out=output_dim) fc3a = brew.fc(m2, fc2a, "y", dim_in=output_dim, dim_out=output_dim) fc3b = brew.fc(m2, fc2b, "z", dim_in=output_dim, dim_out=output_dim) brew.sum(m2, [fc3a, fc3b], "out") self.assertTrue(memonger.verify_graph_equality(m.net.Proto(), m2.net.Proto())) @given(input_dim=st.integers(min_value=4, max_value=4), output_dim=st.integers(min_value=4, max_value=4), batch_size=st.integers(min_value=4, max_value=4)) def test_verify_graph_inequality(self, input_dim, output_dim, batch_size): m = model_helper.ModelHelper() m.Proto().type = "dag" m.Proto().num_workers = 4 with core.NameScope("name_x"): fc1 = brew.fc(m, "data", "x", dim_in=input_dim, dim_out=output_dim) fc2 = brew.fc(m, fc1, "y", dim_in=output_dim, dim_out=output_dim) fc3 = brew.fc(m, fc1, "z", dim_in=output_dim, dim_out=output_dim) brew.sum(m, [fc2, fc3], "out") m2 = model_helper.ModelHelper() m2.Proto().type = "dag" m2.Proto().num_workers = 4 with core.NameScope("name_x"): fc1 = brew.fc(m2, "data", "x", dim_in=input_dim, dim_out=output_dim) fc2 = brew.fc(m2, fc1, "y", dim_in=output_dim, dim_out=output_dim) fc3 = brew.fc(m2, fc1, "y", dim_in=output_dim, dim_out=output_dim) brew.sum(m2, [fc2, fc3], "out") self.assertFalse(memonger.verify_graph_equality(m.net.Proto(), m2.net.Proto())) @given(input_dim=st.integers(min_value=4, max_value=4), output_dim=st.integers(min_value=4, max_value=4), batch_size=st.integers(min_value=4, max_value=4)) def test_verify_graph_inequality_harder(self, input_dim, output_dim, batch_size): m = model_helper.ModelHelper() m.Proto().type = "dag" m.Proto().num_workers = 4 with core.NameScope("name_x"): fc1 = brew.fc(m, "data", "x", dim_in=input_dim, dim_out=output_dim) fc2a = brew.fc(m, fc1, "y", dim_in=output_dim, dim_out=output_dim) fc2b = brew.fc(m, fc1, "z", dim_in=output_dim, dim_out=output_dim) fc3a = brew.fc(m, fc2a, "u", dim_in=output_dim, dim_out=output_dim) fc3b = brew.fc(m, fc2b, "v", dim_in=output_dim, dim_out=output_dim) brew.sum(m, [fc3a, fc3b], "out") m2 = model_helper.ModelHelper() m2.Proto().type = "dag" m2.Proto().num_workers = 4 with core.NameScope("name_x"): fc1 = brew.fc(m2, "data", "x", dim_in=input_dim, dim_out=output_dim) fc2a = brew.fc(m2, fc1, "y", dim_in=output_dim, dim_out=output_dim) fc2b = brew.fc(m2, fc1, "y", dim_in=output_dim, dim_out=output_dim) fc3a = brew.fc(m2, fc2a, "u", dim_in=output_dim, dim_out=output_dim) fc3b = brew.fc(m2, fc2b, "v", dim_in=output_dim, dim_out=output_dim) brew.sum(m2, [fc3a, fc3b], "out") self.assertFalse(memonger.verify_graph_equality(m.net.Proto(), m2.net.Proto())) def test_release_blobs_when_used(self): m = model_helper.ModelHelper() fc1 = brew.fc(m, "data", "x", dim_in=2, dim_out=2) fc2 = brew.fc(m, fc1, "y", dim_in=2, dim_out=2) fc3 = brew.fc(m, fc1, "z", dim_in=2, dim_out=2) fc4 = brew.fc(m, fc2, "u", dim_in=2, dim_out=2) m.net.Alias(["u"], ["u_alias"]) brew.sum(m, [fc3, fc4], "out") with_frees = memonger.release_blobs_when_used(m.net.Proto(), set("data")) expect_frees = {"x", "y", "z"} # out is external output # and u is aliased so cannot be freed found_frees = set() for op in with_frees.op: if op.type == "Free": self.assertFalse(op.input[0] in found_frees) # no double frees found_frees.add(op.input[0]) else: # Check a freed blob is not used anymore for inp in op.input: self.assertFalse(inp in found_frees) for outp in op.output: self.assertFalse(outp in found_frees) self.assertEqual(expect_frees, found_frees) if __name__ == '__main__': unittest.main()