diff options
author | Wei Yang <weiyang@fb.com> | 2018-09-29 22:23:36 -0700 |
---|---|---|
committer | Facebook Github Bot <facebook-github-bot@users.noreply.github.com> | 2018-09-29 22:26:45 -0700 |
commit | 5ffc915f26a7759d3a24b692599a49db2ef6b0c0 (patch) | |
tree | 42a30b5f2abcaa17c8fc62f78e60892cb4712be3 /torch/functional.py | |
parent | 40aa212cd65c2852d35ce3e43c731d63599aefbb (diff) | |
download | pytorch-5ffc915f26a7759d3a24b692599a49db2ef6b0c0.tar.gz pytorch-5ffc915f26a7759d3a24b692599a49db2ef6b0c0.tar.bz2 pytorch-5ffc915f26a7759d3a24b692599a49db2ef6b0c0.zip |
fix docs (#12126)
Summary:
- fix https://github.com/pytorch/pytorch/issues/12120
- add `torch.argsort`, `torch.pdist`, `broadcast_tensors` to *.rst files
- add parameter dim to `torch.unique` doc
- fix table and args for `torch.norm`
- test plan: make html and check docs in browser
gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12126
Differential Revision: D10087006
Pulled By: weiyangfb
fbshipit-source-id: 25f65c43d14e02140d0da988d8742c7ade3d8cc9
Diffstat (limited to 'torch/functional.py')
-rw-r--r-- | torch/functional.py | 26 |
1 files changed, 15 insertions, 11 deletions
diff --git a/torch/functional.py b/torch/functional.py index 0eac8f1674..47625171c5 100644 --- a/torch/functional.py +++ b/torch/functional.py @@ -439,6 +439,8 @@ def unique(input, sorted=False, return_inverse=False, dim=None): before returning as output. return_inverse (bool): Whether to also return the indices for where elements in the original input ended up in the returned unique list. + dim (int): the dimension to apply unique. If ``None``, the unique of the + flattened input is returned. default: ``None`` Returns: (Tensor, Tensor (optional)): A tensor or a tuple of tensors containing @@ -646,8 +648,9 @@ def norm(input, p="fro", dim=None, keepdim=False, out=None): Args: input (Tensor): the input tensor - p ({int, float, inf, -inf, 'fro', 'nuc'}): the order of norm + p (int, float, inf, -inf, 'fro', 'nuc'): the order of norm The following norms can be calculated: + ===== ============================ ========================== ord matrix norm vector norm ===== ============================ ========================== @@ -656,18 +659,19 @@ def norm(input, p="fro", dim=None, keepdim=False, out=None): 'nuc' nuclear norm -- Other as vec norm when dim is None sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== - dim ({int, 2-tuple of ints, 2-list of ints}, optional): If it is an int, - vector norm will be calculated, if it is 2-tuple of ints, matrix norm - will be calculated. If the value is None, matrix norm will be calculated - when the input tensor only has two dimensions, vector norm will be - calculated when the input tensor only has one dimension. If the input - tensor has more than two dimensions, the vector norm will be applied to - last dimension. + + dim (int, 2-tuple of ints, 2-list of ints, optional): If it is an int, + vector norm will be calculated, if it is 2-tuple of ints, matrix norm + will be calculated. If the value is None, matrix norm will be calculated + when the input tensor only has two dimensions, vector norm will be + calculated when the input tensor only has one dimension. If the input + tensor has more than two dimensions, the vector norm will be applied to + last dimension. keepdim (bool): whether the output tensors have :attr:`dim` - retained or not. Ignored if attr:`dim`=``None`` and - :attr:`out`=``None``. + retained or not. Ignored if :attr:`dim` = ``None`` and + :attr:`out` = ``None``. out (Tensor, optional): the output tensor. Ignored if - attr:`dim`=``None`` and :attr:`out`=``None``. + :attr:`dim` = ``None`` and :attr:`out` = ``None``. Example:: >>> import torch |