summaryrefslogtreecommitdiff
path: root/tools
diff options
context:
space:
mode:
authorPeter Goldsborough <peter@goldsborough.me>2018-02-03 17:57:39 -0800
committerSoumith Chintala <soumith@gmail.com>2018-02-03 20:57:39 -0500
commit61b5ea85d4e85b5ec1fd4c513e103bab845993ff (patch)
tree7a392c1256402b40261ee5dca97763029fbec5c9 /tools
parentf8388d2aea210b6cf19330e948be2456f5fa9bd8 (diff)
downloadpytorch-61b5ea85d4e85b5ec1fd4c513e103bab845993ff.tar.gz
pytorch-61b5ea85d4e85b5ec1fd4c513e103bab845993ff.tar.bz2
pytorch-61b5ea85d4e85b5ec1fd4c513e103bab845993ff.zip
Remove FunctionFlags (#5018)
Diffstat (limited to 'tools')
-rw-r--r--tools/autograd/gen_variable_type.py2
-rw-r--r--tools/autograd/templates/VariableType.cpp8
2 files changed, 2 insertions, 8 deletions
diff --git a/tools/autograd/gen_variable_type.py b/tools/autograd/gen_variable_type.py
index 8f86898283..eddde451c2 100644
--- a/tools/autograd/gen_variable_type.py
+++ b/tools/autograd/gen_variable_type.py
@@ -93,7 +93,7 @@ if (compute_requires_grad( ${args_with_derivatives} )) {
ASSIGN_GRAD_FN = CodeTemplate("""\
grad_fn = std::make_shared<${op}>(${op_ctor});
-grad_fn->next_functions = compute_next_functions( ${args_with_derivatives} );
+grad_fn->next_functions = get_next_functions( ${args_with_derivatives} );
""")
CALL_VIA_TYPE = CodeTemplate("""\
diff --git a/tools/autograd/templates/VariableType.cpp b/tools/autograd/templates/VariableType.cpp
index 69cbf26823..68fda72e53 100644
--- a/tools/autograd/templates/VariableType.cpp
+++ b/tools/autograd/templates/VariableType.cpp
@@ -283,12 +283,6 @@ static void check_no_requires_grad(const Tensor& tensor, const char* name) {
}
}
-// NB: This should be called with Tensor/TensorList arguments (not Variables)
-template <typename... Args>
-static function_list compute_next_functions(Args&&... args) {
- return Function::tensor_flags(std::forward<Args>(args)...).next_functions;
-}
-
static void check_inplace(const Tensor& tensor) {
auto& var = static_cast<const Variable&>(tensor);
if (var.requires_grad() && var.is_leaf() && GradMode::is_enabled()) {
@@ -387,7 +381,7 @@ Tensor & VariableType::s_copy_(Tensor & self, const Tensor & src, bool non_block
requires_grad &= isFloatingPoint(self.type().scalarType());
if (requires_grad) {
grad_fn = std::make_shared<CopyBackwards>();
- grad_fn->next_functions = compute_next_functions( self, src );
+ grad_fn->next_functions = get_next_functions(self, src);
grad_fn->num_inputs = 1;
grad_fn->src_type = &src.type();
grad_fn->src_device = src.is_cuda() ? src.get_device() : -1;