/** * Copyright (c) 2016-present, Facebook, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "caffe2/operators/unique_ops.h" #include namespace caffe2 { template <> template bool UniqueOp::DoRunWithType() { auto& inputTensor = Input(0); // use dim32 to enforce that it's fine to have remapping of type int int N = inputTensor.dim32(0); CAFFE_ENFORCE_EQ(inputTensor.dim(), 1, "Input should be a vector"); int* remapping = nullptr; if (REMAPPING < OutputSize()) { auto* remappingTensor = Output(REMAPPING, inputTensor.sizes(), at::dtype()); remapping = remappingTensor->template mutable_data(); } const T* input = inputTensor.template data(); // TODO(dzhulgakov): if perf becomes an issue consider doing hash table // instead of sorting order_.resize(N); std::iota(order_.begin(), order_.end(), 0); std::sort(order_.begin(), order_.end(), [input](const int x, const int y) { return input[x] < input[y]; }); int K = N; for (int i = 1; i < N; ++i) { K -= input[order_[i]] == input[order_[i - 1]]; } auto* uniqueTensor = Output(UNIQUE, {K}, at::dtype()); T* unique = uniqueTensor->template mutable_data(); K = 0; T prev = -1; for (int i = 0; i < N; ++i) { if (i == 0 || prev != input[order_[i]]) { prev = unique[K++] = input[order_[i]]; } if (remapping) { remapping[order_[i]] = K - 1; } } return true; } REGISTER_CPU_OPERATOR(Unique, UniqueOp); OPERATOR_SCHEMA(Unique) .NumInputs(1) .NumOutputs(1, 2) .SetDoc(R"DOC( Deduplicates input indices vector and optionally produces reverse remapping. There's no guarantees on the ordering of the output indices. )DOC") .Input(0, "indices", "1D tensor of int32 or int64 indices.") .Output(0, "unique_indices", "1D tensor of deduped entries.") .Output( 1, "remapping", "(optional) mapping from `indices` to `unique_indices`. This has the " "same shape as `indices`. Its elements are the indices into " "`unique_indices` such that `Gather(['unique_indices', 'remapping'])` " "yields `indices`.") .TensorInferenceFunction([](const OperatorDef& def, const vector& in) { std::vector out(1); out[0].set_data_type(in[0].data_type()); CAFFE_ENFORCE_EQ(in[0].dims_size(), 1); if (in[0].dims(0) <= 1) { // This special case is useful in some situation, e.g., when feeding // tensor inference with empty tensor (where the first dim is the batch // size) out[0].add_dims(in[0].dims(0)); } else { out[0].set_unknown_shape(true); } if (def.output_size() > 1) { // Remapping has the same shape as the input tensor out.push_back(in[0]); out.back().set_data_type(TensorProto::INT32); } return out; }); SHOULD_NOT_DO_GRADIENT(Unique); } // namespace caffe2